
HAL Id: hal-02283157
https://hal.science/hal-02283157

Submitted on 10 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Domain Reduction for Valued Constraints by
Generalising Methods from CSP
Martin Cooper, Wafa Jguirim, David Cohen

To cite this version:
Martin Cooper, Wafa Jguirim, David Cohen. Domain Reduction for Valued Constraints by Gener-
alising Methods from CSP. 24th International Conference on Principles and Practice of Constraint
Programming (CP 2018), Aug 2018, Lille, France. pp.64-80. �hal-02283157�

https://hal.science/hal-02283157
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22462

Official URL

DOI : https://doi.org/10.1007/978-3-319-98334-9_5

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Cooper, Martin and Jguirim, Wafa and
Cohen, David Domain Reduction for Valued Constraints by
Generalising Methods from CSP. (2018) In: 24th International
Conference on Principles and Practice of Constraint Programming
(CP 2018), 27 August 2018 - 31 August 2018 (Lille, France).

Domain Reduction for Valued Constraints

by Generalising Methods from CSP

Martin C. Cooper1(B), Wafa Jguirim1,2, and David A. Cohen3

1 IRIT, University of Toulouse III, Toulouse, France
{cooper,Wafa.Jguirim}@irit.fr

2 National School of Computer Science, University of Manouba, Manouba, Tunisia
3 Department of Computer Science, Royal Holloway, University of London,

Egham, UK
d.cohen@rhul.ac.uk

Abstract. For classical CSPs, the absence of broken triangles on a pair
of values allows the merging of these values without changing the satisfi-
ability of the instance, giving experimentally verified reduction in search
time. We generalise the notion of broken triangles to VCSPs to obtain a
tractable value-merging rule which preserves the cost of a solution.

We then strengthen this value merging rule by using soft arc consis-
tency to remove soft broken triangles and we show that the combined
rule generalises known notions of domain value substitutability and inter-
changeability. Unfortunately the combined rules are no longer tractable
to apply, but can still have applications as heuristics for reducing the
search space.

Finally we consider the generalisation of another value-elimination
rule for CSPs to binary VCSPs. This new rule properly generalises neigh-
bourhood substitutability and so we expect it will also have practical
applications.

Keywords: Valued Constraint Satisfaction Problem · Value merging
Value elimination · Tractability

1 Introduction, Notation and Definitions

Constraint Satisfaction (CSP) has had a significant impact on our ability to
solve large and practical declarative problems, for example crew scheduling [14],
and online workflow allocation [20]. However, in such complex problem domains,
it has been restricted in its applicability by not being able to express degrees
of satisfaction. The natural extension, valued constraint satisfaction (VCSP),
allows us to express preferences amongst assignments and so forms a useful
paradigm, extending the CSP to optimisation, whilst maintaining the declarative
feel, allowing us to reason directly in problem domains.

Partially supported by ANR-11-LABX-0040-CIMI within the French Agence

Nationale de la Recherche program ANR-11-IDEX-0002-02.

_https://doi.org/10.1007/978-3-319-98334-9 5

Since these problems are NP-hard much effort has been applied to find
algorithms and techniques to reduce the search space. Such techniques are most
effective if they do not change the set of possible solutions, but simply avoid
exploring search avenues that we know cannot be productive. Key amongst these
techniques are propagation and symmetry reduction, which can both be applied
either before or during search. Search-space reduction has been approached in
two ways: by the application of group theory [1,3,11,19,21] to identify equiv-
alent branches of the search tree, or by using local structure to prune values
or variables from the search [2,6,7,9,16,18]. It is the latter approach that we
continue to develop in this paper, extending domain reduction results from con-
straint satisfaction to valued constraint satisfaction [5,17]. Indeed we will be
combining domain reduction methods from consistency approaches [4,8] which
have been essential in making global constraints effective [15] with local pattern
based value merging to make our techniques more widely applicable.

We observe that there are often several ways to extend reduction techniques
from CSP to VCSP. This is most notably the case for arc consistency, which
has been generalised to distinct techniques, FDAC, EDAC and VAC, which all
coincide with CSP arc consistency when applied directly to the classical CSP,
but correspond to distinct levels of soft consistency on the VCSP [8].

Similarly, different generalisations of neighbourhood substitution have been
proposed for VCSPs [5,13,17], including a stronger condition for substitutability
taking into account the current lower and upper bounds [12]. In this paper we
consider generalisations from CSPs to VCSPs of value-elimination rules based
on the merging of values [7,18].

1.1 Definitions

A VCSP instance is a collection of cost functions applied to sets of variables [8].
For simplicity of presentation, in this paper we assume that costs are taken

from the non-negative rationals together with the special cost infinity (∞). Of
course, such instances are precisely equivalent to classical (crisp) CSP instances
when the costs happen to all be either 0 or ∞. For simplicity of notation we
always assume that the set of variables of the instance I is V (I) = {XI

1 , . . . , XI
n},

allowing us to use indexes to refer to variables. The domain of possible values
for the variable XI

i is denoted by DI
i .

A subset of the variables is called a scope. An assignment to scope σ maps
each XI

i ∈ σ to an element of its domain, DI
i . The instance I includes a set of

cost functions C(I) = {φI
σ | σ ∈ S(I)} where S(I) is a set of scopes and each

φI
σ ∈ C(I) maps assignments (to the variables σ) to costs. When we refer to a

cost function φI
σ for which σ �∈ S(I) we always mean the cost function that is

identically zero.
The cost of an assignment s to a set of variables Y ⊆ V (I) is given by

costIY (s) =
∑

σ⊆Y

φI
σ(s|σ).

A solution is an assignment to V (I) that minimizes cost.

Where it improves readability we omit the name of the instance when refer-
ring to domains and costs. We simplify notation by using φi, φij to denote
φ{Xi} and φ{Xi,Xj} respectively. Furthermore, for single variables Xi we use the
assignment on {Xi} mapping Xi to a interchangeably with the value a, since
the meaning is always clear from the context.

Analogously to consistency propagation in the CSP, any soft consistency
operation on a VCSP instance [8] alters the cost functions while preserving all
solutions. A soft arc consistency (SAC) operation at variable Xi replaces the
unary cost φi with φ′

i different only at domain value d ∈ Di where φ′
i(d) =

φi(d)+α, (α may be negative). To compensate, it replaces one other cost function
φσ for which Xi ∈ σ with φ′

σ where φ′
σ(s) = φσ(s) except when s(Xi) = d in

which case φ′
σ(s) = φσ(s) − α. In order to be well defined the result of this

SAC operation must leave all costs non-negative: we are not allowed to subtract
a larger cost from any existing cost. To make this definition subsume (crisp)
arc-consistency we extend the definition of subtraction so that ∞ − ∞ = ∞.

This is illustrated in Fig. 1, where as usual, variables are (grey) ellipses con-
taining domain value: cost pairs and non-zero (binary) costs are shown with
labelled arcs. A solution to this instance assigns c to X1, e to X2 and f to X3

and has cost 4.

X1
X2 X3 X1

X2 X3

a:1

b:2

c:1

d:3

e:2

f :1

g:3

4
3

5

1

4

Move (cost) 1
from X2 = d

b:2

a:1

c:1

d:2

e:2

f :1

g:3

5

4

1

1

5

4

Fig. 1. SAC: moving cost 1 from X2 = d to φ1,2. Changed costs are highlighted.

Definition 1. In a VCSP instance, a GASBT (general-arity soft broken trian-
gle) on values a, b for Xi is an assignment s to the union of distinct non-empty
scopes σ and ρ, where Xi /∈ σ ∪ ρ, such that

φσ∪{Xi}(s|σ ∪ a) < φρ∪{Xi}(s|ρ ∪ b)

φρ∪{Xi}(s|ρ ∪ a) > φσ∪{Xi}(s|σ ∪ b)

costσ∪ρ(s) < ∞

For binary CSP instances (where the costs lie in {0,∞}), the notion of a gen-
eral arity soft broken triangle coincides precisely with the classical CSP notion
of broken triangle [7]. This correspondence is shown graphically in Fig. 2. In
this figure the crisp CSP instance has dashed arcs to indicate disallowed tuples
(cost = ∞) and solid arcs to indicate permitted tuples (cost = 0). Hence when
σ and ρ each contain just one variable we say that a GASBT is a soft broken
triangle (SBT).

Although the definition of a GASBT is independent of the unary costs
φi(a), φi(b), these costs will be critical in the definition of a value-merging rule.

Xi

Xj

Xk

Xi

Xj

Xk

a

b

c

d

α

β

δ

γµ
α < β

γ > δ
µ < ∞

a

b

c

d

Fig. 2. A soft broken triangle and the corresponding crisp BTP pattern.

Definition 2. The VCSP instance J obtained from I by merging a value pair
a, b ∈ Di to produce a new value c has the same variables and domains as I
except that DJ

i =
(

DI
i − {a, b}

)

∪ {c}.
The cost functions in J are defined as follows:

φJ
σ(t) =

{

φI
σ(t) If Xi /∈ σ, or t(Xi) �= c

min{φI
σ(t ∪ a), φI

σ(t ∪ b)} Otherwise.

2 Value-Merging Rules

We say that a, b ∈ Di are mergeable in a VCSP instance if the cost of a solution
to the new instance (after the merging of a and b) is identical to the cost of a
solution to the original instance. We have the following rule.

Proposition 1. Whenever φi(a) = φi(b) and there is no general arity soft
broken triangle on a, b, then a, b ∈ Di are mergeable. Furthermore, given a solu-
tion to the instance resulting from the merging of two values, we can find a
solution to the original instance in linear time.

Proof. Suppose that there is no GASBT on a, b ∈ Di in I, and let J be identical
to I except that a, b have been merged to produce the value c. If a solution to J
does not have value c at XJ

i then it is also a solution to I and we have nothing
to prove. So, let s be a solution to J which assigns c to XJ

i . Denote by sa, sb

the assignments in I which are identical to s except that XI
i is assigned a or b

(respectively).
It is clear from the definition of the cost functions in the merged instance

that the cost of s in J is at most the minimum of the costs of sa and sb in I. If
the cost of s is infinite, we have nothing to prove, so we assume it is finite.

Since there is no GASBT on a, b, and this is true for every pair of scopes σ
and ρ, we must have either

∀σ, ρ where XI
i /∈ σ ∪ ρ, φI

σ∪{XI
i
}(s|σ ∪ a) ≤ φI

ρ∪{XI
i
}(s|ρ ∪ b)

or
∀σ, ρ where XI

i /∈ σ ∪ ρ, φI
ρ∪{XI

i
}(s|ρ ∪ a) ≥ φI

σ∪{XI
i
}(s|σ ∪ b)

Without loss of generality, suppose it is the former. Then

∀σ,where XJ
i /∈ σ, φJ

σ∪{XJ
i

}(s|σ ∪ c) = φI
σ∪{Xi}

(s|σ ∪ a)

Now, since φI
i (a) = φI

i (b) we can replace c by a in s to obtain a solution to
the original instance with the same global cost as s.

So, reconstructing a solution to I simply requires checking which of sa or sb

is a solution to I. This can be achieved in time which is linear in the size of I.

We use the term SBT-merging (Soft Broken Triangle merging) for the
merging of two values in a binary VCSP instance, allowed by the premise of
Proposition 1.

2.1 Applying GASBTP Value Merging

For any k ≥ 1, applying k-consistency operations until convergence to a CSP
instance produces a unique closure [4]. Similarly, applying neighbourhood sub-
stitution operations [9] until convergence to a CSP instance produces a unique
closure modulo isomorphism [5]. For VCSPs, finding the closure by soft arc con-
sistency operation is not unique, but the problem of finding the best closure can
be solved in polynomial time by linear programming [8]. It is therefore natural
to ask the question of the uniqueness of and the complexity of finding the best
closure of a VCSP instance under SBT merging operations. It turns out that the
answer depends on whether the VCSP instance has infinite costs or not.

Theorem 1. For a finite-valued VCSP (i.e. with no infinite costs), closure
under GASBT-merging is unique up to value renaming. This closure can be
found in polynomial time if the scopes are of bounded size. For general-valued
VCSPs, maximizing the number of SBT-merges is NP-hard.

Proof. For finite-valued VCSPs, it suffices to notice that GASBT-merging is
equivalent to eliminating values a ∈ Di if ∃b ∈ Di such that ∀σ,Xi /∈ σ and
for all assignments t to σ ∪ {Xi} we have that φσ∪{Xi}(t ∪ a) ≥ φσ∪{Xi}(t ∪ b).
Clearly, elimination of such a value a cannot prevent eliminations at the same
or other variables by the same rule. Of course we are free to name new domain
values in any way that we choose, so we cannot guarantee that value merging
ends up with precisely the same VCSP instance. However, it does not matter in
which order we apply GASBT value merges to a finite-valued VCSP instance:
we always converge to isomorphic instances.

Testing whether there is a GASBT on a pair of values at Xi for a given pair
of scopes σ and ρ requires testing that a VCSP on σ ∪ ρ has finite value. In a
finite valued VCSP this test is trivial. If either σ∪{Xi} or ρ∪{Xi} contains more
variables than the bound on the size of a scope then the associated cost function
is identically zero, so cannot satisfy the conditions required for a GASBT.

So, the existence of a GASBT value merge can be tested in polynomial time
if we bound the arity of cost functions. Hence, the closure is unique modulo
isomorphism and can be found in polynomial time by a greedy algorithm.

To show NP-hardness of optimal value merging when infinite costs are
allowed observe that crisp binary CSP instances are precisely those binary VCSP
instances with costs restricted to {0,∞}. Since an SBT in such a binary VCSP
is precisely a crisp broken triangle, SBT value merging is simply BT-merging in
the corresponding CSP instance. It is known that finding the maximum number
of BT-merges in a CSP instance is NP-hard (even for domains of size 3) [7]. It
follows that finding the maximum number of SBT-merges in VCSPs is NP-hard,
even if all costs belong to {0,∞}, domains are of size 3, and scopes are binary.

3 Combining Soft Arc Consistency and SBT-Merging

GASBT value merging can only be performed when we have two domain values
with identical unary costs. However, SAC operations allow us to move costs
away from domain values. It is therefore possible that we can merge values, but
only after performing the correct sequence of SAC operations. We will show two
practical examples (with low complexity) where this does indeed occur and then
show that, in general it is NP-hard to find such a sequence of SAC operations.
In fact we will show, in the first result, that SAC followed by value merging
subsumes a (natural but weak) form of valued neighbourhood substitution [5,17].

Definition 3. We say that a is weak neighbourhood substitutable for b at
variable Xi if every cost associated with a tuple assigning value b to Xi is not
made worse by substituting value a. That is,

For all σ, Xi /∈ σ for all assignments t to σ we have

φσ∪{Xi}(t ∪ a) ≤ φσ∪{Xi}(t ∪ b).

Example 1. Consider again the binary VCSP instance in Fig. 1. Before the SAC
operation the two values for variable X2 cannot be GASBT value merged as they
have different unary costs. On the other hand, even before the SAC operation,
e is weak neighbourhood substitutable for d.

Since there are no infinite costs in this VCSP, testing for value merging here
amounts to checking that the costs associated with value d are always at least
as high as those associated with value e.

Now consider the binary VCSP instance shown in Fig. 3. Since the value
φ12(a, c) < φ12(b, c) but φ12(a, e) > φ12(b, e) neither a nor b can be weak neigh-
bourhood substituted for the other. On the other hand a and b can be GASBT
value merged since φ23(c, e) = ∞.

X1

X2 X3

a:0

b:0

c:0 e:0

d:0 f :0
0

1 0

1

∞

Fig. 3. In this binary VCSP instance a and b can be GASBT value merged, but they
are not weak neighbourhood substitutable.

Notice that after the SAC operation the two values e and d in Fig. 1 can be
GASBT merged. We now prove that this holds in general: weak substitutable
values can always be GASBT merged after precisely one SAC operation.

Theorem 2. If a is weak neighbourhood substitutable for b then, in polynomial
time, we can find a SAC operation after which a and b can be GASBT value
merged.

Proof. Suppose that a is weak neighbourhood substitutable for b and that
φi(a) < φi(b). Choose any scope ρ and use a SAC operation to move the cost
α = φi(b) − φi(a) from b to φρ, where Xi ∈ ρ, replacing φi with φ′

i and φρ with
φ′

ρ and leaving all other cost functions unchanged.
Before the SAC operation we have, for all σ, Xi /∈ σ and for all assignments

t to σ:
φσ∪{Xi}(t ∪ a) ≤ φσ∪{Xi}(t ∪ b).

So, after the SAC operation, for all assignments t to ρ − {Xi}:

φ′
ρ(t ∪ b) = φρ(t ∪ b) + α theSAC operation

> φσ(t ∪ b) since φi(a) < φi(b)
≥ φσ(t ∪ a) since a is substitutable for b
= φ′

σ(t ∪ a).

So the SAC operation preserves the weak neighbourhood substitutability, but
now both a and b have equal unary cost at Xi.

We complete the proof by showing that if a is weak neighbourhood substi-
tutable for b then there cannot be any GASBT on a and b. In fact this is trivially
true since it can never occur for any scope ρ and assignment s that:

φρ∪{Xi}(s|ρ ∪ a) > φσ∪{Xi}(s|σ ∪ b)

Since the SAC operation was entirely determined by the unary costs of a and
b and σ was arbitrary this is polynomial time.

In fact we can identify another simple case in which we can immediately find
a soft arc consistency operation which leads to GASBT-merging.

Definition 4. We say that a, b ∈ Di are almost interchangeable if there is a
scope σ with Xi /∈ σ such that for all scopes ρ �= σ with Xi /∈ ρ we have, for
every assignment t to ρ, φρ(t ∪ a) = φρ(t ∪ b).

This definition of almost interchangeability is independent of the unary
cost functions but still allows GASBT value merging after an appropriate SAC
operation.

Proposition 2. If a, b ∈ Di are almost interchangeable, then, in polynomial
time, we can find a SAC operation after which a and b can be GASBT merged.

Proof. We can simply make φi(a) = φi(b) using a SAC operation which sends
the difference in their cost to the cost function φσ. This leaves a and b almost
interchangeable.

Since there is only one scope for which the cost functions can differ when a
is replaced by b at Xi there can be no GASBT on a and b and they can now be
merged.

When the costs lie in {0,∞}, the notion of almost interchangeability coincides
with the notion of virtual interchangeability [18].

Corollary 1. In a binary VCSP, suppose there is a variable Xj (j �= i) such
that ∀k /∈ {i, j}, ∀c ∈ Dk, φik(a, c) = φik(b, c) then a and b are almost inter-
changeable and can be merged.

Having shown the usefulness of applying SAC operations to remove any
occurrences of GASBT we conclude the section with a proof that it is in general
NP-hard to determine whether such SAC operations can be found.

Suppose that we have a binary VCSP instance I with a unary cost function
φi for which φi(a) > φi(b). Our problem is to find a set of costs {qj | j �= i}, one
cost for each (other) variable Xj , such that by sending each cost qj from φi(a)
to the cost function φij , we obtain an instance with φi(a) = φi(b) that has no
soft broken triangle on a and b at Xi.

We now prove that this problem is NP-hard.

Theorem 3. Given a VCSP instance I and variable X with domain values
a and b, it is NP-hard to determine whether there are soft arc consistency
operations on a and b which make the unary costs of a and b equal whilst also
eliminating all SBT occurrences on a and b.

Proof. We provide a polynomial reduction from the problem SubsetSum which
is well known to be NP-complete [1,10]. An instance 〈S,M〉 of SubsetSum

consists of a set S of positive integers and an integer M . The corresponding
question is whether there exists a subset T ⊆ S whose elements sum to M , i.e.

∑

s∈T

s = M.

Given an instance R = 〈S,M〉 of SubsetSum we will construct a binary
VCSP instance IR such that there exists a set of SAC operations on two values
a and b for variable X eliminating all SBT occurrences on a and b at X if and
only if R is a yes instance.

Let S = {a1, . . . , an}. Since we are showing hardness we need only reduce
instances for which n > 1. The VCSP IR has 2n + 1 variables. The domain
D2n+1 = {a, b}. All other domains are {0, . . . , 4}. The only non-trivial unary
constraint is φ2n+1 where φ2n+1(a) = M and φ2n+1(b) = 0.

The binary cost function between X2n+1 and any other variable depends on
whether the index of that variable is even or odd. In all cases there is zero cost
if X2n+1 is assigned value a. The full table of costs follows. For i = 1, . . . , n,
u ∈ {0, . . . , 4}:

φ2i−1,2n+1(u, a) = 0 φ2i,2n+1(u, a) = 0

φ2i−1,2n+1(0, b) = 0 φ2i,2n+1(0, b) = 0

φ2i−1,2n+1(1, b) = 0 φ2i,2n+1(1, b) = ai/2

φ2i−1,2n+1(2, b) = ai/2 φ2i,2n+1(2, b) = 0

φ2i−1,2n+1(3, b) = ai/2 φ2i,2n+1(3, b) = M + 1

φ2i−1,2n+1(4, b) = M + 1 φ2i,2n+1(4, b) = ai/2

For i = 1, . . . , n the cost function φ2i−1,2i is (crisp) equality. That is:

∀u, v ∈ {0, . . . , 4}, φ2i−1,2i(u, v) =

{

0 if u = v

∞ otherwise

All other (binary) cost functions only allow both variables to be zero. That is:

∀u, v ∈ {0, . . . , 4}, φ(u, v) =

{

0 if u = v = 0

∞ otherwise

Having defined the instance IR we need to determine each cost qi to move
from the unary cost φ2n+1(a) to the binary cost function between X2n+1 and
Xi. After these SAC operations we require that there be no SBT on a and b at
X2n+1. We also require that the resultant unary costs of a and b at X2n+1 are
equal. Hence

∑2n

i=1 qi = M .
This latter condition induces a constraint on the allowed values of qi and qj

for every non-infinite allowed pair of values on variables Xi and Xj .
Consider first the crisp constraints which force both Xj and Xk to have

value 0. With this Xj and Xk a soft broken triangle can only occur for values
Xj = Xk = 0. In this case we consider the four costs between values 0 at Xj and
Xk and values a and b for X2n+1. A broken triangle does not appear involving
Xj and Xk precisely when:

(qj ≥ 0 ∧ qk ≥ 0) ∨ (qj ≤ 0 ∧ qk ≤ 0) (1)

Since n > 2 these constraints connect every variable except X2n+1. It follows

from Eq. (1) and the fact that
∑2n

i=1 qi = M > 0, that each qi, i = 1 . . . , q2n is
non-negative and strictly less than M + 1.

Every other constraint that might be involved in a soft broken triangle is
a strict equality between a pair of variables X2i−1 and X2i. The five non-zero
allowed pairs of values in each such constraint give the five following disjunctions.

(q2i−1 ≥ 0 ∧ q2i ≥ 0) ∨ (q2i−1 ≤ 0 ∧ q2i ≤ 0) (2)

(q2i−1 ≥ 0 ∧ q2i ≥ ai/2) ∨ (q2i−1 ≤ 0 ∧ q2i ≤ ai/2) (3)

(q2i−1 ≥ ai/2 ∧ q2i ≥ 0) ∨ (q2i−1 ≤ ai/2 ∧ q2i ≤ 0) (4)

(q2i−1 ≥ ai/2 ∧ q2i ≥ M + 1) ∨ (q2i−1 ≤ ai/2 ∧ q2i ≤ M + 1) (5)

(q2i−1 ≥ M + 1 ∧ q2i ≥ ai/2) ∨ (q2i−1 ≤ M + 1 ∧ q2i ≤ ai/2) (6)

Equation 2 is redundant. Equations 3–6 are equivalent to

For i = 1, . . . , n, (q2i−1 = q2i = 0) ∨ (q2i−1 = q2i = ai/2) (7)

Setting ai = q2i−1 + q2i, we can see that there exist q1, . . . , q2n satisfying the
above equations if and only if there is a solution a1, . . . , an to the SubsetSum

instance R.
This reduction is clearly polynomial. Since SubsetSum is NP-complete, we

can deduce that testing the existence of a set of soft arc consistency operations
on a and b which makes their unary costs equal and eliminates all soft broken
triangles, allowing us to apply Proposition 1 and merge a and b, is itself NP-hard.

4 Effect on Search-Tree Size of Merging

It has been shown [7] that in CSPs, BT-merging can increase the number of
nodes in the search tree, when arc consistency is maintained during search.

Example 2. Consider an instance I with four boolean variables X1, X2, X3,
X4 and the following constraints X1 ⇒ X2, X1 ⇒ X3, X2 �= X3, X2 �= X4,
X3 �= X4. The two domain values for X1 can be merged.

A search which assigns X1 = 0 and maintains arc consistency will detect
inconsistency:

X1 = 0 → X3 = 1 → X2 = 0 → X4 = 1

which wipes out the domain for X3.
On the other hand, after value merging there are no constraints involving X1

and inconsistency will only be detected after another variable is instantiated.

However, it has been demonstrated experimentally that BT-merging applied
during preprocessing reduces the average number of search-tree nodes by 27% [7].

We can make the following theoretical observation concerning naive
(chronological) backtracking.

Proposition 3. If a search algorithm is used which only prunes nodes based
on the cost of the corresponding partial solution and instantiates variables in a
fixed order, then merging values due to absence of GASBTs cannot increase the
number of nodes visited.

Proof. Suppose that there is no GASBT on a, b ∈ Di and that a, b have been
merged to produce a new instance I ′ in which c is the result of the merge of a and
b. Let Y be the variables assigned at some given node of the search tree, where
Xi ∈ Y . Consider any assignment sc to variables Y ⊆ X in I ′ which assigns c to
Xi. Denote by sa, sb the assignments which are identical to sc except that Xi is
now assigned a or b (respectively). There were no GASBTs on values a, b in the
sub-problem on variables Y . So, from the proof of Proposition 1, we know that
the cost of sc on variables Y is min{costY (sa), costY (sb)}. Hence, if pruning only
depends on this cost, then sc will only survive (i.e. the corresponding node will
not be pruned) in I ′ if sa or sb survives in I. Thus, the total number of nodes
cannot increase.

In the special case of binary CSPs, GASBTs are simply broken triangles,
which gives us the following corollary.

Corollary 2. If BT-merging is applied to a CSP then the number of nodes in
the search tree cannot increase in a naive backtracking search.

Of course we can expect that value merging due to the absence of
GASBTs will often significantly reduce the number of search nodes visited as it
is analogous to BT merging in the CSP, and hence the earlier experiments apply
directly.

5 Soft Snakes

The broken triangle is just one example of a forbidden pattern which allows
domain reduction. The general notion of forbidden pattern has led to the dis-
covery of several novel value-elimination rules in binary CSPs [2,6].

In this section we generalise the CSP pattern ∃2snake [2] to VCSPs. This is a
further step towards identifying and classifying the generalisation of CSP value-
elimination patterns to VCSPS. For simplicity, we concentrate on binary VCSPs,
since no general-arity version of ∃2snake has yet been proposed for CSPs.

However, we are very pleased to be able to generalise the snake pattern
since it is significantly stronger than GASBT value merging: snake-substitution
is a generalisation of a strong form of soft neighbourhood substitution (and
hence of weak neighbourhood substitution). Given its relatively low complexity
(See Proposition 5) we expect that value merging due the absence of the valued
snake pattern will be even more effective than that obtained by the absence
of (soft) broken triangles. We first give the definition of soft neighbourhood
substitution [5,13,17].

Definition 5. In a binary VCSP instance I, value a ∈ Di is soft neighbourhood
substitutable for b ∈ Di if

φi(b) − φi(a) +
∑

j �=i

min
c∈Dj

(φij(b, c) − φij(a, c)) ≥ 0.

Soft neighbourhood substitutability of a ∈ Di for b ∈ Di implies that b can
be replaced in any solution by a. It depends on the costs φij(a, c) and φij(b, c)
for all variables Xj . Snake-substitutability extends this by looking at a third
variable Xk while allowing a substitution of value c ∈ Dj by a value d ∈ Dk.

Definition 6. In a binary VCSP instance I, value a ∈ Di is snake-substitutable
for b ∈ Di if

φi(b) − φi(a) +
∑

j �=i

min
c∈Dj

(max
d∈Dj

fij(a, b, c, d)) ≥ 0

where

fij(a, b, c, d) = φij(b, c) − φij(a, d) + φj(c) − φj(d)

+
∑

k �=i,j

min
e∈Dk

(φjk(c, e) − φjk(d, e)).

The sum in the definition of fij(a, b, c, d) is the minimum reduction in cost
we obtain by replacing c by d (as assignments to variable Xj) in the sub-instance
on variables X1, . . . , Xi−1, Xi+1, . . . , Xn. We can see that snake-substitutability
subsumes soft neighbourhood substitutability by setting c = d in Definition 6.

Example 3. Consider a 2-variable instance of MAX-CSP over boolean domains
{0, 1} with a single constraint X1 �= X2. In this case, the sum in the definition
of f12(a, b, c, d) is zero since there is no third variable Xk such that k �= 1, 2.
No values are soft neighbourhood substitutable in this instance, but 1 is snake-
substitutable for 0 in the domain of X1 since for any assignment (0, c) to (X1, X2)
there is an assignment (1, d) of no greater cost.

Proposition 4. Snake-substitutability is a valid value-elimination rule in binary
VCSPs.

Proof. Consider a binary VCSP instance I in which a �= b ∈ Dn and a is snake-
substitutable for b. We can assume that I has a solution sb with sb[Xn] = b and
cost(sb) �= ∞ otherwise there is nothing to prove.

For each j �= n let

dj = arg max
d

(fnj(a, b, sb[Xj], d)) .

Thus, dj is, in some sense, the best replacement for sb[Xj] when we replace
b with a at Xn.

Now substitute b for a at Xn in the solution sb, while also changing assign-
ments to each variable Xj to dj (j �= n), to obtain the assignment sa. We only
need to show that cost(sa) ≤ cost(sb), since then sa is a solution.

Since a is snake substitutable for b at Xn we can use the positivity and
finiteness of the expression in Definition 6 to establish that some terms are finite.
Finiteness will allow us to use simple subtraction later in the proof.

In Definition 6 we could choose c and e to be the values assigned by sb to
variables Xj and Xk. Finiteness of cost(sb) then implies that all terms occurring
positively in Definition 6 are finite. This in turn implies that all terms occurring
negatively in Definition 6 are also finite. So we can see that, for each j �= n and
for each k �= n, j, the following are all finite:

φn(a), φnj(a, dj), φj(dj), φjk(dj , sb[Xk])

We now define n intermediate solutions sr between sb and sa. For
r = 0, . . . , n − 1,

sr[Xj] = dj (j = 1, . . . , r)

sr[Xj] = sb[Xj] (j = r + 1, . . . , n − 1)

sr[Xn] = a

Thus, in particular, sn−1 = sa and s0 is identical to sb except that variable Xn

is assigned the value a.
Let costn−1(s) denote the cost of assignment s on variables X1, . . . , Xn−1:

costn−1(s) =
n−1
∑

j=1

φj(s[Xj]) +
n−1
∑

j=1

n−1
∑

k=j+1

φjk(s[Xj], s[Xk]).

From the definition of costn−1, we have:

cost(sb) = costn−1(s0) + φn(b) +
n−1
∑

r=1

φrn(sb[Xr], b) (8)

Then, from the definition of costn−1 and sr (r = 0, . . . , n − 1), and using the
finiteness of φrk(dr, sr[Xk]) for k �= r, n and φr(dr), we have: for r = 1, . . . , n−1:

costn−1(sr−1) = costn−1(sr) +
∑

k �=n,r

(φrk(sb[Xr], sr[Xk]) − φrk(dr, sr[Xk]))

+ φr(sb[Xr]) − φr(dr) (9)

We also have

cost(sa) = cost(sn−1) = costn−1(sn−1) + φn(a) +

n−1
∑

r=1

φrn(dr, a). (10)

We also know that φn(a) +
∑n−1

r=1 φrn(dr, a) is finite. This allows us to rewrite
Eq. (10) as

costn−1(sn−1) = cost(sa) − φn(a) −

n−1
∑

r=1

φrn(dr, a) (11)

By successive substitutions of Eq. (9) (r = 1, . . . , n − 1) and then Eq. (11) in
Eq. (8), we obtain

cost(sb) = cost(sa) + φn(b) − φn(a) +

n−1∑

r=1

{φrn(sb[Xr], b) − φrn(dr, a)

+φr(sb[Xr]) − φr(dr) +
∑

k �=n,r

(φrk(sb[Xr], sr[Xk]) − φrk(dr, sr[Xk]))}

≥ cost(sa) + φn(b) − φn(a) +

n−1∑

r=1

{φrn(sb[Xr], b) − φrn(dr, a)

+φr(sb[Xr]) − φr(dr) +
∑

k �=n,r

min
e∈Dk

(φrk(sb[Xr], e) − φrk(dr, e))}

= cost(sa) + φn(b) − φn(a) +

n−1∑

r=1

fnr(a, b, sb[Xr], dr)

= cost(sa) + φn(b) − φn(a) +

n−1∑

r=1

max
d∈Dr

fnr(a, b, sb[Xr], d)

≥ cost(sa) + φn(b) − φn(a) +

n−1∑

r=1

min
c∈Dr

max
d∈Dr

fnr(a, b, c, d)

≥ cost(sa)

by definition of snake substitutability. Hence, given any solution which assigns
b to Xn, we can find a solution which assigns a to Xn.

Example 4. Consider a binary VCSP instance I in which there is a crisp equality
constraint Xh = Xi between variables Xh and Xi which have identical domains
and |Di| > 1. Clearly, we could merge these two variables to form a single
variable Y . Suppose that a is (weak) neighbourhood substitutable for b at Y
in this new variable-merged instance I. However, because of the crisp equality
constraint, a is not (weak) neighbourhood substitutable for b in I. Nonetheless,
a is snake-substitutable for b in I. To see this, for all j �= i, h, set d = c and for
j = h, set d = a in Definition 6. Then the snake-substitutability of a for b in I
follows from the (weak) neighbourhood substitutability of a for b in I.

We now analyse the computational complexity of checking that no values
are snake substitutable (according to Definition 6). Direct application of the
definition leads to a time complexity of O(n3d3 + n2d4) and a space complexity
of O(n2d2). However, we can improve this complexity in the case of finite costs.

In this case, we can rewrite the definition of fij(a, b, c, d) as follows:

fij(a, b, c, d) = φij(b, c) − φij(a, d) + φr(c) − φr(d)

+
∑

k �=i,j

min
e∈Dk

(φjk(c, e) − φjk(d, e))

= φij(b, c) − φij(a, d) + φr(c) − φr(d)

− min
e∈Di

(φji(c, e) − φji(d, e)) +
∑

k �=j

min
e∈Dk

(φjk(c, e) − φjk(d, e))

which allows us to check that no values are snake substitutable in time complex-
ity O(n2d4).

Proposition 5. In finite-valued VCSPs, snake substitutable values can be found
in time complexity O(n2d4).

It is worth pointing out that this is only a factor of d greater than the
complexity of checking that no soft neighbourhood substitutions are possible [5].

6 Conclusion

We have extended the notion of broken triangle from CSPs to VCSPs. This
has allowed us to define a valid domain-reduction operation based on value-
merging. We have extended the usefulness of this pattern by considering SAC
operations that might enable us to perform extra reductions. In each case we
have briefly considered the complexity of the reduction. We have shown that it is
NP-hard to determine whether there exists some set of SAC operations that can
allow us to perform extra GASBT reductions. However this is a reduction from
SubsetSum and it is well known that there are pseudo-polynomial algorithms
that solve this problem. It is an open question to determine whether there is a
pseudo-polynomial algorithm for finding a set of SAC operations that allow us to
merge values. It seems unlikely as this problem is in fact a quadratic optimisation
problem.

In the final section we considered another domain-reduction operation
called snake-substitutability which is a strong generalisation of neighbourhood
substitutability in the case of binary VCSPs. From a theoretical point of
view, SBT-merging and snake-substitutability are incomparable, since there are
instances where one can be applied but not the other, even if on binary finite-
valued instances, snake-substitutability subsumes SBT-merging. It is an ongoing
research program to discover a general rule or classification of all domain reduc-
tion patterns for the VCSP.

Acknowledgements. We would like to thank Wady Naanaa for useful discussion
concerning the generalisation to the general-arity case.

References

1. Alfonśın, J.L.R.: On variations of the subset sum problem. Discrete Appl. Math.
81(1–3), 1–7 (1998)

2. Cohen, D.A., Cooper, M.C., Escamocher, G., Zivny, S.: Variable and value elim-
ination in binary constraint satisfaction via forbidden patterns. J. Comput. Syst.
Sci. 81(7), 1127–1143 (2015)

3. Cohen, D.A., Jeavons, P., Jefferson, C., Petrie, K.E., Smith, B.M.: Symmetry def-
initions for constraint satisfaction problems. Constraints 11(2–3), 115–137 (2006)

4. Cooper, M.C.: An optimal k-consistency algorithm. Artif. Intell. 41(1), 89–95
(1989)

5. Cooper, M.C.: Reduction operations in fuzzy or valued constraint satisfaction.
Fuzzy Sets Syst. 134(3), 311–342 (2003)

6. Cooper, M.C.: Beyond consistency and substitutability. In: O’Sullivan, B. (ed.) CP
2014. LNCS, vol. 8656, pp. 256–271. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10428-7 20

7. Cooper, M.C., Duchein, A., Mouelhi, A.E., Escamocher, G., Terrioux, C., Zanut-
tini, B.: Broken triangles: from value merging to a tractable class of general-arity
constraint satisfaction problems. Artif. Intell. 234, 196–218 (2016)

8. Cooper, M., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., Werner, T.: Soft
arc consistency revisited. Artif. Intell. 174(7), 449–478 (2010)

9. Freuder, E.C.: Eliminating interchangeable values in constraint satisfaction prob-
lems. In: Dean, T.L., McKeown, K. (eds.) Proceedings of the 9th National Con-
ference on Artificial Intelligence, Anaheim, CA, USA, 14–19 July 1991, vol. 1, pp.
227–233. AAAI Press/The MIT Press (1991)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

11. Gent, I.P., Petrie, K.E., Puget, J.F.: Symmetry in constraint programming. In:
Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming,
Foundations of Artificial Intelligence, vol. 2, pp. 329–376. Elsevier (2006)

12. de Givry, S., Prestwich, S.D., O’Sullivan, B.: Dead-end elimination for weighted
CSP. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 263–272. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40627-0 22

13. Goldstein, R.: Efficient rotamer elimination applied to protein side-chains and
related spin glasses. Biophys. J. 66(5), 1335–1340 (1994)

14. Guerinik, N., Van Caneghem, M.: Solving crew scheduling problems by constraint
programming. In: Montanari, U., Rossi, F. (eds.) CP 1995. LNCS, vol. 976, pp.
481–498. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60299-2 29

15. van Hoeve, W.J., Katriel, I.: Global constraints. In: Rossi, F., van Beek, P., Walsh,
T. (eds.) Handbook of Constraint Programming, Foundations of Artificial Intelli-
gence, vol. 2, pp. 169–208. Elsevier (2006)

16. Jeavons, P., Cohen, D., Cooper, M.: A substitution operation for constraints. In:
Borning, A. (ed.) PPCP 1994. LNCS, vol. 874, pp. 1–9. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-58601-6 85

17. Lecoutre, C., Roussel, O., Dehani, D.E.: WCSP integration of soft neighborhood
substitutability. In: Milano, M. (ed.) CP 2012. LNCS, pp. 406–421. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-33558-7 31

18. Likitvivatanavong, C., Yap, R.H.C.: Eliminating redundancy in CSPs through
merging and subsumption of domain values. SIGAPP Appl. Comput. Rev. 13(2),
20–29 (2013)

19. Roney-Dougal, C.M., Gent, I.P., Kelsey, T., Linton, S.: Tractable symmetry break-
ing using restricted search trees. In: Proceedings of the 16th European Conference
on Artificial Intelligence, ECAI 2004, pp. 211–215 (2004)

20. Senkul, P., Toroslu, I.H.: An architecture for workflow scheduling under resource
allocation constraints. Inf. Syst. 30(5), 399–422 (2005)

21. Smith, B.M., Bistarelli, S., O’Sullivan, B.: Constraint symmetry for the soft CSP.
In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 872–879. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74970-7 66

