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Abstract

DNA supercoiling, the under or overwinding of DNA, is a key physical mecha-
nism both participating to compaction of bacterial genomes and making genomic
sequences adopt various structural forms. DNA supercoiling may lead to the
formation of braided superstructures (plectonemes), or it may locally destabi-
lize canonical B-DNA to generate denaturation bubbles, left-handed Z-DNA and
other functional alternative forms. Prediction of the relative fraction of these
structures has been limited because of a lack of predictive polymer models that
can capture the multiscale properties of long DNA molecules. In this work, we
address this issue by extending the self-avoiding rod-like chain model of DNA
so that every site of the chain is allocated with an additional structural de-
gree of freedom reflecting variations of DNA forms. Efficient simulations of the
model reveal its relevancy to capture multiscale properties of long chains (here
up to 21 kb) as reported in magnetic tweezers experiments. Well-controlled ap-
proximations further lead to accurate analytical estimations of thermodynamic
properties in the high force regime, providing, in combination with experiments,
a simple, yet powerful framework to infer physical parameters describing alter-
native forms. In this regard, using simulated data, we find that extension curves
at forces above 2 pN may lead, alone, to erroneous parameter estimations as a
consequence of an underdetermination problem. We thus revisit published data
in light of these findings and discuss the relevancy of previously proposed sets
of parameters for both denatured and left-handed DNA forms. Altogether, our
work paves the way for a scalable quantitative model of bacterial DNA.

Keywords: DNA polymer modeling, DNA supercoiling, Multiscale polymer
models, DNA structural transitions

1. Introduction

In bacteria, and probably in numerous eukaryotes, genome-wide coordination
of transcription primarily relies on the physics of DNA in interaction with RNA
polymerases [1, 2]. Understanding bacterial transcription coordination there-
fore requires understanding the physics of DNA, more specifically the physics
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of under and over-wound DNA [3, 4, 5, 6, 7, 8], also known as DNA supercoil-
ing. DNA is indeed continually processed in cells by topoisomerases [9], whose
activity allows relaxing the transient constraints generated by replication and
by transcription itself, both processes tending to overwind DNA downstream
and to underwind it upstream [10, 11]. As a result, bacterial DNA is gener-
ally underwound, which is commonly referred to as the negative supercoiling
of bacterial genomes. In model organisms, and probably in most bacteria [12],
this negative supercoiling is further partitioned into approximately 10 kb long
topologically independent domains [13, 14].

Although supercoiling is produced at specific sites (e.g. at the target sites of
gyrases), it may impact DNA globally as a consequence of the conservation of
the linking number. This linking number, Lk, is equal to the sum of the twist
(Tw), the cumulative helicity of the molecule, plus the writhe (Wr), the global
intricacy of the molecule [15]. Thus, for topologically constrained DNA as in
the case of circular molecules (e.g. plasmids), of topologically constrained linear
domains [10], or when DNA molecules are manipulated by magnetic tweezers [16,
17, 18], any local variation of the twist results in a global variation of the
writhe, and reciprocally. As a consequence, negative DNA supercoiling leads
to both superstructuring participating to the global compaction of bacterial
chromosomes (through e.g. the formation of so-called plectonemes) and to local
modifications of the double helix structure. The latter can induce the formation
of functionally important DNA forms different from B-DNA [19, 20], including
denaturation bubbles [21], cruciforms [22], left-handed Z-DNA [23] and left-
handed L-DNA [24, 25, 26, 27].

One of the most important challenges raised by the biophysical and func-
tional characterizations of bacterial genomes thus consists in predicting the mul-
tiscale distribution of supercoiling constraints. Such prediction nevertheless re-
mains challenging, with often no other solution than to resort to numerical
simulations [28]. In this regard, two main types of DNA polymer models have
been proposed. On one hand, explicit polymer models have allowed investi-
gating supercoiling-induced phenomena on the basis of numerical simulations
of single DNA chains [29, 30, 31, 32]. On the other hand, phenomenological
models [33, 34] have led to bona fide analytical solutions of thermodynamic
properties. These have been particularly useful to infer microscopic parameters
of alternative DNA forms [25, 34], whose knowledge is crucial to both address
the exact nature of these forms and parametrize explicit polymer models.

Explicit polymer models can be further divided into two types. Depending
on the addressed question, structural details can indeed be coarse-grained at
the scale of a single nucleotide [32, 35] or at a larger scale of a few tens base
pairs [29, 30, 31, 36]. Single nucleotide resolution models have thus been useful
to investigate properties of small (i.e. a few hundreds base pairs) DNA molecules
as provided by cryo-electron microscopy [28, 37] and cyclization data [20], with
the possibility to investigate sequence effects in detail (see e.g. [38] and references
therein). Tens base pairs resolution models have instead been useful to address
both mechanical and conformational properties of long (i.e. a few kb or tens kb)
B-DNA molecules, taking advantage of much less time-consuming simulations
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and of the possibility to use parsimonious sets of parameters that can capture
bending, torsional and self-avoidance properties of molecules [15, 20]. Along
this line, the self-avoiding rod-like chain (sRLC) model [29] has been paramount
to analyze folding properties of positively supercoiled molecules (see below for
details of the model). These include molecular extensions [39], torques [40,
41, 42] and conformation details of superstructures [29, 43, 42] as measured by
magnetic tweezers and cryo-electron microscopy, as well as dynamical properties
(see [44] and references therein) and sequence-dependent phenomena [45, 46].

The sRLC model has thus provided a solid framework to infer physical pa-
rameters of B-DNA [15, 31]. To the best of our knowledge, it has however not
yet been adapted to the co-existence of multiple DNA forms, precluding its
use to investigate functional properties of bacterial genomes in vivo and leav-
ing open several important biophysical questions. These include the balance
between the global and local relaxations of supercoiling constraints, the exact
nature of alternative forms (see e.g. [27] for a recent discussion about the exper-
imental identification and characterization of denatured DNA (D-DNA) with
respect to L-DNA) and, related to this, the inference of associated mechanical
parameters. Namely, while some of the parameters, such as the free energy
formation of left-handed DNA forms and of their associated junctions with B-
DNA, have been estimated early on in bulk studies [22, 23, 47, 48, 49, 50, 51],
the estimation of, e.g., the torsional and bending moduli of D-DNA and left-
handed forms, has thus far relied exclusively on phenomenological models in
the context of single molecule studies [33, 25, 26, 52, 34]. These models, which
are based on bona fide free energy landscape descriptions of the co-existence of
multiple DNA forms, have however never been quantitatively assessed, which
may explain the existence of strong discrepancies in the prediction of some of
the parameters [25, 34].

In this work, we aim at filling these gaps by extending the sRLC model
so that it includes the possibility to have multiple DNA forms. To this end,
we follow an approach initially proposed to tackle the problem of the large
flexibility of small DNA molecules [53]. Namely, as proposed in [54, 55, 56], the
softening of sharply bent DNA can be rationalized by considering a structural
degree of freedom allowing the appearance of alternative forms more flexible
than B-DNA, with a free energy cost reflecting the destabilization of the double
helix. More elaborated models including torsional energies, but still neglecting
DNA self-avoidance, have then been proposed to investigate the statistics of
DNA denaturation [57] and the behavior of stretched DNA molecules [58] under
torsional constraints. Models based on torsional energies alone have also been
studied in the context of the statistics of DNA denaturation [59, 60] as well as
to model properties of specific DNA sequences [26].

Following these studies, here we consider a version of the sRLC model, here-
after referred to as the 2sRLC model, which includes an additional structural
degree of freedom. Using numerical simulations, we first demonstrate the abil-
ity of the 2sRLC model to reproduce magnetic tweezers experiments of long
molecules (up to 21 kb) for a wide range of stretching forces and supercoiling
levels typical of bacterial genomes in vivo. We next tackle the inference prob-
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lem of parameters associated with alternative DNA forms. To this end, we
circumvent the use of time-consuming simulations by deriving semi-analytical
solutions of the thermodynamics when the writhe is negligible and we show
that these can be used for any value of supercoiling level and stretching force
where plectonemic superstructures are absent. As an application, we discuss
the validity of the commonly used phenomenological model proposed by John
Marko [33] and highlight a previously overlooked underdetermination problem
related to the question of parameter inference, which is immanent to the high
force analysis of single molecule extension curves. We provide, in this context,
our best estimates of parameters associated with D-DNA and L-DNA.

2. Theory

2.1. The discrete sRLC model

In the sRLC framework, a double-stranded DNA molecule, usually in the
form of B-DNA, is modeled as a continuous self-avoiding chain characterized by
five fundamental parameters: i) a bending modulus (K) defining an associated
persistence length (`p = K/kBT ), ii) a torsional modulus (C) measured in units
of twist persistence length, iii) a winding angle at rest (ψ) of the implicitly
embedded helix, iv) the distance (a) between any two consecutive base pairs,
thus defining the number of base pairs per `p, and v) an effective radius (re)
reflecting the hard-core simplification of the electrostatic repulsion of the DNA
backbone [61]. For B-DNA in physiological conditions ([NaCl] ∼ 100 mM), `p
typically lies in [40−60 nm] [62, 63] (in the following, we use 50 nm), C is on the
order of 100 nm [64, 24], while a = 0.34 nm, ψ = 0.6 rad/bp and re ≈ 2 nm [61].

To simulate the folding of a DNA molecule, a discrete version of the model
is used, for which the continuous formulation is a good approximation if the dis-
cretization is sufficiently fine (see hereafter for further details). Specifically, the
chain is divided into identical impenetrable cylinders and an additional param-
eter, n, specifies the number of base pairs per cylinder used in the simulation
such that the length of every cylinder is equal to na (Fig. 1A) – in this work,
we use n ≤ 10 such that one cylinder corresponds at most to one B-DNA helix.
The energy of any conformation C of a self-avoiding linear chain in the presence
of a stretching force, f , then reads:

EsRLC(C) = EB(C) + ET (C)− fz, (1)

where z is the extension of the chain along the axis of the force, while EB(C) =
kBT
2

∑N
i=1

`p
naθ

2
i and ET (C) = kBT

2

∑N
i=1

nC
a (φi − ψ)2 respectively stand for the

bending and torsional energies. In these equalities, the index i indicates a site
around which two consecutive cylinders are articulated, while θi is the bending
angle associated with the n base pairs of the site and φi is the winding angle
per base pair (Fig. 1A); this means that nφi is the torsional counterpart of θi
for the site i. Note that at the end of the molecule, two additional sites (at
i = 0 and i = N + 1) set the boundary conditions, which here correspond to
a situation where the orientation of the external cylinders is kept fixed along
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Figure 1: A. Discrete version of the sRLC: two complete cylinders surrounding a site i are
represented along with their local frames (~t, ~u,~v) used to compute the bending angle θi and
the schematically depicted twist angle per bp φi. B. Extension of the model by allocating
a variable s specifying the DNA form of every site. In this case, for symmetry reasons, the
length of a cylinder located between sites k − 1 and k is equal to n(ask−1 + ask )/2, meaning
that cylinders may have different lengths because of the different values of as characterizing
the different forms. Here, we depict the case where sites i − 1 and i are under the B form
(chain in blue), while sites i+ 1 and i+ 2 are denatured (chain in red). We also indicate by a
gray disk the domain wall penalty, J , associated with the structural cost for transiting from
one form to the next.

the force axis. Altogether, a linear chain made of Nbp base pairs thus contains
N + 1 sites and N segments (N = Nbp/n = L/na where L is the contour length
of the molecule). A circular chain (e.g. a plasmid) would contain N sites and
N segments, the first site joining the last and first segments together.

Importantly, just as θi, φi can be explicitly written as a function of the local
frames associated with the surrounding cylinders [65] (Fig. 1A). Using Tw ≡
(2π)−1

∑N
i=1 nφi, this ensures that the linking number, Lk = Tw + Wr, remains

strictly constant for any deformation of a circular chain, provided the chain never
crosses itself. Lk then reflects the topological status of the DNA molecule, for
instance a supercoiling constraint if it is different from the corresponding value
at rest, Lk0. For a linear chain, conservation of the linking number further
requires the ends of the chain to be attached to two impenetrable walls [39, 66].
These respectively play the role of the fixed surface and of the magnetic bead
in single-molecule experiments.

2.2. The discrete 2sRLC model: including multiple DNA forms

In order to include varying DNA forms at every site i of the sRLC, we follow
the lines of denaturation studies [59, 54, 55, 56, 57, 58] and associate a state
variable s with every site (s = B, D, L or Z if one considers for instance B-DNA,
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D-DNA, L-DNA and Z-DNA) specifying the associated mechanical parameters:
Ks (persistence length `s), Cs, as and ψs – for simplicity, here we consider a
form-independent electrostatic radius re. In this context, the length of cylinders
may vary as a result of both a varying value for as and a fixed number of base
pairs per cylinder (n); here, for symmetry reasons, we consider the length of a
cylinder surrounded by two sites with forms s and s′ to be equal to n(as+as′)/2
(Fig. 1B).

In addition to form-dependent mechanical parameters, alternative DNA
forms come along with free energy formation costs on the order of one kBT
per bp [67, 68], reflecting the internal deformation of base pairing and base pair
stacking. Here, we denote this cost by γ0s and set γ0B = 0 (reference form).
Finally, a domain wall penalty, J , must be considered between any two sites
having different states. This penalty accounts for the internal free energy cost
to transit from one DNA form to another one [69, 57, 52] (Fig. 1B) – in effect, it
constrains alternative forms to gather in as few domains as possible. This wall
penalty is in principle associated with two consecutive base pairs and therefore
includes an entropic contribution on the order of ln(n) coming from the n possi-
ble choices of these base pairs. For simplicity, here we consider this contribution
as already included in the values of J .

Altogether, the energy of a self-avoiding 2sRLC conformation C having an
arbitrary sequence {si}i=1..N of DNA forms reads:

E2sRLC(C) = Eγ(C) + EB(C) + ET (C) + EJ(C)− fz, (2)

where Eγ(C) = n
∑N
i=1 γ

0
si is the total free energy formation costs coming from

alternative forms, EB(C) = kBT
2

∑N
i=1

`si
nasi

θ2i is the bending energy, ET (C) =

kBT
2

∑N
i=1

nCsi

asi
(φi − ψsi)

2 is the torsional energy and EJ(C) = J
∑N−1
i=1 (1 −

δsi,si+1
) is the total wall penalty, with δsi,si+1

= 1 if si = si+1, 0 otherwise.

3. Results and discussion

3.1. Effective 2sRLC model

Solving the thermodynamics of the 2sRLC model is challenging because of
the self-avoidance constraints. Yet, following upon previous studies on single
DNA forms [70] and on the statistics of DNA denaturation [59, 60], it is possible
to integrate out the torsional degrees of freedom (the φi’s) under the constraint
of a fixed Lk. This leads to an equivalent effective model that has the benefit to
offer much better simulation performances [39, 42] and further analytic treat-
ment (see below). In the case of the 2sRLC model, the resulting conformational
energy can be decomposed as in Eq. 2, but with an effective free energy of forma-
tion and an effective torsional energy that respectively read (see Supplementary
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methods inSupplementary material for details):

Eeffγ (C) = n

N∑

i=1

γsi where γsi = γ0si −
1

2n
ln
asi
Csi

(3)

EeffT (C) =
kBT

2

[
Nbp

χ(C)

(
2π

Tw(C)
Nbp

− ψ(C)
)2

+ ln(χ (C))
]

(4)

where, again, Nbp = nN is the length of the molecule in base pairs, ψ(C) ≡∑N
i=1 ψsi

/
N and χ(C) ≡∑N

i=1
asi
Csi

/
N are conformation-dependent average quan-

tities, namely, the average twist angle per bp at rest and the average torsional
susceptibility per bp.

Eq. 4 thus generalizes to the case of any number of different DNA forms the
possibility, for topologically constrained DNA molecules, to obtain an equivalent
effective model with a torsional energy quadratic in Tw. Note, nevertheless, that
here the associated parameters depend on the composition of the molecule in
these DNA forms. In the particular case of a single (B-DNA) form, one for
instance recovers ψ(C) = ψB and χ(C) = aB/CB for all conformations, such

that EeffT (C) =
kBTCBNbp

2aB

(
2πTw(C)

Nbp
− ψB

)2
as demonstrated in [70].

3.2. Capturing the phenomenology of negatively supercoiled DNA

To demonstrate the ability of the 2sRLC model to capture the phenomenol-
ogy of negatively supercoiled DNA, we performed Monte-Carlo simulations of
long chains using the above effective energies. To this end, we have adapted the
standard Monte-Carlo procedure used to simulate the equilibrium folding of the
sRLC model [31] in order to include the possibility for mechanical parameters
to change at any site of the chain, at any iteration of the simulation (see [66]
for details). In practice, it involves a new transition type so that for any site i
independently of the other sites, the value of the variable si may change under
the constraint of detailed balance. Corresponding variations of cylinder lengths
(Fig. 1B) are thus managed as other elementary Monte-Carlo moves. In partic-
ular, if they lead to a collision, the transition is rejected. More generally, length
variation of a cylinder always requires an adjustment of the positions and orien-
tations of the surrounding cylinders to preserve the continuity of the chain. As
explained in [66], this is realised by performing specific random rotations that
are constrained by the geometry of the chain.

Using this Monte-Carlo method, we could quantitatively reproduce exten-
sions of several kilo base pairs long molecules as obtained in magnetic tweezers
experiments for a wide range of forces and supercoiling densities σ = (Lk −
Lk0)/Lk0. As an example, we report in Fig. 2 both our simulation results and
the experimental results of Cees Dekker’s lab [27] for a 21 kb molecule, for
σ ∈ [−0.05, 0.05], f = 0.5 pN and f = 4.5 pN, providing as a bonus a predic-
tion of the equilibrium fraction of alternative forms present along the molecule
(top panel). DNA denaturation being expected to be the most likely alternative
form at these forces and supercoiling densities [26, 27], here we considered the
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Figure 2: Extension of a 21 kb molecule as a function of σ, for different forces, obtained
experimentally (in red and blue, data from [27]) and numerically using a 2sRLC model that
includes the possibility to have B-DNA plus an alternative DNA form along the chain (see
main text for values of the microscopic parameters). Error bars and colored areas represent
one standard deviation due to thermal fluctuations. At low forces, the curves are symmetrical
with respect to σ, with the formation of branched plectonemic structures at large values of |σ|
as indicated by the typical conformations observed in the simulations (leftmost and rightmost
panels). At high forces, the buckling transition toward the plectonemic regime occurs only for
positive supercoiling. For negative supercoiling, denaturation bubbles appear instead (upper
left panel, in red). Upper panel: corresponding estimation of the equilibrium fraction λ∗ of
the alternative form as a function of σ.

situation where only B-DNA and D-DNA could form, with the following pa-
rameters leading to good agreement with experimental curves: aD = 0.45 nm,
`D = 15 nm, CD = 10 nm and γD = 2kBT (see below for discussion of these val-
ues) – we intentionally used a `D much larger than the 4 nm diameter of the chain
because smaller values would lead, in any case, to larger effective persistence
lengths [71]. We used J = 10kBT , in accord with previous analyses [69, 26, 52],
and considered a discretization level of n = 10, leading to ' 3.3 cylinders per `D
and 15 cylinders per `B(= 50 nm), a value that both offers reasonable computa-
tional times and ensures properties of B-DNA superstructuring to be insensitive
to discretization procedures [42, 66]. Finally, the quantitative reproduction of
the buckling transition at σ > 0 (right part of the curves in Fig. 2) required us
to use C = 80 nm at f = 4.5 pN and C = 100 nm at f = 0.5 pN (Fig. S1). This
is in accord with the observed systematic discrepancies occurring at low forces
between sRLC and experimental extensions [72], a consequence of a coupling
between torsional and bending deformations stemming from the asymmetry of
the DNA helix [73].
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Our simulations corroborate well-known results of magnetic tweezers exper-
iments, with notably the presence of two regimes (Fig. 2): i) a low force regime
(f . 0.5 pN) that is symmetric under the transformation σ → −σ and where
torsional stress is partially relaxed through the formation of plectonemes, some
of them being branched, and ii) a σ-asymmetric high force regime (f & 2 pN)
where negative torsional stress is partially relaxed by forming denaturation bub-
bles. For intermediate forces at σ < 0, both conformations with denaturation
bubbles and plectonemic conformations become locally stable, being separated
by high free energy barriers (Fig. S2). This is in accord with the experimen-
tal findings, in this regime, of large equilibrium fluctuations of the extension
[74, 34], which have been shown, in the case of a 2.4 kb long molecule, to
reflect a two-state behavior between plectonemic conformations and conforma-
tions with D-DNA bubbles [34]. In our simulations of comparable 2.4 kb long
molecules, this manifests through an hysteresis cycle in the force-extension di-
agram (Fig. S2), with the drawback that specific numerical methods, such as
metadynamics [75], must be developed in this regime to get access to thermo-
dynamic properties, including the height of the free energy barriers.

Our simulations also corroborate the existence of conformations where de-
naturation bubbles locate at the apex of plectonemes (Fig. S3). These have
been predicted to occur using a polymer model of DNA coarse-grained at the
nucleotide level [76]. Here, we observe that these tip-bubble conformations, as
coined in [76], are all the more favored that the system is close to the ”spin-
odal” point associated with the plectonemic state – the force at which the free
energy barrier separating pure plectonemic states from states with denaturation
bubbles becomes on the order of kBT .

Most importantly, while trying to reproduce previously published experi-
mental extensions, we have found that different sets of parameters could lead
to similar results. For instance, the D-DNA persistence length used in Fig. 2 is
typically 5 times larger than that previously estimated [33, 25], while previous
works have led to values of the torsional modulus that may differ by more than
20-fold [25, 34]. Overall, this raises the question of the extent to which it is pos-
sible to infer mechanical parameters of alternative forms using extension curves
alone as obtained in magnetic tweezers experiments, what we discuss now in
detail.

3.2.1. Zero writhe approximation in the high force regime

One could in principle use the above numerical simulations to search for sets
of parameters that best reproduce extension curves. However, independently of
the efficiency of simulations, an exhaustive exploration of the 5 parameters (`D,
CD, aD, ψD and γ0D) and the domain wall penalty J is extremely challenging.
Moreover, the high free energy barriers separating plectonemic conformations
from conformations with D-DNA bubbles precludes obtaining the relative frac-
tion of each state at equilibrium using standard Monte-Carlo methods. Curves
at intermediate forces between 0.5 pN and 2 pN cannot thus be currently ex-
ploited to further constrain parameters as previously done in the context of
phenomenological models [34].
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To partially circumvent these problems, we focus on the regime of high forces,
for which the thermodynamics can be solved in the approximation of both a neg-
ligible writhe, i.e. when Lk = Tw, and negligible self-avoidance properties (see
below for the range of forces where this approximation holds). In this approx-
imation, it is indeed possible to obtain an explicit formula for the free energy
profile of the system, Ff,σ({λi}), as a function of the fraction of each of the
possible alternative forms at a given stretching force f and supercoiling density
σ. In the following, for simplicity we discuss the case of two forms, with in
mind B-DNA plus a certain fraction λ of an alternative form, hereafter denoted
as X-DNA – the generalization to more than two forms is straightforward (see
Supplementary methods).

Calling J (λ) the free energy associated with the multiple possibilities to
distribute the λN sites of the alternative form into distinct domains (see SI for
its derivation), gs,f (Ls) the free energy of the WLC at force f associated with
the form s with contour length Ls, and using the notations χs = as/Cs and
χ/ψ(λ) = (1− λ)χB/ψB + λχs/ψs, we obtain (Supplementary methods):

Ff,σ(λ) = λNbpγX + J (λ)︸ ︷︷ ︸
free energy formation
of alternative domains

+ gX,f (λNbpaX) + gB,f ((1− λ)NbpaB)︸ ︷︷ ︸
bending+stretching

+
kBT

2

[
Nbp

χ(λ)

(
1 + σ − ψ(λ)

ψB

)2

+ ln (χ(λ))

]

︸ ︷︷ ︸
torsion

(5)

Using this free energy profile, equilibrium properties of the 2sRLC model
in the zero writhe approximation can be computed by performing numerical
integration over λ of Boltzmann-weighted observables (see Eq. 10 in Supple-
mentary methods and subsequent explanations) with, here, a particular in-
terest in equilibrium values of the extension, z∗ = −〈∂fFf,σ(λ)〉λ, the torque
Γ∗ = (2πTw0)−1〈∂σFf,σ(λ)〉λ (see Supplementary methods for derivation and
further details), and the fraction of alternative form, λ∗ = 〈λ〉λ, where 〈•〉λ ≡∫
dλ • exp [−Ff,σ(λ)/kBT ]

/ ∫
dλ exp [−Ff,σ(λ)/kBT ]. We also compute the

equilibrium number of domains, X∗, using a free energy surface in the (λ,X)
space (Eq. 6 in Supplementary methods).

3.2.2. Validity domain of the zero writhe approximation

To assess the validity domain of the zero-writhe approximation, we compare
the above Boltzmann-weighted equilibrium values to those obtained in Monte-
Carlo simulations of the corresponding 2sRLC model. As a case study, we
investigate a 1 kb long molecule with an alternative form characterized by `X =
15 nm, aX = 0.54 nm, ψX = 0, CX = 10 nm and γX = 1.6kT , having in mind a
form close to D-DNA; just as in the analysis of Fig. 2, the relatively high value of
`X compared to previous estimations for D-DNA (3− 4 nm [33, 25]) was chosen
for practical purposes, that is, to avoid potential artifacts that may occur in
the simulations when the persistence length is smaller or on the order of re [66]
and to avoid considering (longer) effective persistence lengths in our analytical
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Figure 3: Comparison between numerical simulations, the zero writhe approximation and
Marko’s phenomenological approach for the equilibrium value of different quantities of inter-
est as a function of the negative supercoiling: the fraction λ∗ of denatured alternative form, the
number X∗ of alternative domains, the torque Γ∗ and the extension of the molecule (relative
to its contour length under the single B form). Error bars represent one standard deviation
due to thermal fluctuations; in particular, this reveals that torque fluctuations are large. For
readability, the green points (2 pN) and red points (10 pN) have respectively been slightly
shifted left and right with respect to the exact values of σ: 0,−0.1,−0.2,−0.3,−0.4,−0.5
(−0.015,−0.02,−0.025,−0.03 in the inset of X∗). The transition between fully stretched con-
formations and plectonemic conformations (where the approximation does not hold anymore)
occurs between 1 and 2 pN. For all panels: the apparent absence of error bars implies that
they are smaller than symbols.

approximations [71]. We also used a fine discretization level of n = 4 to get
a large number of cylinders per `D (' 7) so that to prevent any discrepancy
coming from the discretization procedure of the rod-like chain.

Regarding λ∗ and the extension, we observe an excellent agreement between
simulation results and the zero-writhe approximation for any force above 2 pN
(left panels in Fig. 3), with a relative error lower than 5% (Fig. S4). For the
number of domains the error is on the order of 20% (a higher error is expected
as a consequence of the discrete nature of X), and up to 30% for the torque
(side effect of the error in X∗). Most remarkably, this agreement is observed
for a wide range of supercoiling densities, from the transition point at physio-
logical σ ' −0.025 associated with the onset of the first denaturation bubble
(see inset in upper right panel of Fig. 3) to large non-physiological negative
values of σ = −0.5, and for forces down to the onset of plectonemic superstruc-
tures. The strong deviation observed at 1 pN is indeed the result of a buckling
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transition that occurs in the simulations, which is not captured by the zero
writhe approximation. In other words, the zero writhe approximation provides
a good description of the system whenever plectonemic superstructures are ab-
sent, paving the way for an efficient method for the quantitative inference of
physical properties of alternative DNA forms in the high force regime (see be-
low). In this regard, we note that the inclusion of finite size corrections [77] for
computing the WLC terms gX,f and gB,f leads to very similar results (Fig. S5),
suggesting the possibility to use the classical infinite length approximation of
the WLC [78], although the fraction of alternative form may be large.

We finally used the same simulations to assess the validity of the commonly
used phenomenological approach proposed by John Marko a decade ago [33].
In a nutshell, Marko proposed a model with two separated phases (B-DNA and
X-DNA), each of them being allocated with a certain supercoiling density and
a free energy that is quadratic in the latter; the two supercoiling densities are
coupled because of the conservation of the linking number. Then, supposing a
linear relationship between the fraction λ of X-DNA and the total supercoiling
density (σ) and considering the torques to be equal in both phases, Marko
used a free energy minimization procedure to compute the supercoiling densities
specific to each phase, leading back to the computation of the free energy as a
function of σ. Here, our analysis shows that this phenomenological approach
provides as well a remarkable description of the 2sRLC equilibrium properties
(Fig. 3), excluding the number of domains, X, which is not a variable of the
model [33].

3.3. Inferring mechanical parameters of alternative forms from extension curves

Alternative DNA forms mostly occur in presence of B-DNA. Estimation of
their parameters, which ultimately reflect statistical properties of the dynam-
ics of strands, has thus been a matter of debate. Both bulk [67] and single-
molecule [68] measurements have nevertheless converged to free energy forma-
tions of D-DNA on the order of one kBT per bp. Cyclization measurements of
small circular DNA molecules have also revealed an independence of D-DNA
strands, suggesting to use φD = 0 [79]. A zero-writhe phenomenological mod-
eling of these experiments have then led to aD = 0.54 nm, `D ' 2 to 3 nm and
CD = 1 nm [79]. In contrast, investigation of the co-existence of D-DNA with
B-DNA at forces . 1 pN and |σ| . 0.06, using a phenomenological model of
the coexistence of twisted B-DNA, plectonemic B-DNA, and D-DNA, has led
to CD = 28 nm [34]. Regarding left-handed DNA forms, static and dynamic
laser light scattering experiments of Z-DNA solutions led to `Z ' 200 nm [80],
whereas a best fitting procedure using Marko’s phenomenological model revealed
a flexible L-DNA form, with aL = 0.48 nm and `L = 3 nm [25], and a torsional
modulus CL lying between 10 and 20 nm. Similar values of CL were found by
investigating the collapse of pure L-DNA molecules [26]. Finally, location of
the buckling transition of such ”pure” L-DNA molecules at high forces led to
ψL = −0.5 rad/bp [26, 27].

Here, we aim at using the predictive power of our zero writhe approxima-
tion of the 2sRLC model (Fig. 3) in order to infer some of the parameters of
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alternative forms. Specifically, we discuss the possibility, as proposed in [25], to
estimate parameters of D-DNA and L-DNA using σ-extension curves, alone, in
the high force regime. To this end, we first test our capacity to recover original
parameters using simulated data and, then, discuss estimations from real data.

3.3.1. Simulated data: assessing parameter inference in an underdetermination
context

To test our capacity to recover original parameters (hereafter indicated by
a hat, e.g., âX) from simulated σ-extension data, we use as a generative model
the 2sRLC model under the zero writhe approximation (Eq. 5) and question
the possibility to recover original parameters using the same generative model.
Regarding the inference method, we follow the procedure of [25], which consists
in determining optimal parameters such that extensions of the model best fit
experimental extensions over a wide range of forces and supercoiling densities
(Supplementary methods).

First, compared to the other parameters, we find that aX and `X (or equiv-
alently KX) have a more systematic impact on σ-extension curves. More pre-
cisely, using a large random set of parameters, the various σ-extension curves
appear to be sorted according to the values of both aX and `X , whereas they
appear to be randomized with respect to the values of the other parameters
(Fig. 4A, Fig. S6) – we nevertheless note that best fits correspond to values
of ψX that are distant from ψB (Fig. S6). The goodness of fit can be further
quantified by computing the root-mean-square deviation (RMSD) of each tested
curve with respect to the original curve. Reporting these RMSDs in the plane
(aX , `X) at a given force then reveals the existence of a well-defined continu-
ous set of parameters with similar locally optimal solutions and going through
(âX , ˆ̀

X), hereafter called a crest of solutions (Fig. 4B) – note that these so-
lutions are always suboptimal with respect to the original set of parameters.
The overall shape of this crest reflects the existence of two types of solutions:
1) solutions corresponding to almost straight pieces of X-DNA (large `X , the
exact value being irrelevant); 2) solutions corresponding to more disordered do-
mains (small `X) with longer double helices (larger aX). Most importantly, an

analysis of solutions in the vicinity of (âX , ˆ̀
X) corroborates the existence of a

large spectrum of possible values for J , γX , ψX and CX (Fig. S8), meaning
that these parameters cannot be estimated using a single extension curve, i.e.,
a single force. Moreover, the presence of the crest implies the existence of some
degeneracy that precludes the unambiguous determination of âX and ˆ̀

X , too.
In principle, the value of ĈX could be addressed using torque measure-

ments [26], yet only if one has access to λ(σ) (see Supplementary methods).

For âX and ˆ̀
X , one might expect that the underdetermination problem akin

to a single force could be resolved by considering multiple forces. However, we
find that, without fixing any other parameters, the crest gets blurrier as the
force increases (blue points in Fig. 4C). To understand this intriguing result,
we performed the same analyses but by setting one arbitrary parameter to its
right value. We found that fixing either J or γX leads to the same underdeter-
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Figure 4: Test of the possibility to recover parameters of an alternative X-DNA co-existing
with B-DNA, using simulated extension curves (red curves in panel A). To this end, we
first generated σ-extension curves using the zero writhe approximation model of Eq. 5 with a
specifically predefined X-DNA (see main text for parameters). We next performed an inference
procedure using the same generative model by producing 10 000 different curves corresponding
to a random combination of the 6 parameters of X-DNA. A: σ-extension curves at f = 2 pN
where the color of each curve is given by the value of one of the parameters: aX (left), `X
(center) and γX (right). See Fig. S6 for the other parameters. We can see that, compared
to γX , aX and `X have a well-defined, strong influence on extension curves. In these cases,
the curves indeed appear to be sorted as a function of the values of the parameters. B: Each
point corresponds to a random set of parameter values, with x- and y-axes corresponding to
the values of aX and `X , respectively. The opacity is inversely correlated (using an arbitrarily
scale) to the root-mean-square deviation (RMSD) of the curves in A with respect to the red
one, so that only the best fits are visible. We observe a crest of small RMSD values that
go through the original parameters (âX , ˆ̀X) (black cross). C: At a higher force (12 pN), the
front is much less visible and the original set of solutions becomes isolated among a broad
cloud of RMSD values (in blue). The crest becomes clearer again by setting ψX = ψ̂X(= 0)

and CX = ĈX(= 10 nm) (in red). The intersection between crests obtained at different forces

then allows for an accurate estimation of âX and ˆ̀
X (Fig. S7).
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mination problem. In contrast, fixing either ψX or CX makes a crest of locally
suboptimal solutions re-appear. However, setting ψX to the right value ψ̂X = 0
results in a crest that is off the right solution (âX , ˆ̀

X) (Fig. S9), a shift that
disappears only by setting CX = ĈX (red points in Fig. 4C).

Overall, these results show that inference of âX and ˆ̀
X from extension curves

requires to have some prior knowledge about the nature of the alternative form,
more particularly about its torsional parameters (ψ̂X and ĈX). This may be
explained by the fact that the (effective) torsional energy is quadratic in σ, such
that any parameter that affects this energy is expected to have a large impact
on any curve plotted as a function of σ. When the values of ψ̂X and ĈX are
known, a minimization over all forces then lead to a fair estimation of both âX
and ˆ̀

X which is all the more accurate that the range of available forces is large
(the crossing of the different crests of solutions becoming well-defined as shown
in Fig. S7).

3.3.2. Experimental data: estimation of D-DNA and L-DNA parameters

To estimate â and ˆ̀
p for both D-DNA and L-DNA, we use the data of Sheinin

et al. [25] obtained for 2.2 kb long molecules, which consist of extension curves
measured over a wide range of values of σ (from -2.3 to +0.1) and f (from 2.5
to 36 pN). In accord with the findings of [27], we further consider that L-DNA
occurs for σ . −1 and, hence, estimate D-DNA and L-DNA parameters using
an optimization procedure of the extension curves for σ lying in [−0.6,−0.1] and
in [−1.8,−1.3], respectively. As discussed above, we lift the underdetermination
problem by setting, on one hand, ψD = 0 and ψL = −0.5 rad/bp and we test,
on the other hand, CD = 1 nm as discussed in [25], CD = 28 nm as proposed
in [34] and CL = 10 nm in accord with previous estimations [25, 26].

Similar to the case of simulated data, optimizations over forces from 2.5
to 12 pN reveals the existence of small islands of optimal solutions, which we
consider as our best estimations of parameters (Fig. 5). For D-DNA (Fig. 5A),
CD = 1 nm leads to aD > 0.6 nm and `D close to 1 nm, which are different,
although being qualitatively similar, from previous estimations according to
which aD = 0.54 nm and `D ∈ [2−3 nm] (see [25] and references therein). When
CD = 28 nm, we find aD ∈ [0.45 − 0.5 nm] and `D ∈ [2 − 5 nm]. Note, here,
that we used the finest level of chain discretization (n = 1) and we checked that
our results remain identical for rougher coarse-graining up to n = 4 (Fig. S10).
The effect of n is indeed expected to affect the exact value of the domain wall
penalty J (see above) and the entropic contribution to the free energy associated
with the multiple possible positions of the denaturation bubbles (the term J (λ)
in Eq. 5, see Supplementary methods). However, as discussed using simulated
data, the former is expected to play only a marginal role in the determination of
âD and ˆ̀

D, while in the case of a fixed, small number of denaturation bubbles
as here (typically one), the latter scales as ln(n).

For L-DNA (Fig. 5B), we find aL ∈ [0.5 − 0.6 nm], which is slightly larger
than previous estimations [25], and `L ∈ [1−2 nm], which is slightly smaller. In
all cases, the small value of `L corroborates that L-DNA is not a pure left-handed
structural form but made of denatured DNA [25, 26].
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Figure 5: A: Inference of D-DNA parameters using experimental data from [25]. Each point
represents the cumulative (over several forces ) RMSD resulting from a best fit procedure of
experimental extension curves using numerical curves of the 2sRLC model generated under
the zero-writhe approximation (see Eq. 5) and for a given set of parameters. Points are all
the darker that the cumulative RMSD is small (arbitrary scale). For each set of parameters,
the cumulative RMSD was computed for σ varying in [−0.6,−0.1] and over 6 different forces
ranging from 2.5 to 12 pN. To mitigate underdetermination problems, we set ψD = 0 and
tested two values of CD, which are representative of values discussed in the literature [25, 34].
For CD = 1 nm (red points), we find an island of optimal solutions characterized by aD >
0.6 nm and `D close to 1 nm. For CD = 28 nm, we find aD ∈ [0.45−0.5 nm] and `D ∈ [2−5 nm].
The dashed horizontal line in the figure indicates `D = 2 nm. B: Same analysis but for L-DNA.
Here, we set ψL = −0.5 rad/bp and test CL = 10 nm [25, 26]. We find aL ∈ [0.5 − 0.6 nm]
and `L ∈ [1− 2 nm].
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To summarize, our results question the compatibility of previously used aD =
0.54 nm with reported torsional parameters. They also show the importance of
having precise knowledge of a certain number of parameters to be able to fully
exploit magnetic tweezers experiments in the high force regime. In absence
of such prior information (as it is usually the case for real molecules), several
strategies can be contemplated. For instance, working with an optimization
procedure that is constrained by both torque curves and extension curves should
narrow down the set of parameters leading to good fits. Even in this case,
yet, having access to the fraction of the alternative form seems mandatory (see
Supplementary methods). Potential development along this line might come
from the use of DNA binding proteins sensitive to alternative forms. Additional
constraints on model parameters could also be imposed using cyclization data
and conformation statistics from cryo-electron microscopy experiments.

3.3.3. Extension of the model by including sequence effects

In effect, our 2sRLC model bridges ”kinkable” worm-like chain models and
self-avoiding rod like chain models, which have been developed to respectively
address the high flexibility of sharply bent DNA [53] and the superstructuring
properties of supercoiled B-DNA molecules [15, 20]. By doing so, it opens novel
perspectives in the field of supercoiled DNA, not only to better rationalize mag-
netic tweezers experiments but also to predict behaviors of bacterial genomes
in vivo. In this regard, including sequence effects, such as the tendency of AT-
tracks and CpG-tracks to respectively favor DNA denaturation and left-handed
forms [81], can be easily realized by using sequence dependent free energy forma-
tion costs of alternative forms (the γsi in Eq. 3). As an example, we simulated
the folding of a 1 kb long molecule where one single site (iAT ) had a much lower
γ0D than the other sites, thus mimicking the presence of an AT-track. Just as
previously found in a more detailed, base resolution polymer model of DNA [76],
we find that for a force f = 1 pN and a supercoiling density σ = −0.06, the
site iAT is systematically denatured and serves as both nucleation and anchor
points for a plectoneme (Fig. S11).

4. Conclusion

More elaborate 2sRLC models can be contemplated by e.g. including se-
quence effects at the level of DNA bending [82, 38]. In particular, by properly
distinguishing intrinsic curvature from stiffness [38], one can expect to quanti-
tatively address the structuring properties of bacterial sequences, including the
possible pinning of pure B-DNA plectonemes [83]. In all cases, our ability to
develop truly predictive models of supercoiled DNA depends on our capacity to
precisely infer mechanical parameters of alternative forms, which itself relies on
the derivation of analytical expressions of thermodynamic quantities as a func-
tion of system parameters, at least for some range of forces and supercoiling
densities [25, 26, 34]. Here, we have derived simple analytical expressions that
accurately describe the free energy landscape of the 2sRLC model in the approx-
imation of zero writhe, providing a powerful alternative to phenomenological

17



approaches. It would then be interesting to compare our analytical results to
other exact analytical results obtained in models devoid of self-avoidance [58].
It would also be interesting to further expand the free energy landscape in
power series of the writhe. This would allow including additional constraints
coming from data at lower forces where alternative forms co-exist with super-
structures [34].

This latter possibility appears to be crucial for unambiguously estimating
parameters of alternative DNA forms. We have indeed shown that the proper
estimation of a specific parameter may critically depend on the knowledge of
other parameters or, equivalently, on their independent estimation – see e.g. the
impact of the torsional modulus on the estimation of both the distance between
consecutive base pairs and the persistence length in Fig. 5B. A systematic par-
allel analysis of extension curves together with torque curves (which is par-
ticularly adapted to highlight torsional properties) seems therefore necessary.
In addition, sequences of interest, like GC or AAT repeats as implemented in
[26, 52], could be systematically used to channel the formation of alternative
forms, which would have two main advantages. On one hand, this would allow
”controlling” the fraction of the alternative form (λ in Eq. 5), thus lifting an
important unknown of the problem. On the other hand, this would sharpen sig-
nals because of stronger cooperative transitions (see e.g. [52]) and, hence, should
constrain further model predictions – just as for the co-existence of plectonemic
conformations and strecthed conformations with alternative forms (Figs. 2 and
S2), this may also require specific numerical methods to efficiently sample the
different states at equilibrium. For more general sequences, DNA binding pro-
teins sensitive to alternative forms, as used e.g. in [27], might offer solutions to
compute the fraction λ.
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and simulation of the 2sRLC model and II) the ”Supplementary figures” section
contains 11 figures.
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I. SUPPLEMENTARY METHODS

In the following, parameters are uniform along the DNA molecule. Sequence effects will

be treated in subsequent works.

A. Derivation of the effective model with a global torsional energy

We start by writing down the equilibrium probability of a configuration C with DNA-form

profile {si}i=1..N in the context of an imposed linking number Lk. To this end, we divide the

conformational energy into two terms: the torsional energy ET (C) = kBT
2

∑N
i=1

nCsi

asi
(φi−ψsi)2

that depends on the torsional angles {φi}i=1..N and the rest, ET (C), which does not. In this

context, denoting β = 1/kBT , we have:

P (C) = Z−1 exp

[
−βET (C)−

∑

i

nCsi
2asi

(φi − ψsi)2

]
δ (Tw(C)− TwLk(C)) (1)

with Z the partition function such that
∑
C P (C) = 1. The δ(x) function, which is equal to 1

if x = 0 and 0 otherwise, imposes the conservation of Lk, that is, it only retains conformations

for which the total twist of the molecule, Tw(C), is equal to TwLk(C) ≡ Lk−Wr(C).

2



Using Tw(C) = (2π)−1
∑

i nφi and defining t(C) = TwLk(C)/Nbp = TwLk(C)/nN , Eq. 1

can be rewritten as:

P (C) = Z−1 exp

[
−βET (C)−

∑

i

nCsi
2asi

(φi − ψsi)2

]
δ

(∑

i

φi − 2πtN

)
(2)

The integration over the φi’s then results in evaluating the following term (for clarity, we

drop the C’s):

I =

∫ ∏

k

dφk exp

[
−
∑

i

nCsi
2asi

(φi − ψsi)2

]
δ

(∑

i

φi − 2πtN

)
=

(using the Fourier transform of δ)∫
dx
∏

k

∫
dφk exp

[
−nCsk

2ask
(φk − ψsk)2 − 2πix(2πt− φk)

]
=

∫
dx
∏

k

∫
dφk exp

[
−nCsk

2ask

(
φk − ψsk −

2πiask
nCsk

x

)2
]

exp

[
−2π2ask
nCsk

x2 − 2πix(2πt− ψsk)

]
=

[∏

k

∫
dφk exp

[
−nCsk

2ask

(
φk − ψsk −

2πiask
nCsk

x

)2
]]∫

dx exp

[
−
∑

j

(
2π2askj
nCsj

x2 + 2πix(2πt− ψsj)
)]
(3)

Defining the conformation-dependent average torsional susceptibility per base pair χ(C) ≡
∑N

i=1

asi
Csi

/
N , the conformation-dependent average twist angle at rest ψ(C) ≡ ∑N

i=1 ψsi
/
N ,

we obtain (still dropping the C’s):

I = (2π)N/2
√∏

k

ask
nCsk

∫
dx exp

[
−2π2Nχ

n

(
x2 + i

n

πχ
(2πt− ψ)x

)]

= (2π)N/2
√∏

k

ask
nCsk

∫
dx exp

[
−2π2Nχ

n

((
x+ i

n

2πχ
(2πt− ψ)

)2

+
n2

4π2χ2 (2πt− ψ)2

)]

= (2π)N/2
√∏

k

ask
nCsk

exp

[
−nN

2χ
(2πt− ψ)2

] ∫
dx exp

[
−2π2Nχ

n

(
x+ i

n

2πχ
(2πt− ψ)

)2
]

=
(2π)(N−1)/2

N1/2

√∏

k

ask
χCsk

exp

[
−nN

2χ
(2πt− ψ)2

]

=
(2π)(N−1)/2

N1/2
exp

[
−1

2

(
Nbp

2χ
(2πt− ψ)2 + ln(χ)−

∑

i

ln

(
asi
Csi

))]
, (4)

which, after redistribution of the terms ln(χ) and ln
(
asi
Csi

)
in the torsional energy and the

free energy of formation, respectively, leads to the effective energies of the main text (Eqs. 3

and 4). Note also that in Eq. 4 of the main text, we have used the fact that Tw(C) = TwLk(C)
in the simulated polymer model.
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B. Free energy profiles in the zero writhe approximation

In the case of the co-existence of two forms, here B-DNA and X-DNA (any alternative

DNA form), using Eqs. 2, 3 and 4 of the main text, the effective energy, U(λ,X), of a con-

formation where X-DNA occupies λN sites (corresponding to λNbp base pairs) distributed

in X domains reads:

U(λ,X) = λNbpγX + 2XJ + EX
B − fzX + EB

B − fzB

+
kBT

2

[
Nbp

χ(λ)

(
2π

Tw

Nbp

− ψ(λ)

)2

+ ln (χ(λ))

]
(5)

where Es
B indicates the total bending energy of the form s and where we have used the

notations χs = as/Cs and χ/ψ(λ) = (1−λ)χB/ψB +λχs/ψs – note that ψ(λ) represents the

average twist angle at rest of the molecule with a fraction λ of alternative forms. Next, con-

sidering that the supercoiling density, σ, is totally converted into twist in the approximation

of zero writhe, we can replace 2π Tw
Nbp

by (1 + σ)ψB. Finally, integrating the corresponding

partition function over the bending angles of each site leads to a free energy where the

terms Es
B− fzs are replaced by gs,f (X), the free energy associated with the WLC at force f

with bending modulus Ks and contour length X. The resulting bi-dimensional free energy

surface, Sf,σ(λ,X) therefore reads:

Sf,σ(λ,X) = λNbpγX + 2XJ + gX,f (λNbpaX) + gB,f ((1− λ)NbpaB) +

kBT

2

[
ψ2
BNbp

χ(λ)

(
1 + σ − ψ(λ)

ψB

)2

+ ln (χ(λ))

]
(6)

The unidimensional free energy profile Ff,σ(λ) (Eq. 5 in the main text) can be obtained

by summing (with Boltzmann weights) over the values of X, leading to:

Ff,σ(λ) = λNbpγX + J (λ) + gX,f (λNbpaX) + gB,f ((1− λ)NbpaB) +

kBT

2

[
ψ2
BNbp

χ(λ)

(
1 + σ − ψ(λ)

ψB

)2

+ ln (χ(λ))

]
(7)

with:

J (λ) = −kBT ln

(∑

X

AN,XλN exp [−2XJ/kBT ]

)
(8)

where we have defined

AN,XY =

(
Y − 1

X − 1

)(
N − Y + 1

X

)
, (9)
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the number of ways to distribute Y sites in X different domains among N possible sites.

Using Eq. 6, one can then compute the equilibrium number of domains in the zero writhe

approximation by numerically determining:

X∗ =

∫
dXdλ X exp [−Sf,σ(λ,X)/kBT ]

/∫
dXdλ exp [−Sf,σ(λ,X)/kBT ] (10)

In addition, using Eq. 7 and 〈•〉λ ≡
∫
dλ • exp [−Ff,σ(λ)/kBT ]

/ ∫
dλ exp [−Ff,σ(λ)/kBT ],

one can derive the other equilibrium quantities as follows (see below for torques):

λ∗ = 〈λ〉λ, (11)

z∗ = −〈∂fFf,σ(λ)〉λ = λ∗εX + (1− λ∗)εB (12)

with εs the WLC extension associated with the form s of DNA, which depends only on as

and `s [1].

Note finally that numerical integration is performed by circumventing numerical problems

coming from the generation of large combinatorial quantities when λN becomes large (as in

the case e.g. of Eq. 9). Recalling that λ = K/N where K is the number of sites occupied by

the alternative form, the integration thus consists of a discrete sum over restricted values

of K and X for which Boltzmann weights are maximal. To this end, we first localise the

saddle-point of Sf,σ(λ,X) and then perform the sum over values of K and X lying in the

rectangle that contains the saddle-point and outside of which relative Boltzmann weights

with respect to the saddle-point are smaller than 10−4. We further checked that our result

did not depend on the choice of this cut-off.

C. Generalization to an arbitrarily number of alternative forms

In the situation of k possible DNA forms (one B-DNA plus k − 1 alternative forms),

denoting the vector of fraction of each of these forms by λ ≡ {λi}i=1..k , with
∑k

i=1 λi = 1,

the free energy landscape becomes:

Ff,σ(λ) = Nbp

k∑

i=1

λiγi + I(λ) +
k∑

i=1

gi,f (λiNbpai)

+
kBT

2


 ψ2

BNbp∑k
i=1 λiχi

(
1 + σ −

k∑

i=1

λi
ψi
ψB

)2

+ ln

(
k∑

i=1

λiχi

)
 (13)
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where here the index i always indicates the different forms and where I(λ) indicates the

free energy associated with the multiple possibilities to distribute the different alternative

sites into distinct domains.

D. Torques

1. Measurement in numerical simulations

To measure the torque exerted by a molecule in our simulations, we use the same method

as in our previous work [2] where we adapted a commonly used experimental method [3, 4]

to the case of rod-like chain models with global torsional energy. It consists in attaching the

ends of the molecule to a reservoir of twists with which this can exchange helix turns. The

reservoir, also called a magnetic trap, is characterized by a stiffness kR such that any variation

of the twist within it, δTwR, with respect to a reference twist (see below) is associated with

an energy cost 2π2kBTkRδTw2
R. Similarly to the measurements in magnetic torque tweezers,

the equilibrium torque exerted by the molecule is then given by Γ∗ = −2πkR(Tw∗ − Tw∗0),

where Tw∗ and Tw∗0 are respectively the equilibrium twists of the supercoiled molecule and

of the corresponding relaxed molecule, both measured in the presence of the magnetic trap.

Note here, that the linking number in the reservoir is further calibrated such that Tw∗0 is

equal to the number of helices of the molecule at rest, Tw0.

2. Expression in the zero writhe approximation and access to the torsional modulus

The equilibrium torque exerted by the molecule is defined by Γ∗ = 〈∂ΘFf,σ(λ)〉λ where Θ

is the rotation angle of the tip of the molecule around the stretching direction (the direction

perpendicular to the magnetic field used to add helical turns to the molecule). In magnetic

tweezers experiments, Θ is a control parameter related to the linking number: Θ = 2πLk.

As a consequence, Γ∗ = (2π)−1〈∂LkFf,σ(λ)〉λ, which becomes Γ∗ = (2πTw0)−1〈∂σFf,σ(λ)〉λ in

the approximation of zero writhe, where Lk = Tw and σ = (Tw− Tw0)/Tw0. Using Eq. 7,

we thus obtain for the case of the co-existence of X- and B-DNA:

Γ∗ = kBTψB

〈
1 + σ − ψ(λ)

ψB

χ(λ)

〉

λ

(14)
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We then note that whenever the fraction λ of X-DNA is fixed (and known), Eq. 14 can

be used to estimate CX (appearing in χ(λ)) by computing the slope of the σ-torque curve

since in this case Γ∗ = Cte + kBTψB
χ(λ)

σ. This has been used by Bryant’s group in the context

of small, specifically designed bubble of alternative forms [5, 6].

E. Inference of parameters by testing a large number of parameters

In the absence of a priori knowledge about the mechanical parameters of alternative

forms, we used a ”blind” approach consisting in i) drawing a large number of points (typi-

cally thousands) in the space of parameters according to a uniform distribution, ii) comput-

ing σ-extension curves using the zero-writhe approximation and iii) comparing the generated

curves to the original data (either simulated data as in Figure 4 of the main text or experi-

mental data as in Figure 5 of the main text). To limit the space of parameters, we made a

vary between 0.34 nm (B-DNA) and 0.7 nm (approximately the largest value measured for

denatured DNA before breaking [7]), ` vary between 1 nm (lowest estimate for denatured

DNA [8]) and 15 nm (at least 5 times larger than any previous estimations for either D-

DNA or L-DNA), C vary between 1 nm (lowest estimate of both D-DNA and L-DNA [8])

and 100 nm (typical value for B-DNA), ψ vary between -0.6 and 0.6 rad/bp (helicity of

B-DNA), γ vary between 1 kBT and 3 kBT (the average free energy formation cost of al-

ternative forms is estimated to be around 2 kBT [9]) and J vary between 2 kBT (leading to

several domains in our simulations) and 20 kBT (single domain).
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II. SUPPLEMENTARY FIGURES

FIG. S1. Effect of C on the simulated extension curves. Using C = 100 nm fits better the

experimental data for f = 0.5 pN while C = 80 nm gives a better agreement for f = 4.5 pN.
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FIG. S2. Hysteresis cycles around the plectonemic-denatured transition. Simulations of a 2.4 kb

molecule were performed (σ = −0.05) during which the force was continuously increased (as indi-

cated by the lower left arrow) and decreased (upper right arrow arrow) at constant speed from 0.3

to 1.8 pN. For each of the three speeds reported here (from the fastest to the slowest: red, green

and blue curves), 12 cycles were performed, revealing in each case a strong hysteresis pattern in

the force-extension diagram.

FIG. S3. Snapshot of a simulation close to the plectoneme-denaturation transition (in the figure S2).

A denaturation bubble (red) appears at the apex of a plectoneme.
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FIG. S4. Relative difference between the zero-writhe approximation and our simulations and

between Marko’s model and our simulations, corresponding to Fig. 3 in the main text.

FIG. S5. FInite-size effects on the zero-writhe approximation: extension as a function of σ for

2 different forces, including finite-size effects (squares) or not (circles). The points are actually

almost exactly superimposed; they were slightly offset along the x-axis for readability.
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FIG. S6. Rainbow plots of the extension with respect to the varying parameters not shown in Fig.3

of the main text, namely, CX , ψX and J . CX and J have no effect on the extension. For ψX ,

values away from ψB = 0.6 rad/bp tend to yield better fits.

FIG. S7. In a situation where ψ = ψ̂X and C = ĈX , combining RMSDs for multiple forces

(2, 2.5, 3, 3.5, 6, 8.5 and 12 pN), the best solutions resulting from the intersection of the crests shown

in Fig. 2 of the main text are located around (âX , ˆ̀
X) (black cross).
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FIG. S8. Typical values of parameters for best fit solutions. Within the slice aX ∈ [0.52, 0.56 nm]

centered around âX (see Fig. 4 in the main article), we selected the 100 best fits to the fake data

and plotted the histogram of values for the other parameters (dashed lines represent ˆ̀
X , ĈX , Ĵ and

γ̂X). Contrary to the other parameters that spread across all their allowed range, the values of `X

are concentrated around ˆ̀
X (top left).
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FIG. S9. Setting only ψX = ψ̂X (= 0), at high force (12 pN) we find a crest of sub-optimal fits

that go off the original parameters (âX , ˆ̀
X) (black cross).
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FIG. S10. Effect of the coarse-graining on the zero-writhe approximation. The results of Fig. 5 of

the main text are unchanged when using a different level of discretization (here n = 4).
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FIG. S11. Snapshot of a simulation of a 1 kb-long molecule (100 cylinders, f = 1 pN, σ = −0.06)

where the cylinder at the center (number 50) has no denaturation penalty (γD,i=50 = 0). The

denaturation bubble (red) appears and stays at the center during the whole simulation.
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