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Abstract 

We propose and experimentally validate an all-optical approach to generate 

simultaneously several pulse trains with identical temporal and spectral 

properties. Applying a temporal sinusoidal phase modulation followed by a 

shaping of the spectral phase enables us to handle several channels. The 

principle of operation is experimentally demonstrated at repetition rates of 14 

and 40 GHz with up to four channels. 
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1. Introduction 

The generation of high-quality pulse trains at repetition rates of several tens of 

GHz remains a crucial step for optical telecommunications, optical sampling or 

component testing applications. Unfortunately, the current bandwidth 

limitations of optoelectronic devices do not allow the direct generation of well-

defined optical pulse trains with low duty cycles. Actively mode-locked fiber 

lasers were found to be an efficient way to overcome this limitation 1 but they 

remain an onerous and complex option. As an alternative approach, several 

cavity-free operation techniques have been suggested taking advantage of the 

progressive nonlinear reshaping experienced in optical fibers as the result of 

the distributed interaction of dispersion and Kerr nonlinearity 2-4. An alternative 

set of linear solutions is based on a direct modulation of the temporal phase 

that is then converted into an intensity modulation through a dispersive element 

imprinting a spectral quadratic phase 5-7. Picosecond pulses at repetition rates 

of several tens of GHz have been successfully demonstrated but the resulting 

pulse train remains impaired by a limited extinction ratio or by the presence of 

detrimental temporal sidelobes 5-7. We have recently proposed to involve a 

triangular spectral phase profile 8 instead of a quadratic phase. Significant 

improvement of the temporal profile is then observed, and close-to-Gaussian 

Fourier-transform limited pulses are experimentally demonstrated with a duty 

cycle below 1/4 and a remarkable stability. 

In this contribution, we experimentally demonstrate that this versatile 

architecture can be easily extended to process multiple optical carriers 

simultaneously. Whereas handling several wavelengths is extremely complex 

in nonlinear approaches due to cross-phase modulation, our linear method, 



similarly to previously demonstrated time-lens schemes 9, should not be 

affected by any crosstalk between the different channels. Moreover, similar 

pulse quality is expected for each wavelength. We first introduce the principle 

of our approach and the experimental setup we implement. Experimental 

validation is then presented and discussed for repetition rates of 14 GHz and 

40 GHz and for two or four channels. 

 

 

2. Principle of operation and experimental setup 

Our method is based on the principle detailed in 8. A continuous optical wave 

with an amplitude 0 and a carrier frequency fc is temporally phase-modulated 

by a sinusoidal waveform with Am being the amplitude of the phase modulation 

and fm its frequency. The temporal sinusoidal phase leads to a set of spectral 

lines that are equally spaced by fm and which amplitude can be expressed using 

a Jacobi-Anger expansion 10. A phase shift of /2 between each spectral 

component exists and can be described by a triangular spectral phase profile. 

Applying a quadratic spectral phase (i.e. a dispersive element) can therefore 

only partly compensate for this initial phase, leading to the emergence of 

temporally localized pulse structures with a period T0 = 1 / fm impaired by a 

deleterious residual background and by a poor extinction ratio. With the 

progress of linear shaping such as programmable liquid-crystal modulators 7,11, 

it becomes feasible to imprint an exact triangular spectral phase profile resulting 

in a flat spectral phase. As a consequence, the temporal pulse shape obtained 

is a Fourier-transform limited waveform and it has been shown that for an 



optimum value Am = 1.1 rad, a close-to-Gaussian profile is achieved, with an 

excellent extinction ratio. 

As this described approach does not involve any nonlinear effects, it can 

sustain multiple wavelengths. The experimental setup we implement to validate 

the multi-channel operation is sketched in Fig. 1 and is based on devices that 

are commercially available and typical of the telecommunication industry. An 

array of up to four continuous wave lasers with wavelengths spaced by 

200 GHz or 400 GHz (ranging from 1545.7nm up to  = 1551 nm or from  = 

1541.5 nm up to  = 1551 nm, respectively) are wavelength multiplexed using 

a 200-GHz WDM multiplexers. Polarization controllers are inserted to ensure 

that all the channels have the same linear polarization at the input of the Lithium 

Niobate phase modulator driven by an amplified sinusoidal electrical signal with 

fm = 14 GHz or 40 GHz. A linear spectral shaper (Finisar Waveshaper) based 

on liquid crystal on silicon technology 11 is then used to apply the suitable 

triangular spectral phase on each channel. By taking into account an additional 

linear spectral phase, the component can also be used to control accurately the 

delay of each channel. Moreover, the equipment can also accommodate the 

various power levels delivered by the continuous wave lasers. The resulting 

signal is characterized with a high-resolution optical spectrum analyzer (5 MHz 

of resolution). The temporal aspects are monitored by means of a high-speed 

optical sampling oscilloscope (1 ps resolution) or by means of an electrical 

sampling oscilloscope (50 GHz bandwidth) connected to a high-speed 

photodiode (50 GHz bandwidth) and synchronized with the clock. The records 

may be obtained after wavelength demultiplexing using a dedicated component 

or using directly the wavelength routing ability of the spectral shaper. 



 

 

3. Experimental results 

In order to test our setup, we have first generated a single pulse train at a 

wavelength of 1551 nm and a repetition rate fm of 14 GHz. Results obtained for 

a phase modulation depth Am of 1.1 rad are reported on Fig. 2(a) (blue line). 

The initial phase modulation is converted into a pure intensity modulation 

leading to a train of well-separated ultrashort pulses at the repetition rate fm. 

The resulting pulse train is characterized by an excellent extinction ratio 

(>20 dB), well beyond the performance that can be reached with a usual group 

delay dispersion circuits imprinting a quadratic spectral phase. The pulse 

waveform can be adjusted by a Gaussian shape (blue circles) with a full-width 

at half maximum duration of 17 ps (duty cycle of 4.2). The signal resulting from 

the insertion of a second optical carrier (at a wavelength of 1549 nm) leads to 

the results plotted with a purple line. The delay between the two pulse trains is 

tuned by applying an additional linear spectral phase on the spectrum of the 

second channel. We can first note that the presence of a second wavelength 

does not affect the temporal properties of the initial pulse train. Then, given the 

duty cycle of the pulse trains and the good extinction ratio, the two pulse trains 

can be time interleaved to produce a pulse train with a repetition of 28 GHz 

where two consecutive pulses have different central frequencies. 

Results of the extension up to 4 channels are presented in panels (b) 

and (c) of Fig. 2. Regarding the spectral aspects, we do not observe any sign 

of crosstalk between the different channels. Each pulse train exhibit a similar 

spectral waveform that can be fitted by a Gaussian shape with a fwhm width of 



28 GHz. With a time-bandwidth product of 0.48, all our pulse trains are 

extremely close to the theoretical value of Gaussian Fourier-transform limited 

waveforms (0.44). Temporal results summarized on Fig. 1(c) confirm the 

absence of interferences between the various channels that are not affected by 

the presence of neighboring channels. Once again, the delay between the 

different channels can be precisely tuned using the spectral phase shaping 

abilities of the programmable linear shaper. 

We finally present in Fig. 3 the results achieved at a repetition rate of 

40 GHz for four channels spaced by 400 GHz. The conclusions previously 

drawn at 14 GHz can be extended to this repetition rate. Once again, the 

spectra are of high quality as assessed by their high level of symmetry and the 

high optical signal-to-noise ratio (above 65 dB, measured with a resolution of 5 

MHz). They present identical properties and can be adjusted by a Gaussian 

waveform with a fwhm width of 68 GHz. Regarding the temporal aspect, high-

quality pulses are recorded after wavelength demultiplexing on the optical 

sampling oscilloscope. All four channels present similar quality with a Gaussian 

profile and a fwhm duration of 6.7 ps combined with an excellent extinction ratio. 

Note that compared to the generation at 14 GHz, the duty-cycle is restricted to 

3.7 due to the modulation depth Am limited to 1 rad by the optoelectronic 

bandwidth of our temporal phase modulation stage. Once again, a time-

bandwidth product of 0.46 indicates the Fourier-transform limited nature of the 

generation. 

 



4. Conclusions 

In order to conclude, we have extended the approach initially proposed in 8 and 

we have demonstrated the simultaneous processing of several optical carriers. 

As our technics is strictly linear, no sign of crosstalk between the various 

channels has been observed. Experimental results involving a rather simple 

setup demonstrate the generation of four wavelength multiplexed pulse trains 

with identical pulse quality. A higher number of channels can be encompassed 

and the proof-of-principle experiment carried out at telecommunication 

wavelengths of the C-band can be straightforwardly transferred into other 

spectral regions. Repetition rates of 14 GHz and 40 GHz have been 

successfully tested and close to Fourier-transform limited Gaussian pulses 

have been recorded with an excellent extinction ratio, which could be of interest 

in a variety of applications ranging from high-speed real-time sampling to 

optoelectronic testing, WDM parallel processing, optical code division multiple-

access applications, or spectroscopy. As the delay between the different 

channels could be accurately tuned, the pulse trains can be time-interleaved or 

synchronized, resulting in a higher peak power. It also opens possibilities of 

intensity shaping similar to the one demonstrated using the temporal Lau effect 

12. Contrary to nonlinear approaches based on the self-phase modulation 

induced spectral broadening 13 or on high Q-factor resonators 14, our technics 

does not require ultrashort input pulses, a flattened continuum or a CW with a 

finely controlled central wavelength. Note that with our approach, the resulting 

pulse trains are not mutually coherent. Finally, as the principle of operation is 

purely linear, no Erbium doped fiber amplifier is required, thus limiting the 

source of detrimental noise. The versatile reshaping process is here quite 



energy efficient, since the optical losses are restricted to the insertion losses of 

the phase modulator and of the spectral shaper. 

  



Acknowledgements: 

We acknowledge the support of the Institut Universitaire de France (IUF), the 

Bourgogne-Franche Comté Region, the French Investissements d’Avenir 

program and the Agence Nationale de la Recherche (ANR-11-LABX-01-01). 

We thank Julien Fatome and Bertrand Kibler for fruitful discussions. The article 

has benefited from the PICASSO experimental platform of the University of 

Burgundy. 



Figure captions: 
 

 
Fig. 1 Experimental setup. CW: Continuous Wave; PM: Phase Modulator; ESO: 

Electrical Sampling Oscilloscope; OSO: Optical Sampling Oscilloscope; HR 

OSA: High Resolution Optical Spectrum Analyzer. 

 
 
 
 
Fig. 2 Experimental results obtained for a repetition rate of 14 GHz with 

channels spaced by 200 GHz. (a) Temporal intensity profile of a single channel 

(1551 nm) and two channels (1551 and 1549 nm) temporally interleaved and 

simultaneously recorded on a photodiode (blue and purple lines respectively). 

The blue circles represent a fit by a Gaussian waveform. (b) Optical spectrum 

for four channels configurations. Dashed lines are fits by a Gaussian waveform. 

(c) Temporal intensity profiles of the four channels that are time-interleaved. 

Each channel is recorded on the electrical sampling oscilloscope after 

wavelength demultiplexing. 

 
 
 
Fig. 3 Experimental results obtained for the simultaneous processing of four 

channels at a repetition rate of 40 GHz with channels spaced by 400 GHz. (a) 

Optical spectrum. Dashed lines are fits by a Gaussian waveform. (b) Temporal 

intensity profiles of the four channels that are time-interleaved. Each channel is 

recorded on the optical sampling oscilloscope after wavelength demultiplexing. 

The blue circles represent a fit by a Gaussian waveform. 
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Figure 2 
 

 

 

 

 

 

 

 

 

 

 
 



Figure 3 
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