

Combined spatial and retrospective analysis of fluoroalkyl chemicals in fluvial sediments reveal changes in levels and patterns over the last 40 years

Brice Mourier, P. Labadie, Marc Desmet, Cécile Grosbois, Julie Raux, Maxime Debret, Yoann Copard, P. Pardon, H. Budzinski, M. Babut

▶ To cite this version:

Brice Mourier, P. Labadie, Marc Desmet, Cécile Grosbois, Julie Raux, et al.. Combined spatial and retrospective analysis of fluoroalkyl chemicals in fluvial sediments reveal changes in levels and patterns over the last 40 years. Environmental Pollution, 2019, 253 (253), pp.1117-1125. 10.1016/j.envpol.2019.07.079. hal-02282820

HAL Id: hal-02282820 https://hal.science/hal-02282820

Submitted on 16 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 Combined spatial and retrospective analysis of fluoroalkyl chemicals in fluvial

2 sediments reveal changes in levels and patterns over the last 40 years

11

12 13 14 Mourier B.¹, Labadie P.², Desmet M.³, Grosbois C.³, Raux J.³, Debret M.⁴, Copard Y.⁴, Pardon P.², Budzinski H.² and Babut M.⁵

- ¹ Univ Lyon, Université Claude Bernard Lyon 1, ENTPE, CNRS, INRA, USC 1369, UMR5023 LEHNA, F-69518, Vaulx-en-Velin, France
- ² UMR 5805 EPOC, Université de Bordeaux I, 351 crs de la libération, F-33405 Talence
- ³ Université de Tours, EA 6293 GéHCO, Parc de Grandmont, F-37200 Tours
- 15
 ⁴ UMR 6143 M2C, Université de Rouen, Place E. Blondel, Bat. IRESE A, F-76821 Mont St Aignan
 17

⁵ IRSTEA, RIVERLY Research Unit, Lyon-Villeurbanne Center, 5 avenue de la Doua – CS 20244, F-69625 Villeurbanne Cedex

- 21
- _ .
- 22
- 23
- 20
- 24
- 25

26 Research Highlights

- 27 1 Upstream-downstream PFAS concentration gradient in bed sediments in the Rhône River
- 28 2- Reconstruction of temporal trends of PFAS contamination using a sediment core
- 29 3- Evidence of global PFSA background levels
- 30 4- Release of long-chain PFCAs from a point source into the river
- 31 5- Change of PFCA pattern through time likely reflects changes in production processes

33 Abstract

34 Bed sediments and a dated sediment core were collected upstream and downstream from the city of Lyon 35 (France) to assess the spatial and temporal trends of contamination by per- and polyfluoroalkyl substances 36 (PFASs) in this section of the Rhône River. Upstream from Lyon, concentrations of total PFASs (Σ PFASs) in 37 sediments are low (between 0.19 and 2.6 ng g⁻¹ dry weight - dw), being characterized by a high proportion of 38 perfluorooctane sulfonate (PFOS). Downstream from Lyon, and also from a fluoropolymer manufacturing plant, 39 Σ PFASs concentrations reach 48.7 ng g⁻¹ dw. A gradual decrease of concentrations is reported at the coring 40 site further downstream (38 km). Based on a dated sediment core, the temporal evolution of PFASs is 41 reconstructed from 1984 to 2013. Prior to 1987, Σ PFASs concentrations were low (≤ 2 ng g⁻¹ dw), increasing 42 to a maximum of 51 ng a^{-1} dw in the 1990s and then decreasing from 2002 to the present day (~10 ng a^{-1} dw). 43 In terms of the PFAS pattern, the proportion of perfluoroalkyl sulfonic acids (PFSAs) has remained stable since 44 the 1980s (~10%), whereas large variations are reported for carboxylic acids (PFCAs). Long chain- (C>8) 45 PFCAs characterized by an even number of perfluorinated carbons represent about 74% of the total PFAS 46 load until 2005. However, from 2005 to 2013, the relative contribution of long chain- (C>8) PFCAs with an odd 47 number of perfluorinated carbons reaches 80%. Such changes in the PFAS pattern likely highlight a major 48 shift in the industrial production process. This spatial and retrospective study provides valuable insights into 49 the long-term contamination patterns of PFAS chemicals in river basins impacted by both urban and industrial 50 activities.

51

52 Keywords

53 Per- and polyfluoroalkyl substances, Rhône River, bed sediment, sediment core, temporal trend, spatial trend

54

56

55 Capsule

An extended spatial and temporal survey of PFAS chemicals in sediments provided valuable insights into the
 long-term contamination patterns in river basins impacted by both urban and industrial activities.

59 **1. Introduction**

60 Over the past 50 years, per- and polyfluoroalkyl substances (PFASs) have been widely used in the production 61 of fluoropolymer processing additives and surfactants in industrial processes, as well as in fire-fighting foams 62 and many consumer applications (Paul et al., 2009; Prevedouros et al., 2006). Owing to their unique properties 63 and widespread applications, some PFASs are ubiquitously distributed in the aquatic environment (Ahrens, 64 2011; Ahrens and Bundschuh, 2014; Wang et al., 2015) and biota (Giesy and Kannan, 2001; Houde et al., 65 2011; Houde et al., 2006). This raises some concerns about the hazards PFASs might pose to wildlife or 66 human health (Borg et al., 2013; Kannan, 2011; Naile et al., 2010; Peng et al., 2010). For PFASs currently 67 observed in the environment, such as perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA), 68 sources include direct and indirect emissions (Prevedouros et al., 2006) as well as degradation of precursors 69 (Stock et al., 2007; Wang et al., 2009). Sediments are identified as the ultimate sink (Prevedouros et al., 2006) 70 for PFAS having eight carbon atoms or more. Accordingly, many authors have reported the occurrence of 71 PFASs in sediments from marine/coastal systems (e.g. (Loi et al., 2013; Theobald et al., 2011; Thompson et 72 al., 2011), lakes (e.g. (Clara et al., 2009; Guo et al., 2016; Zhou et al., 2012) or rivers (e.g. (Möller et al., 2010; 73 Munoz et al., 2017b; Wang et al., 2013). Sediment cores allowing the assessment of temporal trends have 74 been studied in several contexts, such as Tokyo Bay (Ahrens et al., 2009b; Zushi et al., 2010), or in Chinese 75 urban rivers such as the Guangzhou and Huangpu (Bao et al., 2010) or the Haihe River (Zhao et al., 2014). 76 These studies reported different temporal trends, with a decline of "legacy" PFASs (i.e. PFOS) since the late 77 1990s (Ahrens et al., 2009b) or earlier (Zushi et al., 2010), while other compounds such as 78 perfluoroundecanoate (PFUnDA) are still increasing. There is no consistent trend in Haihe river sediments, 79 although PFOS concentrations are higher at the top of the cores than in deeper layers (Zhao et al., 2014), 80 while cores from Guangzhou and Huangpu rivers both reveal increasing concentrations of PFOS and some 81 perfluorocarboxylic acids (PFCAs) in the upper part of the sediment columns (Bao et al., 2010).

The Rhône is one of the largest rivers in France and represents a critical resource for agriculture and drinking water production. In Southeastern France, a peculiar PFAS molecular profile, dominated by long-chain PFCAs, is observed in fish (Miège et al., 2012) and sediments (Munoz et al., 2015) downstream from Lyon. This pattern is likely explained by an industrial source (Dauchy et al., 2012; Munoz et al., 2015).

86 In this context, the present study aims first to assess the spatial trends in PFAS contamination from surface
 87 sediments collected in the hydrological network around the city of Lyon, in order to identify and rank the current

- 88 PFAS sources in this urban-industrial area. Then, the time trends of PFAS levels and patterns downstream of
- 89 the conurbation are reconstructed though the analysis of a sediment core.
- 90

91 2. Material and methods

92 2.1 Study area

93 The Rhône is one of the major rivers of Europe, with a length of 810 km and a catchment area of 97 800 km² 94 and showing a remarkable climatic and geological diversity (Pekarova et al., 2006; Desmet et al., 2005). The 95 mean daily discharge is 1 030 m³ s⁻¹ (1966 to 2014) downstream from its confluence with the Saône River. 96 Along its course in French territory, the Rhône has been intensively engineered since the end of the 19th 97 century, with numerous embankments, grovnes and 19 dams that have been implemented for purposes of 98 navigation, flood protection or hydroelectric production (Bravard et al., 1999). These widely-developed 99 anthropogenic pressures have profoundly modified the hydrology and geomorphology of the Rhone valley. In 100 addition, the Rhone passes through many urban areas and industrial zones representing localized and 101 potential sources of contamination.

102 The study area was chosen to evaluate the spatial distribution and temporal trends of PFAS-contaminated 103 sediments upstream and downstream of the Lyon metropolitan area (Fig. 1). Sediment collection sites are 104 located in the Rhône valley upstream of the Rhône-Saône confluence, in the Saône River upstream of the 105 confluence and along a longitudinal transect of about 38 km downstream from the Rhône-Saône confluence. 106 This area covers the industrial corridor extending to the south of the city of Lyon, as well as several tributaries: 107 the Ain, Bourbre and Gier. Two potential point sources of PFASs within the studied area (Fig. 1) are 108 represented by the waste water treatment plant (WWTP) at Saint-Fons, which was seriously under-capacity 109 until the beginning of the 2010s, and a fluoropolymer manufacturing plant that has produced various fluorinated 110 polymers including polyvinylidene fluoride (PVDF) since the 1980s (Dauchy et al., 2012).

111

112 2.2 Sampling of surface sediments and flood deposits

Twenty-five samples of surface sediments were collected in July 2013 along an upstream-downstream gradient that takes into account the main Rhône tributaries and industrial areas. Table S-1 reports the geographic coordinates of sampling points as well as some field notes. Fresh flood deposits were taken from the riverbank using a stainless steel scoop, and supplemented by bed sediment sampling using an Eckman grab. Immediately after sampling, the samples were packaged and transported to the laboratory in an ice-

- 118 cooled box. In the laboratory, the samples were stored at -20°C, freeze-dried, sieved to 2 mm with a stainless
- 119 steel mesh, packaged in amber glass vials and stored at room temperature until further analysis.
- 120
- 121 2.3 Sediment core collection and characterization

The coring site is located in a backwater area adjacent to the Rhône River, 38 km downstream from the Saône-Rhône confluence (Fig. 1). Before 1977, the side channel was not connected to the Rhône River due to river infrastructures that were implemented for navigation. After 1977, the construction of the Vaugris dam located a few kilometers downstream raised the water level and, in 1984, removal of the debris dam allowed the connection of this channel with the Rhône at its upstream end. Thus, depending on the period, the water body was connected to the main channel via its upstream and downstream ends, or solely at its downstream end.

128

129 A sediment core was sampled in June 2013 using a Uwitec gravity corer using a 2-m liner with a diameter of 130 63 mm operated from a specially adapted river boat (e.g. quadriraft). By means of an extension rod and 131 weights, the corer is first gently pushed into the sediment, and then hammered until it meets resistance. Once 132 extracted, the core is immediately conditioned in the dark and in an ice-cool box, and brought back to the 133 laboratory the same day. The core was first visually described and then cut up at 3-cm intervals using a clean 134 stainless steel slicer. The identified sandy layers were sampled in their entirety, and then attributed to flood-135 events or reconnection works on the backwater area. The separated samples were homogenized and then 136 stored in polypropylene (PP) tubes. All samples were stored at -20°C, freeze-dried, subsequently sieved to 2 137 mm with a stainless steel mesh, packaged in amber glass vials and stored at room temperature until further 138 analysis.

139 The grain-size distribution of the sediment core was determined with a Mastersizer 3000[®] laser particle size 140 analyzer fitted with a Hydro SM small-volume dispersion unit. Percentage of particle size classes and 141 parameters of grain size distribution were determined for each depth interval according to (Blott and Pye, 142 2001). Rock-Eval 6 pyrolysis was used to determine the Total Organic Content (TOC). This thermal 143 degradation method consists of pyrolysis of a previously crushed sample, in an oven within a temperature 144 range from 200 to 650°C, following by oxidation at 400-750°C of the pyrolysed carbonaceous residue. Each 145 step provides an amount of OC which contributes to the cumulative TOC content of the sample (expressed in 146 wt.%), see (Lafargue et al., 1998).

147 Sediment core samples were analysed for radionuclides at USGS, Menlo Park (CA, USA). Except for the three

- 148 largest sandy layers (bottom of the core), each sample was analysed for ²²⁶Ra, ²¹⁰Pb, and ¹³⁷Cs using gamma 149 spectrometry by counting for at least 24 h. Abrupt changes in grain-size identified in the cores were matched 150 to flood discharges measured at the nearest streamflow-gauging station (Ternay, Fig. S1) or to changes 151 following river-management operations to restore connection with the Rhône.
- 152

153 2.4 Chemicals

154 Certified standard solutions of analytes and internal standards (ISs) were purchased from Wellington 155 Laboratories (via BCP Instruments, Irigny, France). Full details on the respective standard compositions are 156 provided in the SI (section 3). Table S2 presents the list of analysed compounds, and their respective acronyms 157 and ISs. Note that, unless otherwise stated, the PFOS concentrations presented below correspond to the sum 158 of linear and branched isomers.

159

160 2.5 Extraction and Analysis of PFASs

Sediment samples (1 g dry weight, dw) were spiked with ISs and extracted by microwave-assisted extraction with methanol (5 min at 70°C) using a Start E Milestone system (Munoz et al., 2017a). Extracts were filtered through a polyethylene frit (20 µm) and concentrated to 1 mL under a nitrogen stream. Extracts were subsequently cleaned up using SuperClean Envi-Carb cartridges (250 mg, 6cc, Supelco, St Quentin Fallavier, France), the aliguots being taken down to 300 µL and then stored at -20 °C until further analysis.

166 The analysis of PFASs was performed by high-performance liquid chromatography coupled with tandem mass

167 spectrometry (LC-MS/MS) using an electrospray ionization source (for full details, see Munoz et al., 2015).

168

169 2.6 Quality control

PFAS recovery rates were determined using sediment sample aliquots fortified at 2 ng g⁻¹. Actual recovery rates were determined by subtracting the analyte levels found in unspiked samples from the levels experimentally determined in the corresponding spiked samples, and were in the range 65–115 %. Procedural blanks (i.e. 10 mL of MeOH) were analysed for each samples batch (n=5). The most recurring analytes are PFHxA and PFOA, which are systematically detected in procedural blanks (0.15 ± 0.25 and 0.18 ± 0.04 ng, respectively). For these two compounds, the reporting limits are calculated as the standard deviation of blanks multiplied by the $t_{n=1.95}$ student coefficient, where n is the number of blanks (Muir and Sverko, 2006). For

- analytes undetected in blanks, the detection limit is defined as the concentration yielding a signal-to-noise ratio
- 178 of 3 (Table 1). Limits of detection (LDs) are generally around 0.02 0.03 ng g⁻¹ (dw, dry weight).
- 179

180 2.7 Statistics

- 181 We used Pro-UCL 5.0 software (U.S. Environmental Protection Agency) to determine compound distributions
- 182 accounting for left-censored results. A Mann-Whitney test was applied to compare contamination levels
- 183 between groups. The significance threshold was set at 0.05 in all analyses.
- 184

185 3. Results

186 3.1 Spatial trends of bed sediment contamination

The detection rates of the 22 PFASs in bed sediment samples range from 0% for PFHxS and PFHpS, to 84% for MeFOSAA and 96 % for PFOS. Among the PFCAs, the most frequently detected compounds are PFOA (44%), PFNA (64%), PFUnDA and PFDoDA (60% each), and PFTrDA and PFTeDA (36% each). Short-chain PFCAs (i.e. PFBA, PFPeA and PFHxA) were only detected at site R4, just downstream from the fluoropolymer manufacturing plant. Table 1 reports the respective concentration ranges of the most frequently detected compounds. The full dataset of compound concentrations are provided in the SI table.

	6:2 FTSA	PFOA	PFNA	MeFOSAA	PFOS (Linear + Branched)	EtFOSAA	PFUnDA	PFDoDA	PFTrDA	PFTeDA	ΣPFAS
LD	0.02	0.03	0.03	0.01	0.03	0.01	0.06	0.03	0.49	0.076	-
Detection rate	40%	44%	64%	84%	96%	56%	60%	60%	36%	36%	-
1 st quartile	0.02	0.03	0.03	0.02	0.51	0.01	0.06	0.03	0.49	0.076	0.75
median	0.02	0.03	0.18	0.03	0.65	0.01	0.32	0.10	0.49	0.076	1.77
3 rd quartile	0.13	0.15	0.40	0.05	0.80	0.03	0.86	0.24	3.72	0.468	5.73
maximum	1.09	1.05	2.70	1.20	2.10	2.86	5.32	2.30	20.9	4.35	49.3
3 rd quartile maximum	0.13 1.09	0.15 1.05	0.40 2.70	0.05 1.20	0.80 2.10	0.03 2.86	0.86 5.32	0.24 2.30	3.72 20.9	0.468 4.35	5.7 49

¹⁹⁴ 195

- 196
- The molecular profiles in bed sediment sharply changes from upstream to downstream of site R4: for instance,
 detection rates of 6:2 FTSA, PFNA and PFTrDA increase from 0% to 69 %, from 18 % to 100%, and from 0%
- to 61%, respectively. PFOS detection rates are not affected, while MeFOSAA and EtFOSAA show a moderate

Table 1 – Distributions of PFASs (n=25) most frequently detected in bed sediments and flood deposits (ng g⁻¹ dw)

200 variation, with detection rates of 72.7% to 92.3% and 45.5% to 61.5%, respectively. The respective proportions 201 of compounds are quite different between river stretches (Fig. S2). PFOS is predominant in the Saône River 202 sediments (Fig. S2-A), as well as in other tributaries (Fig. S2-B in SI). Some PFCAs, i.e. PFNA, PFUnDA and 203 PFDoDA, are present in moderate proportions in some samples from the tributaries (S2, B1, G1), but not in 204 samples from the Rhône River upstream of site R4, except in one case where the PFCAs, in particular long-205 chain PFCAs (N perfluorinated C atoms ≥ 8), as well as PFDoDA, are predominant downstream from site R4 206 (Fig. S2-D in SI). These compounds represent 99 to 100% of Σ PFCAs at all sites, except at R4, which is the 207 only site where short-chain carboxylates were detected as mentioned above. Meanwhile, as shown on Fig. 1, 208 PFCA concentrations increase significantly from up- to downstream of R4, even when this site is ignored as 209 an outlier. Conversely, the concentrations of PFOS and its precursors remain similar (Mann-Whitney, p-value 210 = 0.95), despite locally higher concentrations at sites R4 and R5 (Fig. S3 in SI). PFCA concentrations tend to 211 decrease gradually downstream from site R4 to site R9, although not linearly. This is probably a consequence 212 of complex hydro-sedimentary processes along the investigated river stretches (Fig. 1, Fig. S4 in SI). In 213 addition, 6:2 FTSA is undetected upstream from site R4 (Fig. S2-C), while it is generally detected in Rhône 214 River bed sediments downstream from this site (concentrations ranging between 0.02 and 1.09 ng q⁻¹ dw), but 215 not in samples from the Gier river: this strongly suggests the existence of a local source close to site R4.

Figure 1 – PFAS contamination of sedimentary deposits (ng g⁻¹ dw) collected in the drainage network of the Lyon area (France). To simplify the data presentation, PFOS precursors and 6:2 FTSA are grouped into perfluoroalkyl acid (PFAA) precursors. Blue segments represent the sum of PFSAs and PFAA precursors; orange segments correspond to the sum of PFCAs. When several samples are available for a given site, we use the arithmetic mean of the respective measurements.

225

226 In a few cases, several kinds of sediment sample (i.e. dry deposits, wet deposits or bed sediments) are 227 available from the same location. These samples provide similar records of Σ PFASs contamination, except at 228 site R5.2, where there is a discrepancy of 5 ng g⁻¹ in Σ PFASs concentrations on a dry weight basis between 229 wet and dry deposits (Fig. S5 in SI).

In summary, this survey shows (i) multiple sources of PFSAs and PFOS precursors along the investigated
river stretches, (ii) a local discharge of both short-chain (PFHxA) and long-chain (PFNA, PFUnDA, PFTrDA)
PFCAs related to a fluoropolymer production platform, as well as (iii) another local discharge of 6:2 FTSA, MeFOSAA and Et-FOSAA, probably from a WWTP.

234

235 3.2 Sediment core

236 3.2.1 Core description and characterization

237 The 140-cm sediment core is characterized in terms of its visual description, grain-size distribution and TOC 238 content. The sediment consists of light-grey sand in the lower part of the core and homogenous brown silt 239 interrupted by event-layers in the upper part. Three sedimentary units are distinguished (Fig. 2). The bottom 240 unit (Unit I) includes three thick sandy intervals at 93-106 cm, 108-119 cm and 134.5-141 cm (D50 of 337, 366 241 and 444 µm, respectively). These deposits have a low TOC content (<0.5%). Between 119 and 134.5 cm, the 242 sediments are uniformly fine-grained with TOC contents close to 1%. An increase of fine particles and TOC 243 content is observed between 86 and 93 cm. Unit II includes silty deposits (D50 of 18.8 ± 4.0 µm) interrupted 244 by 5 layers characterized by their coarser grain size (D50 of $151.5 \pm 87.2 \mu m$). The TOC content is $1.8 \pm 0.2\%$ 245 in the silty deposits, whereas it drops to 0.9 ± 0.8% in coarser layers. The uppermost unit (Unit III) includes 246 silty deposits with grain size decreasing upward. Finally, the TOC content ranges between 1.6 and 2% at the 247 bottom of Unit III and is marked by an increase to almost 3% at the top of the core.

249 3.2.2 Dating

250 The date of deposition of the sediments is estimated on the basis of the ¹³⁷Cs profile and by correlating changes 251 in grain-size distribution in the sediment cores to the timing of flood events as well as major changes at the 252 site (Fig. 2). The radionuclide profile of the core yields a calibrated date at 107 cm (Fig. 2), corresponding to 253 the ¹³⁷Cs fallout resulting from the Chernobyl accident in 1986 (Anspaugh et al., 1988). The sudden change in 254 grain-size distribution in U1, associated with the occurrence of two thick sandy layers, is interpreted as 255 corresponding to debris removal works carried out in 1984 which re-established the connection to the Rhône 256 as already shown by Desmet et al. (2012). This event is consistent with the radionuclide profile. Flood-event 257 deposits are matched to flood discharges measured at the nearest streamflow-gauging station (Ternay, Fig. 258 S1-A). Five major flood events (defined as Q₁₀>4200 m3 s⁻¹) identified in the core are dated in the early 1990s 259 and 2000s (Fig. S1-B). Since November 2002, no major flood has been recorded at the Ternay station. By 260 matching dated flood facies with removal work facies and the ¹³⁷Cs peak, an age-depth model can be 261 calculated, assuming a constant deposition rate between two successive date markers. Prior to 1984, we 262 assume that this site was not directly connected to the Rhône River.

- 264
- 265

270 3.2.3 PFAS concentrations and molecular patterns

Figure 3 shows the temporal trends of PFASs in the sediment core and the full dataset of compound concentrations are provided in the SI. Values are expressed in terms of dry weight as well as on a TOCnormalized basis since Organic Carbon (OC) is a major factor affecting PFAS sorption onto sediments (Higgins and Luthy, 2006 ; Munoz et al., 2015).

275 Five compounds are detected among the sulfonates and PFOS precursors: PFOS, FOSA, MeFOSA, EtFOSA 276 as well as 6:2 FTSA. Their frequency of detection (or detection rate) ranges from 85 to 100 %. The maximum 277 concentration of PFOS and its precursors was attained between 1988 and 2002 (maximum concentration of 278 2.3 ng q⁻¹ dw or 134.3 ng q⁻¹ OC at the end of 1993); a similar trend is observed for 6:2 FTSA, with a maximum 279 concentration of 0.88 ng g⁻¹ dw (or 43.6 ng g⁻¹ OC) in the sediment layer deposited in 1993. In terms of 280 compound profiles, the maximum relative contribution of sulfonates and PFOS precursors is observed before 281 1988, accounting for 10–60% of Σ PFASs. In the 1988–2013 sediment interval, the relative contribution of the 282 same compounds lies in the range 4 - 15%.

283 Ten PFCAs can be detected in the sediment core samples. In sediments deposited before 1988, the detection 284 frequencies range from 0 to 36%, with exceptions for PFPeA (100%), PFDA (82%) and PFDoDA (91%). 285 Nevertheless, the detection rates for all samples are relatively high and range between 75 and 98 %, except 286 for short-chain PFCAs such as PFHxA (30%), PFHpA (58 %) and PFOA (43. In addition, PFOA and PFHpA 287 show a maximum frequency of detection between 1988 and 2003, while PFPeA is detected in 98% of samples 288 in sediment layers deposited over this time interval. The maximum concentration for PFCAs is recorded in 289 1993 for 6 compounds (PFHpA, PFOA, PFNA, PFDA, PFDoDA and PFTeDA), and this sediment interval also 290 coincides with the maximum concentration of Σ PFASs (51.4 ng g⁻¹ dw or 2459 ng g⁻¹ OC). PFHxA, PFUnDA

and PFTrDA reach their maximum levels in the most recent layers (2010s).

292 When considering the three sedimentary units described above, the following conclusions can be drawn:

293 (i) Unit 1 – (< 1988): the average concentration of Σ PFASs is 3.4 ± 4.0 ng g⁻¹ dw and is dominated by 294 carboxylates (PFPeA, PFOA and PFDA) and 6:2 FTSA, while the contribution of PFOS is lower than 8%;

(ii) Unit 2 (1988-2003): the average concentration of Σ PFASs is 20.3 ± 15.1 ng g⁻¹ dw. The PFAS molecular

296 pattern is dominated by long-chain PFCAs, especially compounds with an odd fluorinated carbon number

297 (PFDA, PFDoDA and PFTeDA) which conjointly account for 59 – 85% of ΣPFASs;

298 (iii) Unit 3 (2003-2013): the average concentration of Σ PFASs is 9.8 ± 4.7 ng g⁻¹ dw and is lower than in unit 299 2. The PFAS molecular pattern is still dominated by long-chain PFCAs, but a rapid decrease is observed in

- 300 the relative abundances of long-chain PFCAs with an odd fluorinated carbon number, while long-chain PFCAs
- 301 with an even fluorinated carbon number progressively become predominant (e.g. PFUnDA and PFTrDA
- 302 account for up to 75 % of Σ PFASs in the most recent sediment layers).

304 Figure 3 Temporal evolution of the total concentration of PFASs (A) and OC-normalized

305 concentrations of four PFASs groups (B): sum of PFSAs and PFOS precursors (6:2 FTSA included);

306 sum of short-chain PFCAs; sum of long-chain PFCAs with an even number of perfluorinated carbon

- 307 atoms; sum of long-chain PFCAs with an odd number of perfluorinated carbon atoms.
- 308

309 4. Discussion

310 4.1 PFAS sources

311 In terms of PFAS levels, there is a clear spatial trend between sediments collected upstream and downstream 312 of industrial and urban areas of the city of Lyon. PFOA and PFOS distributions appear similar to those observed 313 in other urban/industrialized regions (e.g. (Bečanová et al., 2016; Myers et al., 2012; Zhao et al., 2014), while 314 long-chain PFCAs (especially PFUnDA, PFDoDA, PFTrDA and PFTeDA) display unusually high levels and 315 relative abundances at site R4 and further downstream, as already noted by Dauchy et al. (2012) and Munoz 316 et al.(2015). 6:2 FTSA is not detected in sediments upstream from site R4, while it is found in most samples 317 collected downstream. Together with other potential precursor degradation products (e.g. MeFOSAA and 318 EtFOSAA), this compound has been frequently identified downstream of WWTPs (Ahrens et al., 2009a) or 319 industrial plant (Dauchy et al., 2017).

320 We therefore conclude that PFASs contamination in the upstream part of the study area results from a complex 321 combination of multiple point and non-point sources. The molecular patterns observed in this area are similar 322 to those previously reported in a wide variety of settings across French fluvial systems (Munoz et al. 2015). In 323 this latter study, PFOS is found to be the prevalent compound, accounting for between 34 and 100% of 324 ΣPFASs. The large increase in concentrations downstream of site R4 indicates substantial inputs of PFASs to 325 the Rhône River via local point sources such as the fluoropolymer manufacturing plant. Another potential 326 sources of 6:2 FTSA and PFOS precursors include the St-Fons WWTP (~10⁶ population equivalents) and the 327 Gier River, a well-documented tributary affected by industrial activities (Poulier et al., 2019) where sediments 328 show one of the highest concentrations reported in this study for bed sediments or deposits (>90th percentile 329 of ΣPFSAs). As regards long-chain PFCAs, the increase in PFNA, PFUnDA and PFTrDA is very probably 330 related to inputs from the fluoropolymer production plant, which is consistent with the results of Dauchy (2012). 331 PFNA was actually used as a processing aid in fluoropolymer synthesis (e.g. polyvinylidene fluoride, PVDF). 332 PFUnDA and PFTrDA likely represent impurities of the ammonium perfluorononanoate (APFN) used for 333 industrial applications (Buck et al., 2011).

334

335 4.2 Influence of deposition patterns on PFAS concentrations in the sediment core

Floods and river-management operations have affected sediment deposition patterns at the sediment core site. Sediments deposited just after the debris dam removal in 1984 are assumed not to represent the same depositional conditions as recorded in more recent intervals. Indeed, sandy and well-sorted intervals in the deepest part of the core contrast with fine-grained and poorly classified sediments deposited in the upper part of the core. Such changes in the connectivity conditions that control deposition processes might also explain 341 some short-term variations in the vertical profile of PFASs. Major flood events occurring in the early 1990s and 342 2000s, result in lower PFAS levels as reflected by increased sand content and a decrease in organic carbon 343 content in some core layers. The relatively low total PFAS concentration measured in the most recent sample 344 (1.4 ng g⁻¹ dw) indicates a possible dilution effect attributed to upstream sediment flushing that occurred in 345 2012, just before coring operations.

346

347 ΣPFAS concentrations appear to decrease in each layer corresponding to a flood event. This is consistent with 348 (Ahrens et al., 2011), who showed a lower sorption capacity for sandy sediment with a low TOC content, 349 whereas higher sorption capacities are found for muddy sediments with higher TOC content. When normalized 350 according to OC content, PFAS concentrations in flood layers converge with the values measured in adjacent 351 layers. Similarly, the apparent increase of PFAS concentrations in the upper part of the core is mainly due to 352 a change in OC content in these layers. However, considering OC-normalized concentrations, there is no 353 significant change in concentrations of ΣPFAS from about 2008 to layers from the top of the core dated at 354 2013 (Kendall's tau test of correlation, p=0.45).

355

4.3 Temporal trend in the sediment core and comparison with sediment cores worldwide

357 Numerous studies have been published during the last decade using sediment cores for assessing the spatial 358 or temporal trends of PFAS contamination (e.g. (Ahrens et al., 2009b; Bao et al., 2009; Codling et al., 2018a; 359 Codling et al., 2018b; Codling et al., 2014; Yeung et al., 2013). These studies differ in several ways, such as 360 objectives, dating methods and range of analysed compounds. Some studies have targeted remote lakes to 361 elucidate PFCA atmospheric pathways to these areas (Benskin et al., 2011), while others have dealt with large 362 water bodies in industrialized regions to better understand PFAS fate and observe the effects of production 363 using changes at a large spatial scale (Myers et al., 2012; Zushi et al., 2010). Several studies have focused 364 on river stretches or lake sections directly influenced by industrial parks (Zhao et al., 2014; Zhou et al., 2013) 365 or cities (Bao et al., 2010). Sediment sample dates were either not determined, or estimated using a range of 366 radionuclides (²¹⁰Pb, ¹³⁷Cs, ²⁴¹Am).

The range of PFASs analysed in these studies varies from a few PFCAs to large sets of compounds including
PFSAs, FTSAs, FOSAs and FOSAAs; only few studies normalize PFAS concentrations to TOC content (Zhou
et al., 2013; Zushi et al., 2010), making it impossible to directly compare contamination levels. It would be
more reasonable, however, to use indicators such as ΣPFASs, ΣPFCAs or ΣPFSAs as trend indicators,

provided the range of analysed compounds is large enough, because they would account for changes in
production processes, e.g. from PFOS to shorter chain PFSAs, and for degradation of precursors into PFCAs
(Benskin et al., 2011) or PFOS (Zushi et al., 2010). ΣPFASs or ΣPFCAs/PFSAs trend patterns as well as the
period of maximum concentration (peak date) could therefore provide information about such changes.

375 In the Rhône River, the increase of Σ PFASs in the 1990s (up to 51.4 ng g⁻¹ dw in 1994), was followed by a 376 decrease in concentrations (to ~10 ng g⁻¹ dw), which have remained stable since the late 2000s. Overall, the 377 molecular profile is largely dominated by long-chain PFCAs. Moreover, a shift is observed from odd to even 378 perfluorinated carbon atom numbers: PFDA and PFDoDA were dominant before 2002, (i.e. mean contributions 379 to ΣPFCAs of 37% and 31%, respectively), while PFUnDA and PFTrDA represent the highest contributions 380 (29 and 45% of ΣPFCAs, respectively) in the post-2005 deposits. This shift is very likely related to changes in 381 the production process at the industrial plant, as already mentioned in similar contexts (Zhou et al., 2013). 382 Such a trend is similar to that in Tokyo Bay cores, where long-chain PFCA concentrations (e.g. PFUnDA and 383 PFTrDA) have been continuing to increase at the top of the cores since 2005 (Ahrens et al., 2009b; Zushi et 384 al., 2010). A similar increase of long-chain PFCA concentrations was also reported in Lake Ontario (Myers et 385 al., 2012) as well as in some other Laurentian Great Lakes (Codling et al., 2018a). Nevertheless, published 386 data on long-chain PFCAs in cores show either increasing trends (Bao et al., 2010; Gao et al., 2014; Yeung 387 et al., 2013; Zhao et al., 2014) or indeterminate trends (Codling et al., 2018a; Codling et al., 2018b).

388 The PFOS trend in the Rhône River core is not obvious, as concentrations vary a great deal over the years, 389 even when normalized to OC. There are nevertheless three distinct periods (Fig. S6): before ca. 1985, PFOS 390 concentrations remain below 15 ng g⁻¹ OC. During the next period (1985-2000), PFOS concentrations range 391 between 20 to 60 ng g⁻¹ OC, whereas OC-normalized concentrations range between 20 and 40 ng g⁻¹ OC in 392 the most recent layers (since the years 2000). After exclusion of the two outliers measured in 1987 and 1999, 393 PFOS concentrations normalized to OC content are significantly (Mann-Whitney, p=0.028) higher during the 394 1985-2000 period compared to the most recent period (with respective means of 35.9 and 25.4 ng g^{-1} OC), 395 indicating a downwards shift after 2002. Similar shifts are also noted in other parts of the world, e.g. Tokyo 396 Bay in Japan (Ahrens et al., 2009b) or Lake Michigan (USA) (Codling et al., 2014), as well as Lake Ontario 397 (Canada) (Myers et al., 2012), owing to the withdrawal of PFOS from industrial applications (Paul et al., 2009), 398 and thus their reduced levels in consumer products (Boulanger et al., 2005). Interestingly, in the 399 abovementioned Lake Ontario study, the suspended sediment from its main tributary, the Niagara River, 400 responded rapidly to the phase-out of PFOS, with a concentration drop in 2000, while PFOS concentrations

401 were still increasing at the top of the sediment cores (middle of the lake) in 2006. Sediment records from 402 riverine systems, such as the Niagara and Rhône rivers, might accordingly track the consequences of 403 contaminant phase-out more rapidly compared with large lakes.

404 **5. Conclusion**

405 The Rhône River upstream and downstream from Lyon is subject to multiple sources of emission of 406 perfluoroalkyl substances, generating a complex pattern of sediment contamination. An extended spatial 407 survey of flood and bed sediments reveals multiple sources of PFSAs and PFOS precursors, as well as local 408 discharges of short-chain (PFHxA) and long-chain (PFNA, PFUnDA and PFTrDA) PFCAs, 6:2 FTSA and 409 FOSAAs. Based on the analysis of a sediment core collected in a secondary channel 38 km downstream from 410 the local discharge, we show that industrial emissions of PFAS became quite significant by the late 1980s, 411 reaching a maximum in the 1990s (maximum recorded Σ PFASs: 51.4 ng g⁻¹ dw in 1994). During this period, 412 PFDA, PFDoDA and PFTeDA provided the main contribution (74%) to Σ PFASs. From ca. 2005 onwards, 413 concentrations decreased to a plateau, but were still influenced by local inputs and activities. The molecular 414 profile of PFCAs in the sediment column shifted from an odd to even number of fluorinated carbon atoms, 415 PFTrDA and PFUnDA representing about 75% of *D*PFASs in sediment core samples after 2005. Such a 416 compositional shift strongly suggests that changes occurred in the production process of the industrial plant. 417 PFASs concentrations measured in this sediment core appear to be amongst the highest recorded in sediment 418 cores worldwide. This spatial and retrospective study provides valuable insights into the long-term 419 contamination patterns of PFAS chemicals in river basins impacted by both urban and industrial activities.

420

421 Acknowledgments

422 This study was funded by the Rhône-Mediterranean and Corsica Water Agency and the Rhône-Alps Region 423 in the context of the Rhône River ecological restoration plan. We thank Raphael Barlon and the team of the 424 "Centre d'Observation de l'Ile du Beurre" (Tupins & Semons, France) for their support in core collection. We 425 also thank Fanny Arnaud for providing us hydrological data from the Ternay gauging station as well as 426 Christopher Fuller and Peter Van Metre (both at USGS) for fruitful discussions. The Aquitaine Region and the 427 European Regional Development Fund are also acknowledged for their financial support (CPER A2E). This 428 study was carried out with financial support from the French National Research Agency (ANR) in the 429 framework of Investments for the future Program, within the Cluster of Excellence COTE (ANR-10-LABX-45). 430 Dr. M.S.N. Carpenter post-edited the English style and grammar.

Author-produced version of the article published in Environmental Pollution, Volume 253, 2019, Pages 1117-1125. doi: 10.1016/j.envpol.2019.07.079

References

Ahrens, L., 2011. Polyfluoroalkyl compounds in the aquatic environment: A review of their occurrence and fate. Journal of Environmental Monitoring 13, 20-31. Ahrens, L., Bundschuh, M., 2014. Fate and effects of poly- and perfluoroalkyl

substances in the aquatic environment: A review. Environmental Toxicology and Chemistry 33, 1921-1929.

Ahrens, L., Felizeter, S., Sturm, R., Xie, Z., Ebinghaus, R., 2009a. Polyfluorinated compounds in waste water treatment plant effluents and surface waters along the River Elbe, Germany. Marine Pollution Bulletin 58, 1326-1333.

Ahrens, L., Yamashita, N., Yeung, L.W.Y., Taniyasu, S., Horii, Y., Lam, P.K.S., Ebinghaus, R., 2009b. Partitioning Behavior of Per- and Polyfluoroalkyl Compounds between Pore Water and Sediment in Two Sediment Cores from Tokyo Bay, Japan. Environmental Science & Technology 43, 6969-6975.

Ahrens, L., Yeung, L.W.Y., Taniyasu, S., Lam, P.K.S., Yamashita, N., 2011. Partitioning of perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS) and perfluorooctane sulfonamide (PFOSA) between water and sediment. Chemosphere 85, 731-737.

Bao, J., Jin, Y., Liu, W., Ran, X., Zhang, Z., 2009. Perfluorinated compounds in sediments from the Daliao River system of northeast China. Chemosphere 77, 652-657.

Bao, J., Liu, W., Liu, L., Jin, Y., Ran, X., Zhang, Z., 2010. Perfluorinated compounds in urban river sediments from Guangzhou and Shanghai of China. Chemosphere 80, 123-130.

Bečanová, J., Komprdová, K., Vrana, B., Klánová, J., 2016. Annual dynamics of perfluorinated compounds in sediment: A case study in the Morava River in Zlín district, Czech Republic. Chemosphere 151, 225-233.

Benskin, J.P., Phillips, V., St.Louis, V.L., Martin, J.W., 2011. Source Elucidation of Perfluorinated Carboxylic Acids in Remote Alpine Lake Sediment Cores. Environmental Science & Technology 45, 7188-7194.

Blott, S.J., Pye, K., 2001. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms 26, 1237-1248.

Borg, D., Lund, B.-O., Lindquist, N.-G., Håkansson, H., 2013. Cumulative health risk assessment of 17 perfluoroalkylated and polyfluoroalkylated substances (PFASs) in the Swedish population. Environment International 59, 112-123.

Boulanger, B., Vargo, J.D., Schnoor, J.L., Hornbuckle, K.C., 2005. Evaluation of perfluorooctane surfactants in a wastewater treatment system and in a commercial surface protection product. Environmental Science and Technology 39, 5524-5530. Clara, M., Gans, O., Weiss, S., Sanz-Escribano, D., Scharf, S., Scheffknecht, C., 2009. Perfluorinated alkylated substances in the aquatic environment: An Austrian case study. Water Research 43, 4760-4768.

Bravard, J.-P., Landon, N., Peiry, J.-L., Piégay, H. 1999.Principles of engineering geomorphology for managing channel erosion and bedload transport, examples from French rivers. Geomorphology 31, 291-311. https://doi.org/10.1016/S0169-555X(99)00091-4

Codling, G., Hosseini, S., Corcoran, M.B., Bonina, S., Lin, T., Li, A., Sturchio, N.C., Rockne, K.J., Ji, K., Peng, H., Giesy, J.P., 2018a. Current and historical concentrations of poly and perfluorinated compounds in sediments of the northern Great Lakes – Superior, Huron, and Michigan. Environmental Pollution 236, 373-381. Codling, G., Sturchio, N.C., Rockne, K.J., Li, A., Peng, H., Tse, T.J., Jones, P.D., Giesy, J.P., 2018b. Spatial and temporal trends in poly- and per-fluorinated compounds in the Laurentian Great Lakes Erie, Ontario and St. Clair. Environmental Pollution 237, 396-405.

Codling, G., Vogt, A., Jones, P.D., Wang, T., Wang, P., Lu, Y.L., Corcoran, M., Bonina, S., Li, A., Sturchio, N.C., Rockne, K.J., Ji, K., Khim, J.S., Naile, J.E., Giesy, J.P., 2014. Historical trends of inorganic and organic fluorine in sediments of Lake Michigan. Chemosphere 114, 203-209.

Dauchy, X., Boiteux, V., Bach, C., Colin, A., Hemard, J., Rosin, C., Munoz, J.-F., 2017. Mass flows and fate of per- and polyfluoroalkyl substances (PFASs) in the wastewater treatment plant of a fluorochemical manufacturing facility. Science of the Total Environment 576, 549-558.

Dauchy, X., Boiteux, V., Rosin, C., Munoz, J.F., 2012. Relationship Between Industrial Discharges and Contamination of Raw Water Resources by Perfluorinated Compounds. Part I: Case Study of a Fluoropolymer Manufacturing Plant. Bulletin of Environmental Contamination and Toxicology 89, 525-530.

Gao, Y., Fu, J., Zeng, L., Li, A., Li, H., Zhu, N., Liu, R., Liu, A., Wang, Y., Jiang, G., 2014. Occurrence and fate of perfluoroalkyl substances in marine sediments from the Chinese Bohai Sea, Yellow Sea, and East China Sea. Environmental Pollution 194, 60-68.

Giesy, J.P., Kannan, K., 2001. Global Distribution of Perfluorooctane Sulfonate in Wildlife. Environmental Science & Technology 35, 1339-1342.

Guo, R., Megson, D., Myers, A.L., Helm, P.A., Marvin, C., Crozier, P., Mabury, S., Bhavsar, S.P., Tomy, G., Simcik, M., McCarry, B., Reiner, E.J., 2016. Application of a comprehensive extraction technique for the determination of poly- and perfluoroalkyl substances (PFASs) in Great Lakes Region sediments. Chemosphere 164, 535-546. Higgins, C.P., Luthy, R.G., 2006. Sorption of perfluorinated surfactants on sediments. Environmental Science and Technology 40, 7251-7256.

Houde, M., De Silva, A.O., Muir, D.C.G., Letcher, R.J., 2011. Monitoring of Perfluorinated Compounds in Aquatic Biota: An Updated Review. Environmental Science & Technology 45, 7962-7973.

Houde, M., Martin, J.W., Letcher, R.J., Solomon, K.R., Muir, D.C.G., 2006. Biological monitoring of polyfluoroalkyl substances: A review. Environmental Science and Technology 40, 3463-3473.

Kannan, K., 2011. Perfluoroalkyl and polyfluoroalkyl substances: Current and future perspectives. Environmental Chemistry 8, 333-338.

Lafargue, E., Marquis, F., Pillot, D., 1998. Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Revue De L Institut Francais Du Petrole 53, 421-437.

Loi, E.I.H., Yeung, L.W.-Y., Mabury, S.A., Lam, P.K.-S., 2013. Detections of commercial fluorosurfactants in Hong Kong marine environment and human blood: A pilot study. Environmental Science & Technology 47, 4677–4685.

Miège, C., Roy, A., Labadie, P., Budzinski, H., Le Bizec, B., Vorkamp, K.,

Tronczynski, J., Persat, H., Coquery, M., Babut, M., 2012. Occurrence of priority and emerging organic substances in fishes from the Rhone river in the area of Lyon. Analytical & Bioanalytical Chemistry 4, 2721-2735.

Möller, A., Ahrens, L., Surm, R., Westerveld, J., van der Wielen, F., Ebinghaus, R., de Voogt, P., 2010. Distribution and sources of polyfluoroalkyl substances (PFAS) in the River Rhine watershed. Environmental Pollution 158, 3243-3250.

Muir, D.C.G., Sverko, E., 2006. Analytical methods for PCBs and organochlorine pesticides in environmental monitoring and surveillance: a critical appraisal. Anal. Bioanal. Chem. 386, 769-789.

Munoz, G., Budzinski, H., Labadie, P., 2017a. Influence of Environmental Factors on the Fate of Legacy and Emerging Per- and Polyfluoroalkyl Substances along the Salinity/Turbidity Gradient of a Macrotidal Estuary. Environmental Science & Technology 51, 12347-12357.

Munoz, G., Giraudel, J.-L., Botta, F., Lestremau, F., Dévier, M.-H., Budzinski, H., Labadie, P., 2015. Spatial distribution and partitioning behavior of selected poly- and perfluoroalkyl substances in freshwater ecosystems: A French nationwide survey. Science of the Total Environment 517, 48-56.

Munoz, G., Labadie, P., Botta, F., Lestremau, F., Lopez, B., Geneste, E., Pardon, P., Dévier, M.H., Budzinski, H., 2017b. Occurrence survey and spatial distribution of perfluoroalkyl and polyfluoroalkyl surfactants in groundwater, surface water, and sediments from tropical environments. Science of the Total Environment 607-608, 243-252.

Myers, A.L., Crozier, P.W., Helm, P.A., Brimacombe, C., Furdui, V.I., Reiner, E.J., Burniston, D., Marvin, C.H., 2012. Fate, distribution, and contrasting temporal trends of perfluoroalkyl substances (PFASs) in Lake Ontario, Canada. Environment International 44, 92-99.

Naile, J.E., Khim, J.S., Wang, T., Chen, C., Luo, W., Kwon, B.-O., Park, J., Koh, C.-H., Jones, P.D., Lu, Y., Giesy, J.P., 2010. Perfluorinated compounds in water, sediment, soil and biota from estuarine and coastal areas of Korea. Environmental Pollution 158, 1237-1244.

Paul, A.G., Jones, K.C., Sweetman, A.J., 2009. A First Global Production, Emission, And Environmental Inventory For Perfluorooctane Sulfonate. Environmental Science & Technology 43, 386-392.

Peng, H., Wei, Q., Wan, Y., Giesy, J.P., Li, L., Hu, J., 2010. Tissue distribution and maternal transfer of poly- and perfluorinated compounds in Chinese sturgeon (Acipenser sinensis): Implications for reproductive risk. Environmental Science and Technology 44, 1868-1874.

Poulier, G., Launay, M., Le Bescond, C., Thollet, F., Coquery, M., Le Coz, J., 2019. Combining flux monitoring and data reconstruction to establish annual budgets of suspended particulate matter, mercury and PCB in the Rhone River from Lake Geneva to the Mediterranean Sea. Science of the Total Environment 658, 457-473. Prevedouros, K., Cousins, I.T., Buck, R.C., Korzeniowski, S.H., 2006. Sources, fate and transport of perfluorocarboxylates. Environmental Science and Technology 40, 32-44.

Stock, N.L., Furdui, V.I., Muir, D.C.G., Mabury, S.A., 2007. Perfluoroalkyl contaminants in the Canadian arctic: Evidence of atmospheric transport and local contamination. Environmental Science and Technology 41, 3529-3536.

Theobald, N., Caliebe, C., Gerwinski, W., Hühnerfuss, H., Lepom, P., 2011.

Occurrence of perfluorinated organic acids in the North and Baltic seas. Part 1:

distribution in sea water. Environmental Science and Pollution Research, 1-13. Thompson, J., Roach, A., Eaglesham, G., Bartkow, M.E., Edge, K., Mueller, J.F., 2011. Perfluorinated alkyl acids in water, sediment and wildlife from Sydney Harbour and surroundings. Marine Pollution Bulletin 62, 2869-2875.

Wang, B., Cao, M., Zhu, H., Chen, J., Wang, L., Liu, G., Gu, X., Lu, X., 2013. Distribution of perfluorinated compounds in surface water from Hanjiang River in Wuhan, China. Chemosphere. Wang, T., Wang, P., Meng, J., Liu, S., Lu, Y., Khim, J.S., Giesy, J.P., 2015. A review of sources, multimedia distribution and health risks of perfluoroalkyl acids (PFAAs) in China. Chemosphere 129, 87-99.

Wang, Y., Arsenault, G., Riddell, N., McCrindle, R., McAlees, A., Martin, J.W., 2009. Perfluorooctane Sulfonate (PFOS) Precursors Can Be Metabolized

Enantioselectively: Principle for a New PFOS Source Tracking Tool. Environmental Science & Technology 43, 8283-8289.

Yeung, L.W.Y., De Silva, A.O., Loi, E.I.H., Marvin, C.H., Taniyasu, S., Yamashita, N., Mabury, S.A., Muir, D.C.G., Lam, P.K.S., 2013. Perfluoroalkyl substances and extractable organic fluorine in surface sediments and cores from Lake Ontario. Environment International 59, 389-397.

Zhao, X., Xia, X., Zhang, S., Wu, Q., Wang, X., 2014. Spatial and vertical variations of perfluoroalkyl substances in sediments of the Haihe River, China. Journal of Environmental Sciences 26, 1557-1566.

Zhou, Z., Liang, Y., Shi, Y., Xu, L., Cai, Y., 2013. Occurrence and Transport of Perfluoroalkyl Acids (PFAAs), Including Short-Chain PFAAs in Tangxun Lake, China. Environmental Science & Technology 47, 9249–9257.

Zhou, Z., Shi, Y., Li, W., Xu, L., Cai, Y., 2012. Perfluorinated Compounds in Surface Water and Organisms from Baiyangdian Lake in North China: Source Profiles, Bioaccumulation and Potential Risk. Bulletin of Environmental Contamination and Toxicology 89, 519-524.

Zushi, Y., Tamada, M., Kanai, Y., Masunaga, S., 2010. Time trends of perfluorinated compounds from the sediment core of Tokyo Bay, Japan (1950s-2004). Environmental Pollution 158, 756-763.