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for ACC (Automotive Cruise Control). The associated pro-
cessing relies on the demodulation of the received signal
by the emitted waveform, leading thus to harmonic signals
with distinct frequencies during increasing and decreasing
frequency periods. These frequencies are linear combinations
of the Doppler and the delay of the target, such that the latter
can be estimated using a Fourier transform. This approach
is however waveform-specific. A more general purpose de-
tection and estimation step consists in performing matched
filtering at the outputs of a bank of Doppler demodulators,
thus reconstructing cross-ambiguity function between emitted
waveform and received signal. Detection threshold can account
for ambiguity function side lobes level.

In this paper, we propose a general purpose method for
target tracking. This is done by tracking the waveform ambi-
guity function displacement inside the time-frequency domain,
by considering the observed cross-ambiguity function at each
observation time. By using a state space model, we are able
to perform the target parameters estimation and filtering at the
same time. In classical techniques, the observation is restricted
to an initial guess for target delay and Doppler, which amounts
to focusing on the maximum of the cross-ambiguity function.

Fig. 1. Distance tracking performance of classical (dashed line) and new
(solid line) method for three waveforms : 1. Chirp, 2. Barker codes, 3. Pulse
train

Abstract—Driving aid is an important 
emerging radar ap-plication. Among associated technological 
issues, detecting and tracking potential obstacles (cars, 
pedestrians, static objects . . . ) is of key interest. In this context, 
we propose an original tracking method, based on particle 
filtering, where the observation of the state vector is the cross-
ambiguity function of the backscattered signal. Simulations for 
various waveforms demonstrate the im-provement brought 
compared to the conventional approach, in which a detection 
step precedes the tracking.

Index Terms—radar; tracking; driving aid; 
ambiguity func-tion; cross-ambiguity function; particle 
filtering.

I. INTRODUCTION

About 80% of road accidents are due to 
human errors. European statistics show that in most cases, 
the root cause of the accidents is linked to a bad perception of 
the environment, followed by a wrong action of the driver. 
These factors make the development of perception and 
driving assistance an area of very active research. These 
systems aim at improving the perception of potential 
obstacles, even in cases of partial occlu-sions or bad weather 
conditions (fog for example). Detecting and tracking both 
static and moving, potential obstacles, is among the main 
challenges to be addressed.

A typical radar system relies on the emission of 
a waveform and on the analysis of the backscattered signal, 
with a view to extracting information on the position 
(related to the time delay), and the velocity (related to the 
Doppler shift) of the objects. The accuracy of measurement 
depends both on the selected waveform and the processing 
method.

For target tracking, the classical method 
involves two suc-cessive steps: first, the detection of the 
potential targets and the estimation of position and velocity 
parameters independently at each time, second, a filtering 
technique, typically a  Kalman filter o r a nother B ayesian fi l ter 
[2].

In practice, particular structures of the 
waveforms under consideration are generally exploited. For 
instance, FMCW (Frequency Modulated Continuous-Wave) 
waveforms are a typical example [7]. Composed of two 
successive linear frequency-modulated pulses (Chirp) [1], 
with increasing and decreasing frequency respectively, these 
waveforms are used 



In our approach, on the contrary, we fully exploit available
data in the tracking procedure by considering the whole cross-
ambiguity function. More precisely, the target contribution
appears as a weighted and time-frequency shifted version of
the ambiguity function in the cross-ambiguity function. By
doing so, although the procedure is not waveform specific,
specific time-frequency properties of the waveform under
consideration are accounted for. Thus, we can expect higher
parameter tracking performance with our approach than with
the usual estimate then track approach.

Anticipating on the simulation part of the paper, Figure 1
shows how this approach can be fruitful. A comparison of
the tracking performance for three standard waveforms (chirp,
Barker codes and pulse train waveforms) demonstrates that
a better precision is achieved in all cases with the proposed
approach. In addition, accounting for the shape of the ambigu-
ity function is a natural way to incorporate information about
noisy signal amplitude statistics around the maximum of the
cross-ambiguity. Clearly, this is not achieved in the classical
approach. It may be point out that associating detection and
tracking in a same processing step has already been considered
in Track Before Detect (TBD) and Bayesian TBD techniques
(see e.g. [3]). In TBD we are however more concerned with
detection than with estimation. To our best knowledge, there is
no study where joint tracking and estimation is considered and
the ambiguity function spreading is large compared to radar
image sampling steps.

The paper is organized as follows. In Section II, we recall
the notion of ambiguity and cross-ambiguity function. In
section III, we address the tracking problem and its general
Bayesian solution. In Section IV, we describe the tracking
method through our state space formulation of the target
tracking problem. In section V, we evaluate the performances
of our approach compared to the classical one.

II. AMBIGUITY AND CROSS-AMBIGUITY FUNCTION

A. Ambiguity function

The ambiguity function is a two-dimensional function of
time delay and Doppler frequency χ(τ, f). In a radar applica-
tion, it is defined as the time response of an adapted filter to
emitted signal, when this one is received shifted in time by a
delay τ and in frequency by a Doppler shift f relative to the
nominal values (zeros) [1]. Formally, it is given by:

χu(τ, f) =
∫ +∞

−∞
u(t)u∗(t− τ) exp(i2πft)dt (1)

where u is the complex envelope of the signal. A target moving
away from the radar implies a positive f. The ambiguity
function fully characterizes a given waveform u.

The more localized the ambiguity function in the delay-
Doppler space, the more accurate the estimation of the range-
Doppler parameters. For a given signal energy, the total
volume under the normalized ambiguity function (squared)
is constant and independent on the signal waveform. Conse-
quently, a trade-off has to be achieved between the peakness

of the ambiguity function and the level of the side-lobes. This
results in the proposal of various waveforms.

B. Cross-ambiguity function

The cross-ambiguity function is the time response to the
backscattered signal r of an adapted filter to the delay-Doppler
shifted emitted signal [1]:

χr,u(τ, f) =
∫ +∞

−∞
r(t)u∗(t− τ) exp(i2πft)dt (2)

The received signal is the sum of the contributions of the
different targets, where each target backscatters the signal
with specific delay and Doppler parameters corresponding to
its position and speed, and an unknown scaling coefficient
corresponding to the attenuation and the phase shift of the
signal:

r(t) =
∑
n

αnu(t− τn) exp(i2πfn)

The cross-ambiguity function is then the sum of translated
ambiguity functions in the direction [τn fn]T corresponding
to the delay and Doppler shift of each target:

χr,u(τ, f) =
∑
n

αnχu(τ − τn, f − fn) (3)

III. NONLINEAR BAYESIAN TRACKING

The tracking problem is largely explained in [2]. A target
motion model is given by the evolution of its state vector
sequence defined by the state equation Xk = fk(Xk−1, Vk−1),
where fk is a possibly nonlinear function, and Vk−1 a pro-
cess noise sequence. Target tracking resorts to recursively
estimate Xk from the observation modeled by the equation:
Yk = hk(Xk,Wk), where hk is a possibly nonlinear function,
and Wk a measurement noise sequence. Within a Bayesian
setting, it amounts to stating the probability density function
p(Xk|Y1...k. It may be obtained recursively in a two-stage
prediction-update scheme :
• Using the state equation, the prediction step determines

the prior density function at time k via Chapman-
Kolmogorov equation:

p(Xk|Y1...k−1) =∫
p(Xk|Xk−1)p(Xk−1|Y1...k−1)dXk−1,

(4)

• From the new observation , an update step of the estimate
is carried out. It exploits the likelihood function defined
by the observation model. The updated density function
is then given by Bayes rule:

p(Xk|Y1...k) =
p(Yk|Xk)p(Xk|Y1...k−1)∫
p(Yk|Xk)p(Xk|Y1...k−1)dXk

. (5)

These two steps modeled by the recurrence equations (4)
and (5) form the optimal Bayesian solution for target tracking.
It can be determined analytically only for particular cases such
as the linear Gaussian problem (Kalman filter). Generally, the
optimal Bayesian solution is approximated by linearization



(Extended Kalman filter), unscented transformation (unscented
Kalman filter), or Monte Carlo simulation (particle filter) [4].

IV. TRACKING METHOD

A. State Model

We consider a single target moving along a one-dimensional
axis corresponding to the direction of the radar. It is often the
case in an automotive application as vehicles to be tracked
move along the same direction as the vehicle equipped with
the radar.

To model the dynamics of this target in the delay-Doppler
space, the state vector of the target, at time step k, k =
1, . . . ,K, is given by:

[
τ(k) fd(k) arel(k)

]T
, where

τ is the delay corresponding to the position of the target
(distance between the radar and the target), fd is the Doppler
frequency corresponding to the velocity of the target relatively
to the velocity of the tracker vehicle, and arel the relative
acceleration of the target. From the formulation of a nearly
uniform accelerated motion model, given in [6] among others,
where we consider vrel = vobj − vego, arel = aobj − aego,
and the linear equations τ = 2d/c, fd = 2vrel/λ0, the state
equation resorts to:

Xk =

 τ(k)
fd(k)
arel(k)

 = FXk−1 +QVk (6)

where: F =

 1 T
f0

T 2

c

0 1 2T
λ0

0 0 1

, Q =

 T 3

3c
T 2

λ0

T

.

T is the sampling period, c the celerity of light, f0 the carrier
frequency and λ0 the corresponding wavelength. Vk denotes
the noise model of relative accelerations.

The prior distribution p(Xk|Xk−1) is issued from the state
equation (6). Considering a white centered Gaussian noise
Vk, p(Xk|Xk−1) will be a Gaussian distribution, with mean
FX̂k−1, where X̂k−1 is the state estimator at time step k−1,
and a variance related to Q.

B. Observation Model

The observation that we consider consists of a discretized
version of the cross ambiguity function :

Yk(a, b) = χr,u(a.δτ, b.δf)

=
∑
n

αn(k)χu,u(a.δτ − τn(k), b.δf − fn(k))

+Wk(a, b)

(7)

where Wk is the observation noise. a ≤ A, b ≤ B are
integers. The observation is then a matrix A×B.

Given a state vector, the associated prediction of the dis-
cretized cross ambiguity function χr,u can be compared to
the real noisy observation Yk up to the unknown scaling factor
αn(k). The likelihood model can be then be defined from a
metric between the observation Yk and the prediction YXk

.

Formally, it is stated as a Gibbs distribution, like in image
processing tracking techniques [5] and is given by:

p(Yk|Xk) ∝ exp(−γ∆(Yk, YXk
))

where ∆(Yk, YXk
) is the selected metric between the true

observation Yk and the predicted observation YXk
, and γ is a

parameter that determines the shape of the distribution.

αn(k) is an unknown propagation coefficient. It possibly
changes at each time step. A solution to this problem could
be to choose a power invariant metric as can be the mutual
information [8]. Here, we estimate αn(k) in the mean square
sense. Then, for a single target, our definition of ∆ reduces to

∆(Yk, YXk
) = min

αn(k)
||Yk − YXk

| |2

C. Tracking Algorithm

Given the non-linearity of the observation model, we apply
a sampling importance resampling particle filter (SIRPF) [4]
, which will use the prior density p(Xk|Xk−1) given by the
state equation (6) as the importance density, and p(Yk|Xk),
given by the equation of observation (7), as the likelihood
distribution.

As explained in [9], every particle is a possible case of
the state Xk of the target, that we will note by Xm

k where
m = 1 . . .M is the particle index and M is the number of
particles used. At time k− 1, The state Xk−1 is described by
M particles Xm

k−1 and M weights ωmk (m = 1 . . .M ), each
weight expresses the probability that have the correspondant
particle to be the state Xk−1, given the observation. We
independently propagate each particle to time step k using
(6), which amounts to sampling from the prior distribution
p(Xk|Xk−1 = Xm

k−1).
A predictor of the state Xk, before having the observation

Yk, could be given by:

X̂k− =
M∑
m=1

ωmk−1X
m
k

While having the observation Yk, we compute recursively
the new weigts using the likelihood probability function
p(Yk|Xk):

ξmk = ωmk−1p(Yk|Xk = Xm
k ) m = 1 . . .M (8)

ωmk =
ξmk∑M
m=1 ξ

m
k

(9)

The state estimator is given by:

X̂k =
M∑
m=1

ωmk X
m
k



(a) Chirp (b) Barker codes (c) Pulse train

Fig. 2. Ambiguity function of the three simulated waveforms (modulus)

V. SIMULATION RESULTS

Performance of the proposed approach is obtained on syn-
thetic data. Simulated observation data correspond to a single
target having a nearly uniformly accelerated motion relatively
to the tracker vehicle. This results in dynamics in the time-
frequency domain governed by state equation (6). The time
step is set to T = 50ms and the simulation consists in a
sequence of 100 time steps. The cross-ambiguity function is
sampled on a 201 × 512 delay-Doppler grid. The resolutions
along the delay and Doppler axes are respectively of 1m and
1km/h. The targets can be detected up to a range of 200m
with a velocity comprised between −260km/h and 260km/h.
The state and observation noises are supposed gaussian with
diagonal covariance matrices.

A comparison with the classical approach is carried out.
For the classical approach, the detection step consists in
the localization of the global maximum of cross-ambiguity
function. Regarding the filtering step, a Kalman filter described
in [4] is considered. For our approach, the particle filter
exploits 300 particles. A quantitative evaluation is reported for
three different waveforms: a chirp (linearly modulated pulse),
a pulse train (6 pulses) and Barker codes waveform ([1 1 1 1
1 -1 -1 1 1 -1 1 -1 1]). Their ambiguity functions are given
figure 2. We can see that for the Barker codes waveform and
more clearly for the pulse train, the side-lobes are relatively
high.

Can be observed on figure 3 the improvement of tracking
performance with the new method for the three waveforms.
For the pulse train one, we can especially observe a failure
of the tracking with the classical method. This is probably
due to the fact that the pulse train ambiguity function has
high side lobes. The classical approach based on estimating
then filtering can have for consequence to track the side lobe
and not the principle. This problem does not appear in our
approach because we consider the entire ambiguity function.
Table I gives a quantitative evaluation of tracking performance
for the two approaches and for the three waveforms.

TABLE I
QUANTITATIVE COMPARISON OF TRACKING PERFORMANCES BETWEEN

CLASSICAL AND OUR APPROACH

waveforms Distance error (m) Speed error (km/h)
Classical method New method Classical method New method

Chirp 0.15 0.09 0.85 0.57

Barker Codes 0.83 0.09 2.88 0.87

Pulse train 4.93 0.06 9.21 0.47

VI. CONCLUSION

In this paper, we have developed a new solution for target
tracking from cross-ambiguity observation. We have obtained
significant performance improvement compared to the classi-
cal detection-tracking strategy and improved robustness with
respect to waveform diversity.

In future work, we will adapt this approach for scan anten-
nas that are considered in new ACC radars. In this context,
target bearing will also be considered and antenna pattern will
play a role in bearing estimation analog to that played by
ambiguity function in delay-Doppler estimation.

With a view to speeding up the algorithm, in future work,
we will also refine cross ambiguity sampling strategy to make
the amount of information to be handled as small as possi-
ble, while retaining high tracking accuracy. Using unscented
Kalman filter or unscented particle filter is also a possible
way to achieve reduced processing complexity. An extension
to multiple target tracking will also be considered to comply
with automotive environment.
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