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Statistical Motion-Based Video Indexing and Retrieval

We propose an original approach for the characterization of video dynamic content with a view to supplying new functionalities for motion-based video indexing and retrieval with query by example. We have designed a statistical framework for motion content description without any prior motion segmentation, and for motion-based video classi cation and retrieval. Contrary to other proposed methods, we do not extract from a given video s e quence a set of motion features but we identify a global probabilistic model, expressed as a temporal Gibbs random eld. This leads to de ne a e cient statistical motion-based similarity measure, relying on the computation of conditional likelihoods, to discriminate various motion contents. We have carried out experiments on a set of 100 video sequences, representative of various motion situations temporal textures as re and crowd motions, sport videos, car sequences, low motion activity examples. We have obtained promising results both for the video classi cation step and for the retrieval process.

Introduction

Archiving video information is of growing importance in various application elds. Reliable and convenient access to visual information is then of major interest for an e cient use of these databases. This implies indexing and retrieval of visual documents by their content. A great deal of research amount is currently devoted to image and video database management, AZP96,BMM99 . Nevertheless, it remains hard to easily identify relevant information with regards to a given query, due to the complexity of dynamic scene analysis.

Another important aspect of video database management lies in the de nition of appropriate similarity measures associated to the description of video content. It should provide users with e cient tools for the classi cation of video sequences into various types sports, news, movies, commercials, . . . FLE95,NKFH98,VL98 , for the retrieval of examples similar to a given video query FB99,JVX99 , or for e cient video browsing using high-level structuring such as macrosegmentation RHM99,YYL96 .

Once the video has been segmented into shots BGG99,ZWZS97 , the issue is to deliver an interpretation and a representation of the shot content. 1 Most approaches rely on the selection of a set of key-frames and on their description using texture or color features FT98 . However, motion information should not be neglected and is part of the cues to be considered in the context of video indexing, in particular for activity classi cation or action recognition. In this paper, we focus on this aspect and we aim at providing a statistical scheme for shot description based on dynamic content analysis and the associated measure of motion-based shot similarity.

To cope with motion information, two main categories of approaches can bedistinguished. The rst one exploits segmentation, tracking and characterization of moving elements in order to determine a spatio-temporal representation of the video shot Courtney97,FTM98,GB98 . To this end, they use either parametric motion models or dense optical ow elds. Then, the description of motion content generally relies either on the extraction of qualitative pertinent features for the entities of interest e.g., related to the direction of the displacement GB98 , or to the the trajectory of the center of gravity of the tracked objects DAKGK00 , or on the computation of global histograms of estimated dense optical ow elds AC97,JVX99 . However, some kinds of video cannot be handled in such a way. For instance, when considering complex dynamic contents involving motion of rivers, ames, foliages in the wind, or crowds, it reveals impossible to extract and track relevant stable local primitives. Furthermore, as far as video indexing is concerned, the entities of interest may not be single objects but rather groups of objects, in particular when dealing with sport videos. No tool currently exists to automatically extract such entities.

These remarks led to consider another category of methods providing attractive analysis of motion information in the context of content-based video indexing. Our goal is to cope with the interpretation of dynamic contents without any explicit prior motion segmentation. Primary work in that direction NP92 results in the de nition of temporal textures which include for instance motions of rivers, foliages, ames, or crowds. Di erent techniques for temporal texture feature extraction have been proposed BF98,FB99,NP92,OHSF98,SP96 . In OHSF98 , descriptors are extracted from the characterization of surfaces derived from spatio-temporal trajectories. In NP92 , features issued from spatial cooccurrences of normal ows are exploited to classify sequences either as simple motions rotation, translation, divergence or as temporal textures. In previous work BF98,FB99 , we have considered global features extracted from temporal cooccurrence distributions of local motion-related information more reliable than the normal velocity. In this paper, we propose to extend the latter work in order to deliver in an uni ed way a probabilistic modeling of dynamic content and an associated statistical scheme for motion-based video indexing and retrieval.

The paper is organized as follows. The general ideas underlying our work are presented in Section 2. Section 3 describes the local non-parametric motion-related information that we use. In Section 4, we introduce the probabilistic modeling associated to the spatio-temporal distribution of local motion-related quantities. The proposed statistical framework for motionbased indexing and retrieval is presented in Section 5. Section 6 contains classi cation results and retrieval examples over a set of video sequences. Concluding remarks are reported in Section 7.

Problem statement

As pointed out above, proposed approaches for temporal texture analysis mainly rely on the extraction of a set of numerical descriptors. As a consequence, the comparison of shot content is performed in the feature space according to a given metric such as the Euclidean distance or more appropriate measures SJ99 . Besides, to deal with video databases involving various dynamic contents, it is necessary to determine an optimal set of features and the associated similarity measure, using either principal component analysis MSP96 or some feature selection techniques JZ97 . Nevertheless, feature space is usually of high dimension, and the considered distance is likely not to capture properly uncertainty attached to feature measurements.

To cope with these issues, it seems more relevant to adopt a statistical point of view which may deliver a uni ed view for learning and classi cation. We introduce a motion classi cation approach for video indexing which relies on a statistical analysis of the spatio-temporal distribution of local non-parametric motion-related information. We aim at identifying probabilistic models corresponding to di erent dynamic content types to be discriminated. We exploit a correspondence between cooccurrence measurements and Markov Random Field MRF models established in the context of spatial texture analysis in Gimelfarb96 , and we propose an extension to temporal textures see Section 4. We consider only temporal models, which allows us to easily compute the involved likelihood functions. This property leads to de ne a general statistical framework for video indexing and retrieval see Section 5. In particular, we have designed a technique for hierarchical video classi cation based on an approximated Kullback-Liebler divergence see subsection 5.1. The retrieval process is stated as a Bayesian inference issue conducted through the extracted video hierarchy see subsection 5.2.

Motion information

The rst step of our approach is to de ne appropriate motion-related measurements whose spatio-temporal distributions will be interpreted. Since we aim at characterizing the actual dynamic content of the scene, we need to get rid of camera motion. Consequently, we rst estimate the dominant image motion between two successive images, which is assumed to be due to camera motion. Then, we cancel it by wrapping the successive images to the rst image of the shot through the combination of the successive estimated elementary dominant motions.

Dominant motion estimation

To model the transformation between two successive images, we consider a 2d a ne motion model. The velocity w r, at pixel r, related to the a ne motion model parameterized by is given by: w r = a 1 + a 2 x + a 3 y a 4 + a 5 x + a 6 y ! 1 with r = x; y and = a 1 a 2 a 3 a 4 a 5 a 6 . The computation is achieved with the gradient-based multi-resolution incremental estimation method described in OB95 . The following minimization problem is solved : where DFDr; = I t+1 s + w r , I t r and is Tukey's biweight function. The use of a robust estimator ensures the motion estimation not to be sensitive to secondary motions due to mobile objects in the scene. Criterion 2 is minimized by means of an iterative reweighted leastsquare technique embedded in a multiresolution framework and involving appropriate successive linearizations of the DFD expression.

Local motion-related measurements

In order to characterize the distribution of residual motion in the motion compensated image sequence, we aim at de ning some local motion-related measurements. Dense optic ow eld provides such local information. Nevertheless, as stressed previously, the relevance of the estimation cannot always beguaranteed in case of complex motion situations and the required computational load remains prohibitive in the context of video indexing involving large databases. As a consequence, we prefer considering a local motion-related measure directly computed from the spatio-temporal derivatives of the intensity function in the image.

By assuming intensity constancy along motion trajectories, the well-known image motion constraint relating the 2d apparent motion and the spatio-temporal derivatives of the intensity function can be expressed as follows : vr r I r + @ I r @ t = 0 where v is the 2D motion vector in the image, and I p the intensity function at point p in the wrapped image. Then, we can infer the normal velocity v n in the compensated sequence :

v n r = ,I t krI rk 4 with I t r = @ I r @ t is the temporal derivative of the intensity function I . I t r is approximated by a simple nite di erence. Although this expression is explicitly related to apparent motion, it can benull whatever the motion magnitude, if the motion direction is perpendicular to the spatial intensity gradient. Moreover, the normal velocity estimate is also very sensitive to noise attached to the computation of the intensity derivatives.

As for example pointed out in OB97 , the module of the spatial gradient krI rk can represent, to a certain extent, a pertinent measure of the reliability of the computed normal velocity. Furthermore, if the spatial intensity gradient is su ciently distributed in terms of direction in the vicinity of point r, a weighted average of v n in an appropriate neighborhood forms a relevant motion-related quantity. More precisely, w e consider the following expression :

v obs r = X s2Fr krI sk 2 j v n ssj max 2 ; P s2Fr krI sk 2 5
where Fr is a small window centered on r, 2 a predetermined constant related to the noise level in uniform areas. I t p is approximated by a simple nite di erence. This motion-related measurement forms a more reliable quantity than the normal ow, yet simply computed from the intensity function and its derivatives. This motion information was successfully exploited for the detection of mobile objects in compensated sequences OB97,FBG99 .

Obviously, the information relative to motion direction has been lost, which prevents from discriminating for instance two opposed translations with the same magnitude. However, this is not a real shortcoming, since we are interested in interpreting the type of dynamic situations observed in the considered video shot and not a speci c motion value.

Besides, the computation of cooccurrence measurements for the spatio-temporal distribution of motion-related information v obs r requires to quantize these continuous values. To cope with erroneous values, we apply a quantization on a prede ned interval. It indeed appears relevant to introduce a limit beyond which measures are no more regarded as usable. In practice, we will use N levels of quantizations in the interval 0; 4 . In the sequel, we will note the quantized range of variations of v obs r and x k these discretized motion-related measurements for the k th image of the processed video sequence.

Temporal Gibbsian modeling

In previous work FB99 , we exploit the measurement of temporal cooccurrences of these motion-related quantities to extract the global motion-based features. This led to encouraging results. On the other hand, a relationship between Markov random elds and cooccurrence distributions Gimelfarb96 , and more generally, with ltering-based feature extraction techniques ZWM98 , have been established. Therefore, we aim at developing a probabilistic modeling framework to characterize the spatio-temporal distributions of the local motion-related quantities attached to a shot.

Compared to the extraction of a set of numerical features for motion-based content characterization, this probabilistic modeling supplies a more accurate description of the uncertainty attached to motion information. Besides, it enables to deliver tools for video classi cation and retrieval embedded in a statistical framework, which should ease user interaction relevance feedback and the combination of di erent kinds of content description motion, color, texture or shape for instance.

Temporal Gibbs random elds

We consider a purely temporal modeling approach for two main reasons. First, analyzing the temporal evolution of the local motion information allows us to handle certain kinds of nonstationarity while being su cient t o c haracterize the motion classes of interest. Second, it makes feasible the computation of the conditional likelihood of a sequence of motion-related quantities w.r.t. a model. This property leads rst to a simple and straightforward model estimation see subsection 4.2, and, secondly, to de ne a well-funded statistical indexing and retrieval framework see Section 5.

More precisely, a sequence of motion quantities x k k=0;::;L is assumed to be the realization of a sequence of random elds X = X 0 ; : : : ; X K , where X is a rst-order Markov c hain of length K + 1 :

P V X = P V X 0 K Y k=1 P V X k jX k,1 6
V refers to the underlying interaction potentials to be de ned later. In addition, since we consider only purely temporal interaction, we assume that conditional probabilities are expressed by:

P V X k jX k,1 = Y r2R P V X k rjX k,1 r 7
where R is the image grid. The latter local conditional probabilities are equivalently expressed using a Gibbs formulation:

P V X k rjX k,1 r exp V X k r; X k,1 r 8
where V ; are the prior parameters attached to the model V . Besides, it leads to the de nition of the local normalization constant Z k r at position r in image k of the sequence:

Z k r = X !2 exp V !;X k,1 r 9
The likelihood P V X is then given by:

P V X = P V X 0 K Y k=1 Y r2R exp V X k r; X k,1 r Z k r 10
This temporal modeling can bede ned equivalently as a Markov random eld with temporal neighborhoodstructure GG84 . In addition, the following normalization constraint is imposed in order to guarantee the uniqueness of the potentials of the temporal Gibbs random eld: 8! 0 2 ; X !2 exp V a !;! 0 = 1 11 which implies : 8r; k 2 R 1; K ; Z k r = 1 . As a consequence, contrary to Markov random eld in the general case, the global likelihood function P V X can behere simply decomposed as a product of local temporal transitions:

P V X = P V X 0 K Y k=1 Y r2R exp V X k rjX k,1 r 12
For given P V X 0 and V , w e h a ve n o w a complete knowledge of P V law. This property will be exploited to derive a statistical framework for video indexing and retrieval in Section 5. Hereafter, the law P V X 0 is supposed to be uniform.

At last, similarly to Gimelfarb96,ZWM98 , the global likelihood function can beexpressed using an exponential formulation involving a dot product between cooccurrences measurements HX and the potentials of the model V :

P V X = P V X 0 exp h V HX i 13
where HX is the set of temporal cooccurrence measurements de ned by: 8!;! 0 2 2 ; H!;! 0 jX = k=K X k=1 X r2R ! , X k r ! 0 , X k,1 r 14 with is the Kronecker symbol, and the dot product between cooccurrences measurements HX and the potentials of the model V is given by:

V HX = X !;! 0 2 2 H!;! 0 jX V !;! 0 15 4.2 Maximum Likelihood Estimation
Given a realization x of X, w e aim at identifying the model V associated to X. To this end, we consider the Maximum Likelihood ML criterion. Thus, we aim at solving: b

V = arg max V LF V 16
where V stands for fV !;! 0 ; !;! 0 2 2 g and LF V = l n P V x.

In fact, this temporal modeling consists in a product of jRj independent Markov chains de ned by their transition matrix exp V ; :

P V X k rjX k,1 r exp V X k r; X k,1 r 17 
As a consequence, the ML estimate is readily determined from the empirical estimation of the transition probability P V X k rjX k,1 r. Thus, potentials b V ; are given by: 8!;! 0 2 2 ; b V !;! 0 = l n fk;r : x k r = !;x k,1 r = ! 0 g fk;r : x k,1 r = ! 0 g 18 Equivalently, using cooccurrence measurements, we obtain:

8!;! 0 2 2 ; b V !;! 0 = l n 0 B B B @ H!;! 0 jx X 2 H ;! 0 jx 1 C C C A 19
where the cooccurrence matrix Hx is given by Eq.14.

Model complexity reduction

As far as video indexing is concerned, a crucial point is to supply informative representations of content description while remaining parsimonious. To this end, we perform a selection of relevant potentials after the ML estimation of the model.

In fact, as stressed by Eq.13, informative potentials are associated to high cooccurrence values. Therefore, we perform a ranking of the estimated potentials according to the associated cooccurrences, and, we consider an iterative procedure to select the proper model complexity.

Exploiting the determined ranking, potentials of b V are introduced one by one in a model Ṽ initially set to the constant model. We use the normalization constraint of Eq.11 to determine the values of potentials of Ṽ which h a ve not been introduced yet. In order to quantify the amount of information captured by Ṽ , w e e v aluate the likelihood ratio corresponding to the comparison of the reduced model Ṽ with the estimate b V and given by:

LR x Ṽ ; b V = P xj Ṽ =P xj b V 20
As soon as LR x Ṽ ; b

V exceeds a user-speci ed threshold LR accounting for the amount of information to be relevant, the procedure is stopped and the obtained reduced model Ṽ is stored as the model attached to the sequence x.

Statistical motion-based indexing and retrieval

In the context of video indexing, we focus on retrieval operation. Our goal is to retrieve i n a video database examples similar to a video query w.r.t. terms of motion content. To this end, we exploit the statistical modeling approach described above. In the same manner than in VL99 , the retrieval process is embedded in a B a yesian framework. Furthermore, since in case of large databases direct search reveals untractable, we propose a hierarchical motion-based structuring of the considered video database using a statistical similarity measure.

Statistical hierarchical indexing

We aim at determining an e cient indexing structure to make the retrieval task easier. Visual-content search trees have proven to bewell-suited to still image database management as shown in CBD00,MSP96,Schweitzer99 . It involves the construction of a binary tree whose nodes are attached to subsets of elements of the base. To a c hieve this hierarchical structuring, two main categories of approaches can be considered. Top-down techniques Schweitzer99 consist in successively splitting nodes of the tree, processing from the root to the leaves. As a consequence, an element misclassi ed in the rst steps of the procedure appears in an undesirable branch of the nal binary tree. Therefore, we prefer to use bottom-up techniques which seem to o er better performance in terms of classi cation accuracy, CBD00,MSP96 . In practice, we consider an ascendant hierarchical classi cation procedure, DGLS81 .

Given a similarity measure, this classi cation scheme successively forms from the leaves to the root pairs of elements minimizing the similarity measure. In addition, a threshold D max is introduced to prevent from merging nodes which are too far from each other. In our case, we want to take advantage of the statistical point of view introduced above to de ne an appropriate similarity measure. When considering two probabilistic distributions, the Kullback-Liebler KL divergence appears to provide relevant characterization of similarity of these two distributions BV98 . In practice, we will use a easily tractable approximation of the KL distance.

We rst assume that a temporal Gibbsian model V n has been estimated for each sequence n in the video database. The Kullback-Liebler KL divergence K L p; q is given by:

K L pkq = Z ln p q dp 21
It can be viewed as the expectation of the log-likelihood ratio ln p q w.r.t. the distribution p. This expectation can be approximated using a Monte-Carlo procedure. In our case, if we consider an element n of the database, the sequence of motion-related quantities x n represents a sample associated to the distribution modeled by V n . More precisely, a t e a c h k;r 2 0; K R , the transition from x n k,1 r to x n k r is a sample of the Markov c hain attached to model V n . As a consequence, when considering two elements of the database n 1 and n 2 , their associated models V n 1 and V n 2 , and the sequences of computed motion-related quantities x n 1 and x n 2 , the KL divergence K L n 1 kn 2 is approximated as the empirical average of the logarithm of the ratio of the likelihood of the transitions from x n k,1 r to x n k r computed respectively w.r.t. V n 1 and V n 2 :

K L n 1 kn 2 K X k=1 X r2R ln 0 @ P V n 1 , x n 1 k rjx k,1 r P V n 2
x n 1 k rjx n 1 k,1 r 1 A 22 This leads to approximate the KL divergence K L n 1 kn 2 by the logarithm of the ratios of the likelihoods of the sequence of motion-related quantities n 1 computed respectively for the Gibbsian models V n 1 and V n 2 : K L n 1 kn 2 ln P x n 1 jV n 1 P x n 1 jV n 2 23 It indeed quanti es the loss of information occurring when considering V n 2 instead of V n 1 to model the distribution attached to n 1 . Finally, in order to deal with a symmetric similarity measure, we consider the similarity measure Dn 1 ; n 2 between elements n 1 and n 2 given by:

Dn 1 ; n 2 = 1 2 K L n 1 kn 2 + K L n 2 kn 1 24
We need to de ne this similarity measure not only between elements of the video database, but also between two clusters C 1 and C 2 . D is then de ned by:

DC 1 ; C 2 =max n 1 ;n 2 2C 1 C 2 Dn 1 ; n 2 25
Exploiting this similarity measure, we a c hieve an ascendant hierarchical classi cation as follows. At each step, a pair is formed by merging the closest clusters according to D. If a cluster C is too far from all the others, i.e. min C 0 DC;C 0 D max , i t i s k ept alone to form a single cluster. D max can be easily set since D is directly related to log-likelihood ratios. As initialization, each element of the video database forms a leave of the binary tree. Besides, a model has to be attached to each created cluster. Since our temporal modeling is directly determined from temporal cooccurrence measurements, the model associated to the merging of two clusters is simply estimated using Eq.19. More precisely, when considering a set of sequence, the cooccurrence measurements de ned in Eq.14 are the sum of the cooccurrence measurements computed for each sequence of the considered group. Therefore, when merging two clusters C 1 and C 2 , w e rst compute the cooccurrence matrix HC 1 ; C 2 as the sum of the cooccurrence matrices HC 1 and HC 2 , and second, exploiting Eq.19, we estimate the potentials of the associated model.

Statistical retrieval

In case of direct search in the video database, retrieval operations can be achieved according to a MAP criterion VL99 . Given a video query q, w e w ant to determine the best match n : n = arg max n2N P njq = arg max n2N P qjnP n 26

Let us note that this criterion also supplies a ranking of the elements of the database according to P njq. In our case, we introduce no a priori: P n is uniform over the database elements and equal to a constant. Besides, to each element n of the base is attached a temporal Gibbsian model V n . We compute the sequence of motion-related measures x q for the video query q and the conditional likelihood P qjn is expressed as P V n x q see Eq.6. Then, we infer: n = arg max n P V n x q 27

In practice, a direct search reveals time-consuming for large databases. The resolution of criterion 27 is conducted through the hierarchy determined in subsection 5.1. We cannot ensure to nd the best match, but this provides a compromise between computational time and retrieval accuracy. More precisely, we proceed as follows. We explore the binary tree from the root to the leaves. At each step s, given a parent cluster C s , w e select the best child node C s+1 according to the MAP criterion:

C s+1 = arg max c2NC s P V c x q 28
where NC s is the set of children nodes of the cluster C s in the hierarchy. This process is run until the selected cluster contains the desired number of elements answers than desired or until a given similarity threshold precision is reached.

Results

We h a ve carried out experiments on a set of real image sequences. We h a ve paid a particular attention to choose a video set representative of various motion situations : temporal textures ames, crowds, sport videos basket, rugby..., rigid motion situations cars, train, ..., and low motion activity examples. Finally, we consider a database of 100 video sequences. Typically, each sequence is composed of about 10 images.

For each element of the database, we perform the estimation of the associated temporal Gibbsian model as described in Section 4. In practice, we consider 16 levels of quantization i.e. N = 1 6 .The proposed scheme for model complexity reduction allows us to keep only from 10 to 20 of the 256 ML estimates of the Gibbsian potentials.

At a second stage, we exploit this temporal modeling to determine an hierarchical representation of the database which expresses similarities in terms of motion content. In the subsequent, we present t wo t ypes of experiments. First, in order to provide a comprehensive visualization of the extracted binary tree, we h a ve also performed a classi cation on a smaller set of 20 sequences involving various types of dynamic content. Second, we display four results of retrieval operation with query by example. In both cases, we provide a comparison with the feature-based approach described in FB99 . Mainly, for a given sequence x, this technique extracts a set of features from the temporal cooccurrence matrix Hx and exploits the Euclidean norm in this featurespace as the similarity measure. To provide a more quantitative evaluation of the comparison, we will note D F this feature-based similarity measure. Hereafter, we will refer to the statistical technique presented in this paper as the model-based statistical technique, and to the approach described in FB99 as the feature-based geometrical technique.

Hierarchical motion-based classi cation:

The set of 20 sequences used to visualize an example of hierarchal classi cation is depicted in Fig. 1. It is composed as follows. It includes two static shots of anchors, anchor 1 and anchor 2 , from news program displaying a very weak motion activity. In addition, two other examples of low motion activity, hall and belle, ile, are also in the processed video set. Otherwise, four examples of rigid motion situations are introduced referring either to road tra c sequence, road 1 and road 2 , or to landing or take-o in airport sequence, airport 1 and airport 2 . At last, we add twelve sport video sequences involving football game, football 1 and football 2 , hockey game, hockey 1 , hockey 2 , hockey 3 and hockey 4 , basketball game, basketball 1 , basketball 2 and basketball 3 , and windsur ng, windsurfing 1 and windsurfing 2 .

For this video set, we perform the automatic unsupervised construction of the hierarchy both using the statistical technique presented in this paper and the feature-based approach described in FB99 . The obtained classi cation tree are displayed respectively in Fig. 2 for the model-based statistical technique and in Fig. 2 for the feature-based geometrical approach. In addition, we depict for the leaves of the tree the name of the associated element of the video set and for the other nodes the value of the maximum intra-cluster similarity measure.

The hierarchy obtained using the model-based statistical technique discriminates correctly the di erent kinds of dynamic contents. Tra c sequences, road 1 and road 2 , airport videos, airport 1 and airport 2 , and low motion activity situations, anchor 1 anchor 2 , hall and belle,ile, constitute a separate cluster in which relevant subclusters are formed associated to these four types of motion content. In addition, all sport video are properly grouped. In this group of sequences, subgroups have also been identi ed such as basketball sequences, basketball 1 , basketball 2 and basketball 3 , displaying very high motion activity, and hockey samples, hockey 1 , hockey 2 , hockey 3 and hockey 4 . The classi cation tree resulting from the feature-based geometrical scheme appears slightly less relevant. In fact, the two airport sequences, airport 1 and airport 2 , are not accurately classi ed.

Statistical motion-based retrieval: In Fig. 4 and Fig. 5, we display four examples of retrieval operation involving di erent t ypes of video query. The rst query is expressed as a news program consisting of a static shot on an anchor. A rigid motion situations is proposed as the second query. The third and fourth retrieval operations involve sport videos. A global view of the game eld is considered in the third query, whereas the fourth one is a close-up shot on a basket player tracked by the camera during the shot.

For these four examples of retrieval with query by example, we display the three best replies obtained, on on hand, using the model-based statistical framework, and on the other hand, the feature-based geometrical scheme. Besides, in both cases, we also give the values of the measure of the relevance of each reply. More precisely, for the rst framework, we give the values of the log-likelihood ln P V n x q corresponding to video query q and, in order to a posteriori evaluate the relevance of the replies, we have also estimated the model V q associated to the query and we report the distances D between V q and the di erent retrieved models V n . For the second approach, we give the values of the feature-based geometrical similarity measure D F .

For video query one and three, the results obtained with the two di erent techniques are equivalent end provide relevant answers with regards to motion content. In case of video query two and four, the video replies provided by the model-based statistical framework are visually more relevant. In both cases, the third reply proposed using the feature-based g e ometrical scheme would be not regarded as relevant b y the user.

As a consequence, from these di erent results which remain partial, it seems that the use of a statistical framework improves both the classi cation operation and the retrieval process.

Conclusion

We h a ve presented an original approach for dynamic content description in video sequences with a view to coping with motion-based indexing and retrieval with query by example. The proposed scheme exploits a temporal Gibbsian modeling of the cooccurrence distributions of local motion-related measurements computed along an image sequence from the spatio-temporal derivatives of the intensity function. To remain independent from camera work and to really handle scene motion, this analysis is performed in the reconstructed sequence compensated resulting from cancelling the dominant image motion assumed to be due to camera movement. This probabilistic modeling framework results rst in a statistical hierarchical motion-based structuring of the video database using an approximated version of the Kullback-Liebler distance, and, second, in a Bayesian retrieval scheme based on the MAP criterion and performed through the extracted hierarchy. We have obtained promising results both for the classi cation stage and retrieval operations.

In future work, we plan to evaluate our approach on a still larger video database. We could also exploit our statistical modeling approach to characterize dynamic contents attached to speci c entities of interest, such as moving objects extracted in an automatic FBG99 or semi-automatic GBD99 way. Considering the rst approach, we give for each reply n the value LF of the log-likelihood ln P V n x q corresponding to video query q. In addition, to a posteriori evaluate the relevance of the replies, we h a ve also estimated the model V q associated to the query and we report the distances D between V q and the di erent retrieved models V n . Besides, for the second technique, we give the value D F of the Euclidean distance in the feature space between the video query and the replies. Considering the rst approach, we give for each reply n the value LF of the log-likelihood ln P V n x q corresponding to video query q. In addition, to a posteriori evaluate the relevance of the replies, we h a ve also estimated the model V q associated to the query and we report the distances D between V q and the di erent retrieved models V n . Besides, for the second technique, we give the value D F of the Euclidean distance in the feature space between the video query and the replies.
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 12 Figure 1: Set of the 20 processed video shots used to visualize an example of motion-based hierarchal classi cation. For each video, we display the median image of the sequence.

Figure 3 :

 3 Figure 3: Feature-based geometrical classi cation: example of motion-based hierarchical classi cation for the set of 20 video sequences presented in Fig.1with D max = 1 0 . At each leave of the tree, we report the name of the video sequence. For the other nodes of the tree, we display the maximum intra-cluster distance evaluated using the geometrical distance D F in the feature space.

  Example of retrieval operations involving three replies using the model-based statistical and feature-based geometrical techniques.

In the sequel we will also use the term of sequence to designate an elementary shot.