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Abstract

Several mathematical models have been developed to explain the growth of tu-

mors and used to fit experimental or clinical data. Their predictive power –

i.e. their ability to forecast the future growth on the basis of present knowledge

– however, has been rarely explored. Here, we investigate whether a Hidden

Markov Model (HMM) based on the well-established Gompertz tumor growth

function with additive Gaussian noise could effectively be used to predict the

future growth of experimental tumors. The idea behind this work is that one

might achieve more accurate predictions if estimates of the unknown parame-

ters of the HMM are used instead of those obtained by fits of the deterministic

Gompertz model to the data. We use the principle of Maximum Likelihood

(ML) to estimate unknown parameters related to growth dynamics and noise,
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and we compare its effectiveness to the classical Nonlinear Least Squares min-

imization approach. The analyses show that our approach can provide better

growth predictions when the data contain adequate information concerning the

tumors saturation phase. The forecasts could also be improved by taking into

account prior knowledge about the unknown parameters when the information

concerning the saturation phase was inadequate. We conclude that by using

HMMs in combination with the principle of ML, one can obtain more reliable

growth predictions for individual tumors.

Keywords: Tumor Growth, Nonlinear Systems, Parameter Estimation,

Maximum Likelihood, Nonlinear Least Squares, Hidden Markov Model, Noise.

1. Introduction

Human cancers are usually treated with one or a combination of therapies

such as chemotherapy, immunotherapy, radiotherapy, and surgery. In order to

improve the therapeutic outcome, the use of mathematical models along with

optimal control has been proposed by many researchers [1–4]. Michor and Beal5

[5] present extensive literature on the topic of how mathematical modeling can

be applied to deliver better drug regimes. In this context, the importance of

mathematical modeling is apparent since the models’ ability to describe, and

eventually predict, tumor growth greatly affects the outcome of the therapy.

However, there is no general consensus about which could be the best mathe-10

matical model of tumor growth.

Part of the problem is the complexity of the tumor biology. For example, in

the case of solid tumors cancer and normal cells actively communicate by means

of a number of molecular signals and conspire to shape the tumor microenvi-

ronment and finally to regulate the overall growth of the tumor itself. The15

molecular network includes positive and negative feedbacks and its nonlinear

character challenges mathematical modeling. Models that attempt to capture

this microscopic complexity have been developed, but their use in the clinical

settings is limited owed to their high computational costs [6]. For this reason,
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simple phenomenological models developed in the past are still used to describe20

tumor growth. The limited number of observations that can be collected in

the clinical settings, however, does not allow to obtain enough data to compare

the accuracy of different growth models. For example, whether the growth of

real tumors is limited above or not is still a matter of debate [7]. As a further

complication, it has been recently shown that even in the case of blood tumors,25

where it is much easier to draw tumor cells from patients and study their growth

kinetics, some clones appear to grow exponentially while others show sigmoidal

growth up to a steady–state level [8].

Experimental solid tumors can provide data to test mathematical models,

and in this case it has been shown that the Gompertz model is a good analytical30

descriptor of the macroscopic features of tumor growth and of biological growth

in general [9–13]. It is a phenomenological model that describes exponential

growth with an exponentially decreasing growth rate, and it has also been shown

to approximate quite reasonably the behavior of biologically–motivated, but

more complex, tumor growth models [14]. Its mathematical simplicity but at the35

same time its ability to capture the macroscopic features of experimental tumors

make the Gompertz model a good choice to test new forecasting approaches.

In our previous works, we proposed and tested with synthetic data a method-

ology that estimates the unknown parameters of the Gompertz model [15–17].

The first one is called growth rate and is related to the cells ability to proliferate,40

while the second one is called carrying capacity and is related to the tumors sat-

uration volume. In the literature based to the findings of Brunton and Wheldon

[11–13], the carrying capacity is usually considered as a fixed species–specific

parameter when the Gompertz model is used to fit curves to experimental data

[18–20], and a Nonlinear Least Squares estimator is used to estimate the growth45

rate. This approach usually provides curves that fit well to the data, espe-

cially when the number of available measurements is large and the tumors have

reached a growth maturity. Yet, it ignores the observed heterogeneity of tumor

growth that has been recognized to have clinical implications in the planning

of effective treatment schedules [21–24]. This heterogeneity is likely to stem50
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from the peculiar microscopic characteristics of each tumor, features that at the

macroscopic level translate into growth behaviors, and thus Gompertz growth

parameters, that vary between individual tumors [21–24].

Taking that heterogeneity into consideration, we proposed a Hidden Markov

Model (HMM) based on the Gompertz function that considers both the car-55

rying capacity and the growth rate as patient–specified parameters. In order

to estimate the unknown parameters of the HMM, we used the principle of

Maximum Likelihood [25]. The properties of Maximum Likelihood Estimators

(MLEs) have been extensively in the past and can be also found in [25]. The

MLE implementation was presented in detail in [17] and was able to estimate60

the growth parameters of the Gompertz model with accuracy on synthetic tu-

mor data. The difficulty of working with HMMs lies in the inability to measure

the hidden states. However, the proposed MLE algorithm can successfully deal

with this challenge and provide accurate estimates of the unknown parameters.

Some other challenges are the uncertainty which arises due to the small size of65

the datasets and the calibration that the algorithm needs in order to provide

accurate estimates [16, 17].

In this work, experimental data from past works are being used [14, 19, 26,

27]. The data are time series of volume size measured for individual multicell

tumor spheroids (MTSs) in vitro. MTSs are three–dimensional aggregates of70

tumor cells that can be obtained and cultured in vitro under controlled exper-

imental conditions [28]. They represent a tumor model with an intermediate

complexity between standard two–dimensional monolayer cultures in vitro and

in vivo tumors, as they approximate many biological characteristics of small

non–vascularized tumors or of intervascular regions of larger tumors [28]. These75

include – but are not limited to – the heterogeneous expression of cell surface

markers, the production of an intercellular matrix, the heterogeneous distribu-

tion of nutrients and of waste molecules and the presence of a central core of

quiescent and eventually dead cells [28]. MTSs show a neat spherical morphol-

ogy and this fact is commonly exploited to convert their diameters, measured at80

the microscope or by by image analysis, into spheroid volumes [14, 26–28]. In
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turn, this also means that we can summarize the microscopic three–dimensional

complexity of the spheroids in just one measured parameter and thus use a

simple one–dimensional model to describe their growth kinetics. In particu-

lar, the growth kinetics of MTSs are well described by the Gompertz model85

[14, 24, 26, 27], and thus MTSs are an excellent experimental system to test the

accuracy of new forecasting methods based on the Gompertz growth law.

The data have been obtained with different cell types from human and rat

tumors, and thus they can allow to take into account the species–specific char-

acter of the Gompertz model discussed above. In particular we analyze the90

time–dependent volume growth of individual spheroids obtained with human

breast carcinoma (MCF7) and glioblastoma – a brain cancer – (U118) cells and

with rat glioblastoma tumors (9L) [19]. Along with the MLE from our previous

works and the commonly used NLS approach, we implemented two variations

for the NLS approach. In the first one, we consider the carrying capacity as95

an unknown parameter to be estimated. In the second one, instead of fixing

the carrying capacity to the maximum attained value (MAV) from the available

dataset, we fixed the carrying capacity to the mean value of the mean of the

last n measurements of each dataset (mentioned as Mean of Means – MM). This

work aims to answer two main questions: 1. whether the proposed model can100

be used effectively to describe and predict the tumor growth of experimental

data and 2. how this approach performs if compared to the standard nonlinear

fit of the Gompertz model to growth data.

In the following sections, we present the materials and describe the meth-

ods (Section 2), present the simulation results (Section 3), explain our findings105

(Section 4) and discuss future work (Section 5).

2. Materials and Methods

2.1. Data

The MTSs were obtained using U118 (human glioblastoma), 9L (rat glioblas-

toma) [19, 26, 27] and MCF7 (human breast carcinoma) cell lines [14]. Overall,110
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32 9L spheroids, 8 U118 spheroids, and 5 MCF7 spheroids were considered

for growth analysis. A detailed description about how the cancer cells were

cultured to obtain spheroids can be found in the aforementioned references

[14, 19, 26, 27]. Some differences between these data sets, however, deserve to

be discussed. U118 and 9L spheroids were isolated by micromanipulation from115

bulk cultures when their size reached ∼200 µm. Then the growth of individual

spheroids was monitored for ∼60 days (9L MTSs) or ∼30 days (U118 MTs)

by measuring spheroid size with an inverted microscope equipped with a cal-

ibrated ocular micrometer. On average the 9L dataset comprises 64.6 ± 9.7

volume measurements for each spheroid (min. 47, max. 79) whereas the U118120

dataset 32.7 ± 3.2 volume measurements/spheroid (min. 28, max. 35). U118

spheroids were indeed difficult to obtain and maintain in culture for long times

and this explain why this set include a lower number of spheroids measured for

a shorter time span if compared to the 9L dataset.

The experimental conditions used to obtain 9L and U118 spheroids allowed125

in particular to investigate the final plateau phase of the sigmoidal growth ki-

netics, whereas the first growth phase could not be observed. MCFT spheroids

were therefore obtained from cloned cells and grown for ∼60 days. The cells

were cloned by seeding them at the average limiting dilution of 0.1 cells/well

into the wells of five 96–well culture plate. Limiting dilution experiments obey130

Poisson statistics [29] and under these conditions one may expect to obtain a

total of ∼43 wells containing exactly 1 cell. However, in vitro the plating ef-

ficiency – i.e. the ability of single cells to form a clonal population – is never

100% and actually it varies between 20–30%. Indeed, 11 wells containing 1

cell were obtained and only 5 clones could form spheroids. The size of MCF7135

spheroids was measured from calibrated micrographs taken with a digital micro-

scope (EVOSci, AMG, Bothell, WA, USA) by using the image analysis software

ImageJ (http://imagej.nih.gov). Starting from single cells a time period of ∼60

days was appropriate to accurately determine the first quasi–exponential growth

phase of individual spheroids but not to characterize the plateau phase of their140

growth kinetics. On average the MCF7 dataset comprises 24.8 ± 8.6 volume
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measurements/spheroid (min. 15, max. 33).

2.2. Tumor Growth Modeling

The stochastic discrete time state–space representation of the Gompertz

model, which was introduced in [16] and also used in [17], was used here to

describe the growth dynamics. This model can be formulated as follows:

xk+1 = f(xk, θ1, θ2) + wk, (1a)

yk = xk + υk, (1b)

where xk (mm3) is the tumor volume at time step k, yk the a measurement

that corresponds to the state xk, and k ∈ N. The function f in Eq. (1a) is the

state–space representation of the Gompertz function [30]:

f(xk, θ1, θ2) = θ2 exp

(
ln
(xk
θ2

)
exp

(
− 1

θ1
tk+1

))
, (2)

where θ1 (days) is related to the cells’ proliferative ability, θ2 (mm3) is the

carrying capacity ( lim
k→∞

xk = θ2) and tk+1 (days) is the time between k and

k + 1. The random variables wk and υk, k ∈ N are mutually independent and

normally distributed with zero mean and unknown variance: wk ∼ N (0, σ2
wk

)

and υk ∼ N (0, σ2
vk

), where σwk
= θ3x

θ4
k and σvk = θ5x

θ6
k . Measurements are

available from time k=1 onwards. Because of the random components wk and

υk, the model of Eq. (1) also corresponds to the description:

xk+1 ∼ pθa(xk+1|xk), (3a)

yk ∼ pθb(yk|xk), (3b)

where pθa(xk+1|xk) is the probability density function describing the dynamics

for given values of xk and pθb(yk|xk) is the probability density function de-145

scribing the measurements [31], [32]. In Eq. (3a), θa = [θ1, θ2, θ3, θ4]T , where

θa ∈ Θa with Θa ⊆ R4
>0 denoting a compact set of permissible values of the un-

known vector θa and in Eq. (3b), θb = [θ5, θ6]T , where θb ∈ Θb with Θb ⊆ R2
>0

denoting a compact set of permissible values of the unknown vector θb. We also

define the vector θ = [θa,θb], where θ ∈ Θ with Θ ⊆ R6
>0.150
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2.3. Parameter Estimation

The problem addressed in this manuscript is how to obtain an estimate θ̂

based on N measurements Y N = [y1, . . . , yN ] and predict the future states

X̂N+1:M = [x̂N+1, . . . , x̂M ]. In order to estimate the unknown parameters im-

plemented methods based on the Nonlinear Least Squares and the Maximum155

Likelihood. In this manuscript, we include a brief description of the Maximum

Likelihood estimator.

2.3.1. Nonlinear Least Squares Estimator

This method is used to find the estimates θ̂1 and θ̂2 of the parameters θ1

and θ2 that minimize the summation of the squared difference between the

measurements Y n and the estimates X̂N :

[θ̂1, θ̂2] = arg min
θ1∈Θ1,θ2∈Θ2

N∑
1

(yk − x̂k)2. (4)

where θ1 ∈ Θ1 with Θ1 ⊆ R>0 and θ2 ∈ Θ2 with Θ2 ⊆ R>0 denote compact sets

of permissible values for the unknown parameters θ1 and θ2, and xk is given by:

x̂k = θ2 exp

(
ln
( x̂k−1
θ2

)
exp

(
− 1

θ1
tk

))
. (5)

The modifications needed in order to test the cases in which the carrying

capacity is fixed to the MAV or MM are trivial.160

2.3.2. Maximum Likelihood Estimator

This method is applied to the model of Eq. (1) and is used to find an estimate

θ̂ of the vector θ that maximizes the joint density pθ(Y N ) of the observation:

θ̂ = arg max
θ∈Θ

pθ(Y N ). (6)

Bayes’ rule can be used in order to decompose the joint density according to

pθ(Y N ) = pθ(y1)

N∏
k=2

pθ(yk|Y k−1), (7)

where

pθ(yk+1|Y k) =

∫
pθ(yk+1|xk+1)pθ(xk+1|Y k)dxk+1, (8)
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pθ(xk+1|Y k) =

∫
pθ(xk+1|xk)pθ(xk|Y k)dxk, (9)

and

pθ(xk+1|Y k+1) =
pθ(yk+1|xk+1)pθ(xk+1|Y k)

pθ(yk+1|Y k)
. (10)

The distributions in Eqs. (8) to (10) can be computed iteratively. However,

in most cases, as also in the case studied in this manuscript, the above inte-

grals cannot be solved analytically. Nevertheless, since xk is low–dimensional,

numerical integration can be used effectively in order to compute the integrals165

of Eqs. (9) and (10). More specifically, we divide the integration interval into

subintervals and we compute each subintergral by using the trapezoidal rule.

The summation of these subintegrals provides an approximation of the initial

integral we want to compute. Moreover, to reduce the interval of integration

[0, Xmax] the Gaussian property of the noise is being used. At every iteration170

step, xk is considered a normally distributed random variable with mean µ = yk

and variance σ2 = (σ0y
e0
k )2 ( xk ∼ N (µ, σ2)). As a result, the interval [µ− 5σ,

µ + 5σ]
⋂

[0, Xmax], which is significantly smaller than [0, Xmax], can be used

as the interval of integration [17]. For a more detailed description of the Max-

imum Likelihood Estimator, the reader may refer to Section 3.1.3 Numerical175

Maximum Likelihood in [17].

3. Results

In this section, we present the simulation results. In order to perform these

simulations we used MATLAB (version R2015a, The MathWorks Inc., Natick,

IL). The computational methods were implemented by writing suitable func-180

tions, while Eqs. (4) and (6) were computed with the fmincon function [33].

In this work, we examined three different datasets that contain multicell

tumor spheroids. MCF7 refers to human breast carcinoma cell line, U118 to

human glioblastoma cell line and 9L to rat glioblastoma cell line. Fig. (1)

shows plots of the growth data for all datasets in order to inform the reader

on the type of experimental data we used for the simulations. We implemented
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the ML estimator proposed in [17] and a Least Squares estimator and compared

their performance. For the ML estimator, both the growth rate and the carrying

capacity were estimated at each time step. As regards the LS estimator, along

with the approach proposed in the literature where the carrying capacity is fixed

to a certain known value, we also examined the case in which this parameter

is considered unknown (refered below as LS2p). In the case that the carrying

capacity is fixed, two sub–cases were studied. In the first one, the MAV of each

dataset was considered as the fixed value of carrying capacity (referred below

as LSMAV ), while in the second one the MM (referred below as LSMM ). The

value of MM is given by:

MM =
1

nM

M∑
i=1

N∑
j=N−n

yi,j , (11)

where n is the number of measurements used to obtain the mean carrying ca-

pacity of the spheroids, M is the number of spheroids the dataset contains, i

is the spheroid’s ID and j is the measurement’s ID. In our simulations, n has

been set to 10 for the U118 and the 9L datasets, while for the MCF7 dataset185

it has been set to 5 due to the small number of available measurements. The

parameter estimates were used in order to predict the tumors’ future growth.

The Root-Mean-Square Deviation (RMSD) was used in order to measure the

accuracy of the predictions. Given YN = [y1, · · · , yN ], the first k measurements

(Y1:k = [y1, · · · , yk], k < N) were used to estimate the growth dynamics θ̂1 and

θ̂2. The future growth of the tumor (X̂k+1:N = [x̂k+1, · · · , x̂N ]) was predicted

by the following equation:

x̂i = θ̂2 exp

(
ln
( x̂i−1
θ̂2

)
exp

(
− 1

θ̂1
ti

))
, (12)

where i = 2, · · · , N and x̂1 = y1. Then, the RMSD was computed by:

RMSD =

√∑N
i=k+1(yi − x̂i)2

N − (k + 1)
(13)

The RMSD of the LS estimator will be referred to as RMSDLS and the RMSD

of the ML estimator as RMSDML.
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Table 1: Number of tumors for which the RMSD of the predictions is lower for the

Maximum Likelihood approach. The Maximum Likelihood approach is compared to each

Least Squares approach seperately. This table refers to the MCF7 dataset.

MCF7

No. of Available Measurements

2 3 4 5 6 7 8 9 10 11 12 13

ML vs LSMAV

No. of Tumors 1 4 2 1 1 1 0 0 0 1 0 0

ML vs LSMM

No. of Tumors 2 3 4 3 3 2 2 2 2 2 1 1

ML vs LS2p

No. of Tumors 2 3 3 2 2 2 1 0 1 1 0 0

Tables. (1)–(3) show the number of cases at each time step where RMSDML190

was lower than RMSDLS (cases where the ML performed better). The ML

method is compared to each Least Squares approach for each dataset seperately.

We also present the comparison between the mean RMSD of the prediction at

each time step of ML and LSMAV in Figs. (2), of ML and LSMM in Figs. (3),

and of ML and LS2p in Figs. (4).195

4. Discussion

Even though the ability of a broad range of mathematical models (includ-

ing Gompertz) to describe experimental data is studied in several studies, the

predictive power is rarely considered, as Benzekry et al. point in [7]. This

work examines whether an HMM based on the Gompertz function with addi-200

tive Gaussian noise can be used effectively in order to describe and predict the

growth of experimental tumor data. This model entails the challenge of comput-

ing the prediction density pθ(yk|Yk−1) in absence of the hidden states xk. Our

main hypothesis is that we can achieve more accurate predictions for the future

growth of a tumor if we use the estimates of the unknown parameters of the205
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Table 2: Number of tumors for which the RMSD of the predictions is lower for the

Maximum Likelihood approach. The Maximum Likelihood approach is compared to each

Least Squares approach seperately. This table refers to the U118 dataset.

U118

No. of Available Measurements

2 3 4 5 6 7 8 9 10 11

ML vs LSMAV

No. of Tumors 5 2 3 3 3 2 2 4 4 5

ML vs LSMM

No. of Tumors 4 4 4 3 4 3 3 2 7 6

ML vs LS2p

No. of Tumors 5 7 6 6 3 3 3 5 5 6

No. of Available Measurements

12 13 14 15 16 17 18 19 20

ML vs LSMAV

No. of Tumors 5 5 5 5 3 5 4 5 3

ML vs LSMM

No. of Tumors 4 4 5 5 4 4 4 5 4

ML vs LS2p

No. of Tumors 4 4 5 5 3 5 3 3 1
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Table 3: Number of tumors for which the RMSD of the predictions is lower for the

Maximum Likelihood approach. The Maximum Likelihood approach is compared to each

Least Squares approach seperately. This table refers to the 9L dataset.

9L

No. of Available Measurements

2 3 4 5 6 7 8 9 10 11

ML vs LSMAV

No. of Tumors 31 29 29 32 32 31 30 30 31 30

ML vs LSMM

No. of Tumors 4 9 7 7 5 5 5 6 9 8

ML vs LS2p

No. of Tumors 13 16 18 18 16 22 17 17 16 16

No. of Available Measurements

12 13 14 15 16 17 18 19 20 21

ML vs LSMAV

No. of Tumors 27 27 28 26 27 27 27 25 27 29

ML vs LSMM

No. of Tumors 10 14 16 16 16 15 16 17 22 23

ML vs LS2p

No. of Tumors 16 16 12 13 12 12 8 13 18 19

No. of Available Measurements

22 23 24 25 26 27 28 29 30

ML vs LSMAV

No. of Tumors 30 29 29 29 30 31 31 30 32

ML vs LSMM

No. of Tumors 25 23 25 21 24 23 24 23 24

ML vs LS2p

No. of Tumors 20 14 16 18 23 23 22 19 23
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HMM instead of the estimates obtained by the classical approach of the deter-

ministic Gompertz model with the carrying capacity fixed to a species–specific

parameter. We also hypothesize that the growth predictions can be improved

by utilizing prior knowledge about the unknown parameters. In order to test

these hypotheses, we used MTSs from three different types of tumors.210

The novelty of this work is that an HMM with additive Gaussian noise that

considers the growth rate, the carrying capacity and the noise characteristics

as unknown parameters is used to describe the growth of experimental tumor

data. Furthermore, in order to estimate the unknown parameters, we used

an MLE algorithm that we developed in our previous works, instead of the215

general Expectation Maximization algorithm [34] which is usually employed for

the computation of the Maximum Likelihood estimates. The advantage of our

MLE algorithm is that it exploits the structure of the used HMM in order to

provide a very accurate approximation of the prediction density. Moreover, the

HMM approach which has been used in this work for tumor growth modeling,220

can be considered as a general method to forecast biological time series, since

the Gomperz function can be replaced by any nonlinear equation that models

a biological procedure. If, for example, the Gompertz function is replaced by

a model that fits data of pathogens’ spreading in humans or in plants, this

approach can be use to forecast the kinetics of pathogens’ spreading. Thus,225

the proposed method can be used not only for cancer research, but also for

parameter estimation and forecasting in epidemiology [35–37].

As regards the MCF7 dataset, all the NLS estimators performed better than

MLE. This could be an indication that the stochastic Gompertz model which

has been used is not suitable for describing this kind of tumors. However, a230

closer look at Figs. (1a) reveals that until the 13th measurement (which is

the time window when we try to estimate the growth rate and the carrying

capacity in order to predict the future growth) the spheroids are far from the

saturation phase, which means that there is not enough information considering

the carrying capacity. Indeed this experimental set was obtained with cloned235

cells, i.e. the data are from tumor spheroids that started their growth when they
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were formed by one cell only, with the aim to investigate in details the initial

quasi–exponential growth phase. The plateau phase is not well characterized

(see also Fig 1) and this is a critical point since the ML estimates the carrying

capacity directly from the data. Further research with a larger dataset that240

monitors the growth for a longer time interval data could lead to better results.

In regard to the U118 dataset, we can see a different behavior. The NLS ap-

proach with the carrying capacity fixed to the MAV performs better than MLE

at the early growth stages (when there are only a few available measurements).

As the growth progressed, the MLE approach provides more accurate predic-245

tions in the majority of cases, even though the mean RMSDLS is slightly lower

than the mean RMSDML. This behavior is expected since the saturation phase

for this dataset has been reached during the examined time window. When the

carrying capacity is unknown, the performance of NLS drops and MLE performs

generally better for both the early and later growth stages. Lastly, using the250

MM as carrying capacity has a positive influence at the early and negative at

later growth stages.

9L spheroids were monitored for a longer period of time (thus there are more

samples for each spheroid, see Section 2.1) and the saturation phase was reached

more quickly. As a result, for this dataset, the MLE over–performs the NLS255

approach. By considering the carrying capacity unknown and to be estimated,

the performance of the NLS estimator improved, but the ML estimator still

performed slightly better. However, using the MM as carrying capacity greatly

improved the NLS prediction ability at early stages. At later growth stages, the

MLE is again able to provide more accurate predictions.260

Overall, our analyses indicate that the monitoring time interval is a decisive

factor for the prediction of the future growth. Whether or not the data contain

enough information for the saturation phase is therefore critical to make good

predictions of tumor growth with the Gompertz model. When the data lack

this information, the approaches that fix the carrying capacity are expected to265

have better performance since the fixed parameter includes some information

about the saturation phase. However, even though the approaches with the fixed
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parameter may provide curves that fit well to the data, they are in many cases

unable to predict the tumors future growth, because the information about the

saturation phase might be inaccurate (due to the intrinsic growth variability of270

individual tumor spheroids even when they are produced with cells from the

same cell line [24].

As regards our first hypothesis, we confirmed that the proposed HMM is able

to describe the growth of experimental tumors. Furthermore, we observed that

when a tumor starts to grow rapidly and the measurements contain information275

about the saturation phase, this approach provided, in most cases, more accu-

rate predictions of future growth. This is however a potential problem since,

as far as we know, there are no firm data concerning the saturation phase of in

vivo solid tumors because in general they are treated a short time after their

diagnosis. It is tempting to speculate that each organ can nonetheless contain280

tumors of a given maximum size and it might be interesting to infer the carry-

ing capacity of different organs on the basis of some biophysical characteristics,

like e.g. their biomechanical properties, or from statistical analyses of clinical

cancer data such as tumor size at patients’ death. For example, it is well known

that solid–stress from the surrounding environment can inhibit the growth of285

experimental tumors and affect the plateau phase of their growth kinetics [38].

Tissue–specific estimates might then be used as prior knowledge to inform and

possibly validate our approach also for in vivo tumors. Indeed, we show that

the utilization of prior knowledge in the NLS estimator can improve the growth

predictions at early growth stages, but as the tumor grows, we can obtain esti-290

mates that are able to predict tumor growth more accurately by combining the

HMM model with the MLE.

At this point, we would like to notice some ideas for further research that

might be of interest. First of all, it would be very interesing to examine the

descriptive power of models other than the Gompertz. To put it in another295

way, instead of the stochastic model of Eq. (1), the MLE can be combined

with an HMM (based on another growth law) that can describe certain cancer

tumors better than the Gompertz. This could lead to a more accurate growth
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prediction for particular types of tumors. Another interesting topic for further

research is to examine noise distributions other than the Gaussian. In our works,300

we chose to work with Gaussian distributed noise, because it is probably the

most common choice when there is no information available concerning the noise

distribution. However, even though we obtained good results by using Gaussian

distributed noise, there is no evidence that this is the best choice to model the

uncertainties for the problem we studied. Lastly, since there is evidence that305

prior information can improve the growth predictions, using estimators that

take prior knowledge about the unknown parameters into consideration has the

potential to provide more accurate results. For this purpose, we believe that

examining the performance of the Maximum A Posteriori estimator would be

very interesting for future research, since this estimator combines the principle of310

Maximum Likelihood with the prior knowledge about the unknown parameters.

5. Conclusions

In our previous works, we proposed a new approach for the estimation of the

Gompertz’s model parameters and tested it on synthetic tumor data. In this

work, we applied that methodology on experimental tumor data and evaluated315

its potential to predict the future growth of a tumor.

The main contribution is that this work shows the ability of the proposed

HMM to describe the tumor growth of experimental data. Furthermore, it indi-

cates that the proposed approach can be used for tumor growth prediction and

that when the measured data contain enough information about the saturation320

phase of the tumor, it can provide more accurate tumor growth predictions com-

pared to the classical approach. Lastly, it shows that the utilization of the prior

knowledge concerning the unknown parameters has the potential to improve the

growth predictions at early growth stages where the data may lack information

about the tumors saturation phase.325

To conclude, it should be noted that our estimation technique is not limited

to the Gompertz model, and thus the MLE can be applied to other models
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that may describe tumor growth models more appropriately (e.g. [14]). We

believe that individualized tumor growth modeling is of great importance since

it takes into consideration the heterogeneous growth of individual tumors and330

thus it has the potential to provide more accurate results. The MLE is a general

approach that can be exploited for this purpose.
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Fig. 1. Growth trajectories of multicell tumor spheroids. Representative data on the

individual growth of two MCF7, two U118 and two 9L MTS.
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