Paul Bui-Quang
email: paul.bui-quang@limsi.fr

Brigitte Grau
email: brigitte.grau@limsi.fr

Patrick Paroubek
email: patrick.paroubek@limsi.fr

AppFM, une plate-forme de gestion de modules de TAL

Keywords: intégration, chaîne d'outils, orchestration de traitements, plate-forme TAL integration, pipeline management, process management, NLP workbench

AppFM 1 est un outil à mi-chemin entre un environnement de création de chaînes modulaires de TAL et un gestionnaire de services systèmes. Il permet l'intégration d'applications ayant des dépendances complexes en des chaînes de traitements réutilisables facilement par le biais de multiples interfaces.

Dans le domaine du traitement automatique des langues les applications prennent souvent la forme de chaînes de processus qui s'appliquent en cascade sur un corpus et produisent des résultats intermédiaires. Ces unités de traitement spécialisées (normalisation, tokenization, analyse syntaxique, etc.) sont utilisées de manière récurrentes pour chaque projet applicatif à l'exception des parties sur lesquelles se focalise le travail de recherche. Il existe déjà des solutions permettant la mise en place de telles chaînes de traitement, par exemple les environnements UIMA (?), GATE (?) ou LingPipe (?). Ces outils, une fois installés, permettent de créer relativement facilement des séquences de traitement. Ils se spécialisent ensuite dans des optiques industrielles ou d'expérimentation. Ces solutions sont néanmoins complexes à prendre en main dans un premier temps et peuvent imposer un modèle contraignant de développement. S'appuyant sur les nouvelles technologies de virtualisation et de programmation par message, AppFM (Application Frame Manager) est un outil qui opère sur un concept de chaîne plus abstrait et plus ouvert. Il tend à fournir des fonctionnalités s'approchant de la plateforme très aboutie LAPPS (?).

La fonction principale de la plate-forme AppFM est d'orchestrer des processus avec des outils récents (docker, zmq) à mi-chemin entre des plate-formes comme Juju (?) et des environnements tels UIMA. L'objectif est de permettre un déploiement facile de modules TAL sous forme de chaîne de traitement typique des applications de ce domaine et ce avec le plus de liberté possible pour le développeur de modules. Les 3 axes qui ont initialement motivé la réalisation d'une nouvelle plate-forme de traitement sont : a) La possibilité d'intégrer tout type d'application indépendamment du langage de programmation et de la complexité des dépendances ; b) La prise en charge de la parallélisation des traitements ; c) La facilité d'utilisation.

Etant donnée la diversité toujours croissante des langages et des librairies, et malgré l'existence de modèles de programmations génériques (framework UIMA, ESB, etc.) le parti a été pris d'utiliser la technologie Docker pour virtualiser l'environnement propre à toute application ce qui permet, de plus, une plus grande fiabilité dans le déploiement et l'exécution des applications.

Nous y avons ajouté la formalisation des applications, i.e. des modules de TAL, sous forme fonctionnelle. Une unité de traitement est représentée comme une fonction ayant un espace de définition. Les entrées et sorties sont explicitement définies selon leurs types basiques (fichier, sortie standard, dossier, etc.) et leur arité. Cette approche, inspirée de la programmation par contrat, permet d'étendre ces types en précisant les formats et schémas de ces entrées et sorties. Cette définition, au format YAML, est complétée par l'explicitation du processus de traitement via une liste de commandes constituée d'opérateurs exécutés séquentiellement. Ces opérateurs permettent de lancer une commande shell (_CMD), de paralléliser une sous séquence de commandes sur une liste d'entrées (_MAP), d'exécuter des sous séquences conditionnées par la valeur d'une variable (_IF) ou d'exécuter un autre module. Ainsi, un module peut être vu à la fois comme une chaîne de traitement ou comme une unité de traitement réutilisable dans un autre module. De plus, des variables globales correspondant au module et à l'exécution en cours permettent une définition complète du processus représenté par un module.

FIGURE 1 -

 1 FIGURE 1 -Interface graphique montrant un module et un résultat d'exécution.

Ce travail a été financé dans le cadre des projets 13 Projestimate et FUI 18 Pulsar