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Abstract: The relationship between statistical distributions of geometrical parameters 

and scattering properties of particles has been underlined, particularly for optically soft 

particles. As the calculation of these distributions may be difficult, some simple rules 

for estimating them are presented in this paper. The method has been validated by the 

calculation of the scattering properties of a capsule shaped particle. 
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1. Introduction 

Electromagnetic scattering by particles consisting in a homogeneous material has been 

studied a lot by numerically solving the Maxwell equations. Solutions depend on the 

morphology of the particles; this is revealed at the boundary conditions, i.e. the values 

of the physical quantities on the particle surface. In the case of a homogeneous material 

a relationship between the scattering properties, the optical indices of the material and 

the surface characteristics may be expected. The exact calculation of any shaped particle 

is possible by numerical methods [1]. However, the whole analysis needs a too large 

computational time if these exact methods are used for the calculation of the optical 

properties. Actually, the need of fast calculations is important for industrial 

applications, e.g. particle sizing and particle shape determination by means of optical 

methods, even if the accuracy is lower. Fitting the accuracy of the calculation with the 

accuracy of the measurement is sufficient. Thus simple and accurate expressions for the 

optical properties of particles or crystals are useful to solve inverse problems coming 

from such optical particle sizing techniques. 

Moreover the use of relevant descriptors for the particle geometry can simplify the 

correspondence between optical and geometrical properties. In the past some optical 

approximations have been developed for the calculations for optically soft materials [2]. 

They include relations between the optical properties and the statistical distributions of 

geometrical parameters [3, 4]. Unfortunately, it appears that the analytical calculation of 

the statistical distributions can be very tedious even for simply shaped particles. The 

aim of this paper is to extract from the dedicated literature any information to evaluate 

the statistical distributions of any convex body and then calculate the scattering 

properties. The study of non convex particles, e.g. clusters, will be out of the scope of 

this paper. 

2. Relation between scattering properties and statistical distributions 

The optical properties of a body depend on the relative refractive index m, i.e. the ratio 

between the refractive indices of the particle and the surrounding medium. Some 

scatterers dispersed in a liquid are characterized by a low optical contrast, i.e. 

11m  . In the past, two important analytical approximations [2] have been proposed 

for such particles: The Van de Hulst approximation, also known as anomalous 

diffraction (AD) approximation, for large particles and the Rayleigh-Debye-Gans 
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(RDG) approximation for small particles. From a geometrical point of view, the AD 

approximation explicitly contains the ( )lD l  chord length distribution (CLD) of the 

scatterer. The chord length l is the distance between two points located on the body 

surface. RDG approximation considers the ( )PD r  distance distribution (DD) of 

scattering elements inside the scatterer. The distance r is the length between two any 

points inside the body. Now, we will focus our attention about the scattering of light by 

small and optically soft particles. 

Within the RDG approximation, the differential scattering cross section per unit 

incident intensity (unpolarized light) is related to the amplitude form factor R. 

Considering that the object (scatterer) can randomly orientate, this optical property is 

thus obtained after calculating an average over all the object orientations (Eq.1): 
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k ,  and sk (  2 sin / 2sk k  ) are the incident wave vector, the scattering angle and 

the scattering vector, respectively. V is the object volume. 

Following the theory of stochastic geometry [3], there exists a relation between the two 

normalized distributions DP and Dl for a convex particle: 
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lmax is the maximum chord length of the particle. 

By introducing Eq.3 into Eq.2, one express 
2

R  and the differential scattering cross 

section as a function of the CLD: 

      
max

2

4 4
0

12
2 sin 2cos

l

s s s l

s

R k l k l k l D l dl
l k

 
   

  
     (4) 

Eq. 4 shows that Dl is the relevant geometrical characteristic for the scattering cross 

section of optically soft particles. Equation (4) replaces the equation defining 
2

R  

that is basically a sextuple integral. As a consequence, the use of CLD presents two 

advantages: simpler calculations and clear relationship between the particle morphology 

and the scattering properties. 

Two ways can be used for calculating the CLD of a convex body: analytical calculation 

for the simplest shaped particles or Monte-Carlo Simulations (MCS). The MCS runs are 

carried out by generating unbiased random lines that cross the particle. The distance 

between the two points that intersect the body is calculated and recorded. The MC 

sampling distribution may be visually represented as the discrete probability histogram. 

3. Mathematical properties of CLD 

Statistical distributions have already been introduced by researchers in the field of 

the small angle scattering using X-rays (SAXS). Therefore we may compile the main 

results of the literature especially these ones concerning the SAXS theory. Moreover, 

additional properties have been discovered by the mathematicians. 

We may consider the CLD of any convex body as the CLD of an equivalent spheroid 

or ellipsoid, i.e. a body with a smooth shape, modified by specific geometrical 

features. The latter ones are important for the shape of the CLD curve. They consist 
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in flat faces as crystal facets, parallel (flat or curved) surfaces, parallel tangent 

planes, edges and corners. They correspond to discontinuities of the distribution 

density or its derivative. 

We begin by investigating the effect of the curvature on CLD. For a convex body 

with a smooth surface the series expansion of CLD around l=0 does not contain even 

terms. The first order term is an explicit function of the mean principal curvatures of 

the body [5, 6]. 

Chords intersect the surface at two points in a convex body; some chords are 

perpendicular to the tangent planes at the two end points and thus the latter ones are 

parallel. These chords are termed extremal chords. For instance, spheroids have two 

extremal chords: one for l=2a and the other for l=2b, a and b being the semi-axes. A 

discontinuity of ( ) /ldD l dl  will occur at these values. Wu and Schmidt [7] have 

investigated the properties of ( )lD l  when the chord is in the neighbourhood of an 

extremal chord. They give expressions for ( )lD l  around the extremal chord values 

denoted L. They show that ( )lD l  is continuous for l=L whereas ( ) /ldD l dl  is not. 

Ciccariello [8-10] generalized the work of Wu and Schmidt: he considers the 

property of parallelism between some parts of body boundaries. He studied the case 

where the locus of the extremal chord ends is a surface. For instance, this surface is a 

sphere for l=2R if the particle is a sphere with radius R. One can show that ( )lD l  

becomes discontinuous for this chord length value. If the parallelism occurs between 

two partial surfaces of the body, a discontinuity of ( )lD l  occurs at l=L, L being the 

distance between the two parallel surfaces. The contribution of the parallelism to 

( )lD l  for l L  is given by Ciccariello. 

The presence of edges leads to additional terms for ( )lD l  at l=0. Ciccariello et al. [9, 

12] and Sobry et al. [11, 13] have shown that  0lD  is a simple function of the 

dihedral angle and of the edge length. All the edges contribute to  0lD . Edges (and 

corners) also contribute to 
0

( ) /l l
dD l dl


 [14]. However, it seems difficult to 

systemize this contribution. 

4. Canonical expression for CLD of convex particle 

4.1. Principles 

Singularities on the surface of a convex body play an important role about the CLD. 

They correspond to discontinuities of the distribution density and its derivatives. As 

seen in §3, the CLD discontinuities are slightly proportional to the extension (length 

or area) of the corresponding singularities. Each singularity is characterized by the 

values of the chord length and of the density (or its derivative) discontinuity. 

Generally, the contributions of these singularities are independent of each other and 

additive. The CLD of particles having a simple shape is not monotonous and show 

some features as discontinuities as well. 

Moreover the integral geometry theory shows that the first order and fourth order 

CLD moments are related to the surface area S and the volume of the body: 

4 /l V S           (5) 
4 212 /l V S          (6) 

Then we may establish the following rules for constructing the CLD: 

- list the singularities (pairs of parallel tangent planes, pairs of parallel surfaces, 

edges) 

- sort the singularities by increasing chord length values; quantify the 

corresponding discontinuity of density or of its derivative 
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- interpolate the density between two singularities by means of polynomial 

functions 

- write the density ( )lD l  as a piecewise function 

- use the normalization condition for ( )lD l  and equations 5-6 for calculating 

unknown polynomial coefficients in ( )lD l . 

4.2. Illustration 

One considers a capsule shaped particle. This one consists in two hemispheres with 

radius R and a circular cylinder with a radius R and length H. The capsule is a 

convex particle with one l-discontinuity for l=2R due to pairs of parallel surfaces and 

one ( ) /ldD l dl -discontinuity for l=2R+H due to one pair of parallel tangent planes. 

Following §4.1 we divide the l-range [0; 2R+H] into several parts: 

- 0; 2R l          2

1 3 /16 / 2D l R H R R H l   
 

 see [5-6] 
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2l R l  and 2l R l  are the length values for which the continuity of CLD 

function and its derivative is verified respectively : 

   1 22 2D R l D R l     1 2/ /dD dl dD dl  

   3 42 2D R l D R l       3 4/ /dD dl dD dl  

a2 and a3 are determined by using the normalization condition for ( )lD l  and the 

equation 5 for the mean chord length value. 

Figure 1 compares the CLD’s issued from MCS and calculated by using the previous 

method. The agreement is good except the CLD part within the 2 ; 2R l R H      

range. In order to check the consequences of this deviation on the optical properties, 

we calculate the factor 
2

R  following Eq.4 for a capsule shaped particle with 

R=0.2µm and H=0.4µm. Figure 2 represents the comparison between the 
2

R  

factors using the two CLD calculations. The slight discrepancy between the two 

calculations of CLD does not lead to an significant deviation for 
2

R . 

6. Conclusion 

The methodology presented in this paper leads easily to an expression of the CLD 

that is needed for the scattering properties calculations. Improvements can be done 

by considering the interactions between singularities if any. This will be studied in 

the future. 
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Figure 1: CLD for a capsule (hemisphere 

radius = 1, cylinder length = 2). red: MCS; 

green: our method. 

Figure 2: 
2

R  as a function of the scattering 

angle (rad) for a capsule (R = 0.2µm, H = 

0.4µm). red: ( )lD l  from MCS; green: ( )lD l  

from our method. =450nm.  
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