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Abstract 

The present work examined the trophic transfer of perfluoroalkyl and polyfluoroalkyl substances 

(PFASs) in a typical urban river (Orge River, near Paris, France), and aimed to investigate the potential 

contribution of precursors to the biomagnification of perfluoroalkyl acids (PFAAs). Sixteen PFAAs, 

twelve of their precursors (pre-PFAAstargeted) and two fluorinated alternatives to long-chain PFASs were 

analyzed in water, sediments and biota (including biofilm, invertebrates and fish). Twenty two 

compounds were detected in biological samples (2.0–147 ng g-1 wet weight), perfluorooctane 

sulfonate (PFOS) and C12–C14 perfluoroalkyl carboxylates (PFCAs) being predominant while ∑pre-

PFAAstargeted contributed to 1–18% of ∑PFASs. Trophic magnification factors (TMFs) were > 1 (i.e. 

denoting biomagnification) for C9–C14 PFCAs, C7–C10 perfluoroalkyl sulfonates (PFSAs) and several pre-

PFAAs (e.g. 8:2 and 10:2 fluorotelomer sulfonates). The significant decrease in ∑pre-PFCAs/∑PFCAs 

concentration ratio with trophic level suggested a likely contribution of selected precursors to the 

biomagnification of PFCAs through biotransformation, while this was less obvious for PFOS. The Total 

Oxidizable Precursor assay, applied for the first time to sediment and biota, revealed the presence of 

substantial proportions of extractable unknown pre-PFAAs in all samples (i.e. 15–80% of ∑PFASs upon 

oxidation). This proportion significantly decreased from sediments to invertebrates and fish, thereby 

pointing to the biotransformation of unattributed pre-PFAAs in the trophic web, which likely 

contributes to the biomagnification of some PFAAs (i.e. C9–C12 PFCAs and C7–C10 PFSAs). 
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1. Introduction 

Perfluoroalkyl carboxylates (PFCAs) and sulfonates (PFSAs) are of major environmental concern 

because of their ubiquitous occurrence, persistence and toxicity 1. These chemicals, used as additives 

and surfactants in a large number of industrial applications and manufactured products, can be 

introduced into the environment following their production, their use and their disposal, either directly 

or indirectly via the degradation of precursors 2. Their worldwide presence in aquatic wildlife was 

reported since the early 2000s 3,4. and long-chain perfluoroalkyl acids (PFAAs) (i.e. PFCAs with carbon 

number nC > 8 and PFSAs with nC > 6) are recognized as bioaccumulative substances 4.  

Exposure to PFASs can occur via direct and dietary uptake. High PFAS levels reported in aquatic 

mammals from remote areas suggest the major role of the trophic pathway 3. Biomagnification factors 

(BMFs) and trophic magnification factors (TMFs) are field-based metrics relevant to assess the 

biomagnification potential of a contaminant 5. BMFs and TMFs > 1 have been consistently reported for 

PFOS and long-chain PFCAs in marine, lake or estuarine food webs, providing evidence for their 

biomagnification 6–11. However, data showed a considerable study-to-study variability that may be 

explained by factors such as sampling design, taxa and ecosystem properties, statistical data 

processing and, possibly, the biotransformation of precursors 12. 

Numerous PFASs are less persistent than PFCAs or PFSAs and may be converted into PFAAs in the 

environment. Identified PFAA precursors (pre-PFAAs) include for instance (alkyl-)perfluoroalkyl 

sulfonamides ((alkyl-)FASAs) 13–15, (alkyl-) perfluoroalkyl sulfonamidoacetic acids ((alkyl-)FASAAs) 2 or 

polyfluoroalkyl phosphoric acid diesters (diPAPs) 16. Gebbink et al., 17 proposed that precursors could 

play a significant role in the biomagnification of PFCAs in fish from the Baltic Sea and species-specific 

biotransformation of pre-PFAAs was suggested in fish from the Rhône River 18. Additional pre-PFAAs 

including fluorotelomer sulfonates (FTSAs) previously detected in aquatic ecosystems 19,20, could also 

contribute to the biomagnification of PFAAs, since their biotransformation can lead to the production 

of PFCA homologues 21–23. However, like that of diPAPs, their trophic transfer in aquatic ecosystems 
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has been little investigated so far. Such pre-PFAAs may originate from numerous sources and urban 

rivers are considered as a major receptacle for these chemicals 24. 

The present study addressed the trophodynamics of PFASs in an urban river and it specifically focused 

on the potential contribution of a wide range of pre-PFAAs to the biomagnification of PFAAs. Water, 

sediment, and biota samples (including biofilm, invertebrates and fish) were collected in the Orge River 

(France), previously identified as a hotspot of PFAS contamination at French nationwide level 25. Thirty 

PFASs were analyzed including PFCAs, PFSAs and numerous pre-PFAAs such as FTSAs, (alkyl-)FASAs, 

(alkyl-)FASAAs and diPAPs. The levels of two per- and polyfluoroalkyl ethers (PFPEs), HFPO-DA (namely 

GenX) and ADONA, were also determined to provide additional knowledge on the presence and 

behavior of these emerging PFASs used as alternative to long-chain PFAAs 26. In addition, the 

occurrence of unknown pre-PFAAs was indirectly estimated using the Total Oxidisable Precursor (TOP) 

assay, originally developed to convert pre-PFAAs into PFCAs in urban runoff samples 27. This approach 

proved relevant to demonstrate the presence of unknown pre-PFAAs in wastewater, ground water and 

soils samples 27–31. In the present work, the TOP assay was applied for the first time to biota and 

sediment samples to test the hypothesis that unknown pre-PFAAs contribute to the biomagnification 

of PFASs, which was estimated through the calculation of field-metrics such as BMFs and TMFs. 

2. Materials and methods 

2.1. Sampling 

Sampling was performed in September 2016, along a 500 m-transect on the Orge River at Viry-

Châtillon, a few kilometers upstream of the confluence with the Seine River (48°40’23’’N; 2°21’30’’E) 

(Figure S1 of the Electronic Supporting information (ESI)). This medium-sized river (mean flow rate ≈ 5 

m3.s-1) receives both sewage discharge and urban runoff 32.  
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Samples (n=29, Table S1)) of eight fish species were collected by electrofishing: barbel Barbus barbus, 

European bullhead Cottus gobio, roach Rutilus rutilus, gudgeon Gobio gobio, common perch Perca 

fluviatilis, Pumpkinseed Leopmis gibbosus, bullhead catfish Ameiurus melas and tench Tinca tinca. 

Such sampling strategy allowed the collection of species with supposedly contrasted feeding behavior 

(i.e. benthic vs bentho-pelagic, omnivorous vs carnivorous…). The permit for the capture of fish for 

scientific purposes was delivered by local authorities (Departmental Direction of Territories). Fish were 

identified, anesthetized (tricaine methanesulfonate, 1 g L-1 in river water), euthanized on the field and 

transferred into aluminium trays kept at 4°C. Once in the laboratory, they were measured, weighted 

and stored at -20 °C; the smallest individuals of each taxa were pooled (Table S1) while the others were 

processed individually.  

Invertebrates were collected with a surber net and both poor diversity and population density were 

observed. Therefore, only four taxa could be collected and composite samples were obtained as 

follows: lymneae (n=3), gammaridae (n=3), notonectidae (n=1) and corbiculidae (n=1). Two samples of 

the macrophyte Ranunculus pseudofluitans, two periphytic biofilm samples and two leaf litter samples 

were also collected. Overall, 43 biological samples representative of the whole trophic web were 

collected, a number that is reasonable for TMF assessment 5. 

In addition, three composite surface sediment samples (0–2cm) were taken along a 100 m-transect 

(Figure S1) with a stainless steel spoon. All samples were transported in aluminum trays kept at 4°C in 

the field, then stored at -20°C. Surface water was collected in a 1L-HDPE bottle (n=1); an aliquot was 

filtered on GF/F filters to determine the suspended matter content (15.7 mg L-1).  

2.2. Compounds and reagents 

Thirty PFASs were analyzed: eleven PFCAs (C4–C14), five PFSAs (C4, C6–C8 and C10), four FTSAs (4:2, 6:2, 

8:2 and 10:2 FTSA), three (alkyl-)FASAs (FOSA, MeFOSA, EtFOSA), three (alkyl-)FASAAs (FOSAA, 

MeFOSAA, EtFOSAA), two diPAPs (6:2 and 8:2 diPAP) and two per- and polyfluoroalkyl ethers PFPEs 
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(ADONA and HFPO-DA) (see Table S2 for details, including internal standards (ISs)). Standard solutions 

(chemical purity > 98%) were acquired from Wellington Laboratories (via BCP Instruments, Irigny, 

France). A full list of chemicals and solvents is provided in the ESI.  

2.3. Sample preparation, extraction and analysis 

Biota samples were freeze-dried, ground and homogenized prior to analysis. Sediments were also 

freeze-dried, sieved at 2 mm and homogenized.  

Biota samples were processed using a previously published method 11: microwave-assisted extraction 

was performed on 0.2 g-samples (dry weight, dw) with 12 mL of MeOH + 0.2% NH4OH and followed by 

Strata X-AW/graphitized carbon clean-up. Sediment samples were processed similarly but clean-up 

was performed using graphite only. Unfiltered water samples (100 mL) were concentrated using solid 

phase extraction on Strata X-AW cartridges 19. Extracts were evaporated to 300 µL under a nitrogen 

stream and stored at -20°C prior to analysis. ISs (1 ng each) were added at the beginning of the 

extraction procedure in samples, procedural blanks and spiked control samples.  

PFAS analysis was carried out by liquid chromatography coupled with tandem mass spectrometry using 

a 1200 LC system and a 6490 triple quadrupole mass spectrometer from Agilent Technologies (Massy, 

France); the electrospray ionization source was operated in negative mode 11. Further details are 

provided in the ESI. Note that sum-branched (Br-PFOS) and linear PFOS (L-PFOS) were quantified 

separately using the calibration curve of L-PFOS. 

 

2.4. Total Oxidizable Precursor (TOP) assay 

The principle of the TOP assay has previously been published 31. Briefly, extracts are exposed to 

hydroxyl radicals generated by the thermolysis of persulfate under basic pH conditions, to promote 

the conversion of pre-PFAAs into PFCAs of similar or shorter perfluoroalkyl chain length.  
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The TOP assay was applied to sediment and water samples; due to sample availability, a limited set of 

selected biota samples (n = 15) were also treated with this method. For water samples, the oxidation 

procedure was adapted from Houtz and Sedlak 27: samples were amended with persulfate (60 mM) 

and NaOH (150 mM) and incubated at 85°C for 6 h. To prevent their oxidation, ISs (4 ng each) were 

added after sample cooling and pH neutralization with HCl (3 M); samples were subsequently extracted 

as described in the previous section. The biota and sediment extract oxidation procedure was adapted 

from Houtz et al. 28. After microwave extraction (MeOH + 0.2 %NH4OH) and graphite clean-up, extracts 

were concentrated to 100 µL, transferred into 125 mL-HDPE bottles and evaporated to dryness. Then, 

100 mL of ultra-pure water containing 60 mM of persulfate and 150 mM of NaOH were added to each 

bottle; sonication (20 min) was performed to promote the dissolution of PFASs. Samples were then 

processed as described above for water samples.  

The sum of pre-PFAAs targeted in this study (i.e. FTSAs, (alkyl-)FASAs, (alkyl-)FASAAs and diPAPs) was 

thereafter termed ∑pre-PFAAstargeted. TOP assay data were used to calculate the increase of ∑PFCAs 

after oxidation (noted thereafter ΔPFCAs, expressed on a molar basis), which allowed to estimate the 

total extractable amount of pre-PFAAs (∑pre-PFAAstotal) in each sample (see ESI for calculation details). 

Based on these results, the fraction of unidentified precursors (∑pre-PFAAsunknown) could be determined 

for each sample treated with the TOP assay, i.e. ∑pre-PFAAsunknown = ∑pre-PFAAstotal - ∑pre-PFAAstargeted. 

 

2.5. Stable isotope analysis 

The isotopic composition of biota samples (C and N) was evaluated on defatted samples 33 while 

carbonates were removed from sediments with diluted HCl. Analysis was performed on 0.2 (± 0.1) mg 

of matrix using a ThermoFinnigan Delta V EA-IRMS with a Conflo IV interface. Carbon and nitrogen 

isotope compositions were expressed as per mil (‰) in the δ notation relative to Vienna PeeDee 

Belemnite (vPDB) and atmospheric N2, respectively. The reproducibility (i.e. the relative standard 
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deviation of triplicate analyses performed on selected samples), was less than 5%. Trueness was 

determined using reference materials: IAEA-N2 (δ15N = 20.3 ‰ ± 0.2 ‰) and USG-24 (δ13C = -16.1 ± 

0.2 ‰). Experimental results were in good agreement with certified values and averaged 20.59 ± 

0.07 ‰ (n = 15) and -15.82 ± 0.26 ‰ (n = 28) for IAEA-N2 and USG-24, respectively. 

 

2.6. QA/QC 

C4–C12 PFCAs, PFOS and diPAPs were frequently detected at trace level in procedural blanks (Table S4). 

Blank correction was performed when applicable and the Limit of Detection (LOD) was determined as 

the standard deviation of the blanks multiplied by the tn‑1,95 Student coefficient 19. For analytes not 

detected in the blanks, LODs were determined as the concentration yielding a signal to noise ratio of 

3. Overall, LODs in water, sediments and biota were in the range 0.003–0.34 ng L-1, 0.014–0.35 ng g-1 

dw and 0.005–0.21 ng g-1 wet weight (ww), respectively (Table S5).  

Regarding the targeted analysis, reproducibility was lower than 10% except for 8:2 diPAP in water 

samples (28%). For this compound, qualitative water concentration data are given, for information 

only. Accuracy ranged between 80 and 120% except for PFHpS (128–138%), 10:2 FTSA (52–79%), 

EtFOSAA (111–123%) and 8:2 diPAP (132–139%); the concentration of these four analytes in samples 

were corrected according to their mean accuracy value (Table S6). Method trueness was controlled 

through the analysis of NIST SRM 1947 reference samples (Lake Michigan Trout Tissue, n = 4) (Table 

S7) and PFAS concentrations were in good agreement with previous reports 34.  

Full details on the TOP assay validation are given in the “QA/QC” and “TOP assay” sections of the ESI 

(e.g. extraction efficiencies, conversion rates, oxidation product patterns…). Overall, acceptable 

analyte recovery rates were achieved (Table S6) and the complete conversion of pre-PFAAstargeted was 

observed for all sample extracts.    
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2.7. Statistical analysis and TMF/BMF calculation 

Since data were not normally distributed, statistical differences between two or several groups were 

conducted using either the Mann-Whitney or the Kruskal-Wallis tests, using the “R commander” 

package for R statistical software (R version 3.3.3, R core team 2017). The Spearman’s rank correlation 

coefficient was used to investigate correlation between variables. The difference in PFCA 

concentrations before and after oxidation were conducted using the paired samples Wilcoxon Test. 

For all tests, significance was set at p ≤ 0.05. Hierarchical clustering based on Ward’s minimum variance 

classification and Euclidian distance methods was performed using RcmdrPlugin.FactoMiner (function 

hclust) to identify pattern similarity of PFCAs formed upon oxidation among samples. 

Trophic levels (TLs) were determined according to equation 1 where 2 corresponds to the TL of the 

organism selected as baseline (corbiculidae = primary consumer), δ15Nconsumer and δ15NBL are the δ15N 

of the consumer and the baseline, respectively, and 3.4 (‰) is the mean trophic enrichment 35.  

𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 2 + (𝛿𝛿15𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −  𝛿𝛿15𝑁𝑁𝐵𝐵𝐵𝐵)/ 3.4 (1) 

The biomagnification of PFASs was assessed using two metrics: BMFTL (i.e. TL-normalized BMF) and 

TMF. BMFTL was calculated using equation 2 where Cpredator and Cprey are the PFAS concentrations (ng g-1 

ww whole body) in the predator and in its prey, and TLpredator and TLprey their trophic level, respectively 

5. 

𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵 =  10
�
𝐿𝐿𝐿𝐿𝐿𝐿10�𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿𝑝𝑝/𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�

𝑇𝑇𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿𝑝𝑝−𝑇𝑇𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
�
  (2) 

Predator-prey relations were determined using δ15N and δ13C, as well as the existing knowledge about 

fish trophic ecology 36.  

TMFs were obtained using the slope of the linear regression between the concentration (log- 

transformed, ng g-1 ww) and TL (equation 3 and 4), using the function lmec (linear mixed-effects models 
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with censored data) from the LMEC R package 11. The TMF calculation was performed only for 

compounds with a detection frequency > 40% 37. 

𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿 = ~𝑇𝑇𝑇𝑇 + 1|𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   (3) 

𝑇𝑇𝐵𝐵𝐵𝐵 =  10𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐    (4) 

 

3. Results and discussion 

3.1. PFAS concentrations and composition profiles 

Among the 30 analyzed PFASs, 4:2 FTSA, MeFOSA, EtFOSA, 8:2 diPAP, HFPO-DA and ADONA were never 

detected. The detection frequency and the mean concentrations of the other PFASs are provided in 

the ESI (Tables S9–S11), while ∑PFASs and molecular patterns are illustrated by Figure 1. 

A single water sample was analyzed to indicate an order of magnitude of PFAS concentrations in this 

compartment. 13 PFASs were detected and ∑PFASs was 101.4 ng L-1. The predominant compound was 

PFOS followed by C4–C8 PFCAs and PFHxS, which individual concentrations ranged between 4.9 and 

28.8 ng L-1. Long-chain PFCAs (C11–C14), PFDS, 8:2 FTSA, 10:2 FTSA and alkyl-FASAs were not detected. 

Among pre-PFAAstargeted, only 6:2 FTSA and FOSA were found at respective concentrations of 8.0 and 

0.21 ng L-1.  

In sediments (n = 3), 12 PFASs were detected and ∑PFASs was variable (2.3 ± 2.3 ng g-1). Short-chain 

PFAAs (e.g., PFBA and PFBS) were not found, likely because of their low sediment-water partitioning 

coefficient (KD) 25. PFDoDA, PFOS and PFTeDA dominated the molecular pattern with mean 

concentrations of 0.72, 0.53 and 0.47 ng g-1, respectively. Among pre-PFAAstargeted, 10:2 FTSA, 6:2 diPAP 

and EtFOSAA in sediments were either not detected or found at levels close to the LOD. Overall, 

∑pre-PFAAstargeted represented less than 8% of ∑PFASs in both abiotic compartments. Note that the 
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reported PFAA concentrations and patterns are consistent with those previously observed at this site 25 

and exceed the average value determined at French nationwide scale for both water and sediments 

19. 

In biota samples, the detection frequency of C11–C14 PFCAs, PFOS and 10:2 FTSA was 100%, while C8–

C10 PFCAs, PFDS, 8:2 FTSA, FOSA, MeFOSAA and EtFOSAA were detected in more than 80% of samples. 

Short-chain PFAAs were not found since they are quickly excreted and, consequently, poorly 

bioaccumulated 38. The average ∑PFASs ranged between 59.5 and 147 ng g-1 ww in fish with an inter-

individual variability lower than 30% within the same species (Figure 1A). These levels are, for instance, 

of the same order of magnitude than previously published values for whole fish (including juveniles 

and adults) from other sites in France (Rhône River and Gironde estuary) 11,18 or in the United States 

(Ohio, Missouri and Upper Mississippi Rivers) 39.  

Total PFAS levels were significantly different between fish species: bullhead and common perch had 

higher ∑PFAS levels than catfish, tench and gudgeon while roach was more contaminated than catfish 

and tench. Except for PFDS, significant differences between taxa were also found for the most 

frequently detected PFASs when considered individually. Such differences might be partly explained 

by the dietary behavior of these taxa. Overall, piscivorous fish generally present higher ∑PFASs than 

omnivorous and herbivorous species 40. Bullhead and common perch may feed on fish juveniles 36. The 

isotopic carbon signature is usually used to identify the feeding behavior since δ13C values are not 

impacted by trophic enrichment 35. Bullhead and common perch exhibited the narrowest range of δ13C 

values (-26.2 – -25.5 ‰ and -26.7 – -26.0 ‰, respectively) (Figure S4). Tench and catfish seemed to 

have a different and more varied diet, showing slightly more negative and higher amplitude of δ13C 

values (-27.1 – -26.1 ‰ and -27.8 – -26.8 ‰, respectively). The widest range of δ13C values was 

observed for roach (-27.9 – -26.1 ‰), a known omnivorous species. The mean δ13C of fish ranged from 

-27.9 to -25.5 ‰ and was framed by those of invertebrates that varied between -30.2 ‰ 
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(Notonectidae) and -24.4 ‰ (Corbiculidae), suggesting that carbon sources exploited by fishes were 

appropriately taken into account. 

Notonectidae were the most contaminated invertebrate taxon with ∑PFASs (84.6 ng g-1 ww) 

comparable to that of gudgeons and pumpkinseed, whereas corbiculidae presented the lowest levels 

(4.0 ng g-1 ww) similar to those observed in biofilm (2.9–3.2 ng g-1 ww), macrophyte (4.8–5.1 ng g-1 ww) 

and leaf litter (2.0–3.0 ng g-1 ww). Notonectidae are mainly insectivorous and they are expected to feed 

essentially on insect larvae whereas corbiculidae are filter feeders; in addition, notonectidae are air 

breather insects, which may favor PFAS bioaccumulation 8. These results are still to be confirmed with 

a larger sample set. The mean ∑PFASs in gammarids was 47.0 ± 2.5 ng g-1 ww, about 7 times lower than 

in the Rhône River 18 and about 5 times higher than in the Gironde Estuary 11. 

The dominant compounds in biota were PFOS, PFDoDA and PFTeDA which, on average, contributed to 

31%, 28% and 16% of ∑PFASs, respectively (Figure 1b). Labadie and Chevreuil (2011) reported a larger 

predominance of PFOS (76% in average) in tissues of European chub Squalius cephalus collected at the 

same site in 2010 25. In this study, the highest PFOS relative abundance was found in pumpkinseed 

(47%) common perch (43%), barbel (43%) and tench (42%). PFDoDA was dominant in lymnaeidae 

(42%), gammarids (37%), catfish (33%) and gudgeon (31%) whereas PFTeDA dominated the PFAS 

composition in corbiculidae (49%). The largest proportion of ∑C4–C8 PFCAs (3–7%) were found in 

gammarids, corbiculidae, biofilm and macrophyte, in agreement with previous results 10. Physiological 

characteristics, biotransformation capacities, life traits and feeding behavior might result in different 

exposure routes to PFAAs and their precursors, thereby possibly explaining these differences. 

As for the abiotic compartment, ∑pre-PFAAstargeted represented on average less than 5% of ∑PFASs in 

biota. The highest relative abundances were found in corbiculidae (18%), biofilm (13–17%) and 

lymnaeidae (9–12%). 10:2 FTSA was the dominant precursor in all biota samples (except notonectidae) 

with concentrations ranging from 0.16 ng g-1 ww (macrophyte) to 3.2 ng g-1 ww (barbel). To our 

knowledge, its presence in aquatic organisms has never been reported before. Other recurring 
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precursors were FOSA, 6:2 FTSA and 8:2 FTSA (Tables S10 and S11). The presence of 6:2 diPAP was also 

reported in 59% of biota samples but this compound was systematically detected at low levels (< LOQ). 

 

3.2. Biomagnification of PFAAS: BMFTL and TMF 

The combined use of C and N stable isotopes allowed for the determination of the trophic web 

structure (Figure S4). Biofilm (TL = 1.1) and macrophyte (TL= 1.2) were found at the lowest trophic 

positions, followed by corbiculidae (TL = 2.0), gammarids (TL = 2.0) and lymnaeidae (TL = 2.2). Fish TLs 

ranged between 2.8 and 3.4 with barbel and catfish at the top of the food web.  

BMFTL were calculated for a total of 9 well-established predator-prey pairs 36; data ranges are shown 

in Table 1 while detailed values for each predator-prey pair are provided in Table S12. BMFTL 

systematically > 1 were estimated for C11–C14 PFCAs, PFOS, PFDS and 10:2 FTSA. As regards PFAAs, 

these results are consistent with previous reports 7,11,18 while these are the first BMFTL values reported 

for 10:2 FTSA. High variability of BMFTL was found for several compounds, including PFOS, PFTrDA or 

PFTeDA, depending on prey-predator pairs. For PFOS (BMFTL=2–169), the highest value was observed 

for the roach–lymnaeidae pair while the lowest one was calculated for the catfish–gammarid pair. This 

is partly due to the fact that such invertebrates with close TLs may exhibit contrasted contamination 

levels, as a result of different feeding behavior or differences in the ability to biotransform and 

eliminate chemicals 41.  

Considering the variability of BMFTL observed for several PFAAs, the use of TMF appeared more  

relevant, since it is a more integrative and holistic metrics that reflects the mean behavior of a chemical 

in a food web comprising complex trophic relations 5. TMFs ranged from 0.2 to 5.5 (Table 1; slope and 

intercept values of the regression lines given in Table S13). As indicated by TMF >1, C9–C14 PFCAs, 

PFHpS, PFOS, PFDS, 8:2 FTSA, 10:2 FTSA, FOSA, MeFOSAA, EtFOSAA appeared to biomagnify  in this 

trophic web, contrary to shorter chain-PFCAs, e.g. 6:2 FTSA or PFOA. The highest TMFs were 
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determined for PFDS and 10:2 FTSA and a significant increase of TMF with chain length was observed 

for PFCAs (C9–C14) (Spearman test: p-value = 0.004, rho = 0.90). For the latter compounds, such a trend 

has already been reported in lake and marsh ecosystems 6–9, whereas decreasing TMF with increasing 

chain length was reported in an estuarine benthic food web 11. These differences further suggest that 

the chemical structure and, hence, the chemical properties of PFASs are not the only determinant of 

biomagnification and that ecosystem characteristics, contamination pattern and exposure routes likely 

contribute to the TMF variability. 

TMFPFOS (1.5 ± 0.1) was comparable to that reported for a subtropical marsh food web in Hong-Kong 9, 

the estuarine trophic web from the Gironde in France 11 or the marine bottlenose dolphin food web 

from Charleston Harbor (based on estimated whole body burden) 7. The TMFs of long-chain PFCAs 

were also in the range of values previously reported for marine and freshwater ecosystems 7–10. 

Pre-PFAAs were seldom investigated in previous works, with the notable exception of FOSA. In 

agreement with our results, several studies reported TMFFOSA> 1 7,8,11,42 whereas TMFFOSA < 1 was 

reported for a lake Ontario foodweb 6. MeFOSAA was not biomagnified in the Gironde estuary (TMF = 

0.18) 11, unlike in the present work; this suggests that the oxidation of MeFOSAA precursors may occur 

in the trophic web of the Orge river (see section 3.3). To our knowledge, the trophic magnification of 

FTSAs and diPAPs has never been studied before. In the Orge river, 6:2 FTSA was not biomagnified 

contrary to its homologues with longer perfluoroalkyl chains, probably because the elimination rates 

of PFASs increase with decreasing chain length 38. In addition, the TMF of 6:2 diPAP appeared to be 
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close to 1 but not significantly > 1 and, thus, further data are needed to better estimate its 

biomagnification potential.  

 

3.3. Trophic transfer of pre-PFAAstargeted 

The biotransformation of (alkyl-)FASAs and (alkyl-)FASAAs can lead to the formation of PFOS while 

FTSAs and diPAPs can be converted into PFCA homologues with similar or lower number of 

perfluorinated carbon atoms 43. The ratio between the concentrations of pre-PFAAstargeted and those of 

PFAAs was investigated at different TLs, as a proxy of precursor biotransformation in the food web 17. 

Leaf litter was also included in the analysis, with an estimated TL of 0.8 (based on its δ15N signature).  

Log ∑pre-PFOStargeted (i.e. FOSA and (alkyl-)FASAAs) to PFOS concentration ratios were plotted against 

TL and no significant trend was observed (Figure 2a). However, the mean ratio was significantly higher 

in invertebrates (0.42 ± 0.57) than in fish (0.02 ± 0.01); this suggests that the biotransformation of pre-

PFOS might occur at the highest TLs, likely because fish have higher metabolic capacities than 

invertebrates. Previous studies reported on the metabolization of EtFOSA to FOSA and of FOSA to PFOS 

by the rainbow trout Onchorhynchus mykiss 15,16. Babut et al. (2017) showed that FOSA/ MeFOSAA 

ratios varied between fish species and that the mean value was lower in invertebrates than in fish, 

thereby suggesting the increase of biotransformation rates of MeFOSAA at the highest TLs 18. However, 

in the present study, similar TMFs were observed for MeFOSAA, EtFOSAA and PFOS, indicating that 

the biotransformation of MeFOSAA and EtFOSAA precursors occurred in this trophic web (e.g. N-

ethylperfluorooctane sulfonamidoethanol, EtFOSE).18,44 The latter hypothesis might also explain why 

the ∑pre-PFOStargeted to PFOS concentration ratio was significantly higher in invertebrates than in 

biofilm and leaf litter, suggesting that the biotransformation of unidentified (alkyl-)FASAA precursors 

present in water, sediments, biofilm or leaf litter also occurs in invertebrates. 
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Unlike in fish, ∑pre-PFOStargeted/PFOS concentration ratios exhibited large variations between 

invertebrate taxa (variation coefficient of 134%). Corbiculidae (1.69) and lymnaeidae (0.47) displayed 

higher ratios than gammarids (0.08) or notonectidae (0.03), possibly because of higher pre-PFOS 

metabolization capacities in the latter taxon (Figure S6). In addition to taxon-specific metabolic 

capacities or exposure routes, PFAS toxicokinetics might also differ between taxa 45. 

Log ∑pre-PFCAstargeted (i.e. all pre-PFAAstargeted except FOSA and (alkyl-)FASAAs) to ∑PFCAs concentration 

ratios were negatively correlated with TLs (Figure 2b), clearly indicating an increase of the 

biotransformation rates of pre-PFCAs into PFCAs along the trophic web. To date, the biotransformation 

of FTSA and diPAPs has been little studied in aquatic organisms. Yeung and Mabury (2013) 

demonstrated that the biotransformation of 6:2 and 8:2 FTSA by juvenile rainbow trout (Oncorhynchus 

mykiss) could induce the formation of 5:3 and 7:3 FTCA, respectively, and subsequently C5–C8 PFCAs. 

In the same line, the metabolization of 10:2 FTSA (i.e. the most abundant pre-PFAAstargeted in the biota 

from the Orge River), could significantly contribute to the formation of longer-chain PFCAs (e.g. C9–

C10) along the trophic web. Further investigation of 10:2 FTSA biotransformation kinetics would 

therefore be helpful to estimate its contribution to PFNA and PFDA bioaccumulation. The fate of 8:2 

diPAP was recently assessed for the first time in a marine fish species (Sparus aurata) 16. The 

biotransformation of 8:2 diPAP yielded saturated and unsaturated fluorotelomer carboxylic acids 

(FTCAs and FTUCAS, respectively), as well as PFOA. These findings suggest that 6:2 diPAP could be 

metabolized similarly, yielding shorter-chain fluorotelomer carboxylic acids and PFCAs. As observed 

for (alkyl-)FASAAs, increasing concentrations of these pre-PFAAs along the Orge River trophic web 

suggest that the metabolization of their unidentified precursors occurs in this food web. 
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3.4. Trophic transfer of pre-PFAAsunknown 

To get further insight into the bioaccumulation of organic fluoride in fish exposed to AFFF formulations, 

Yeung and Mabury 47 implemented a mass balance analysis based on the determination of both total 

fluorine (TF) and extractable organic fluorine (EOF) in fish tissues. They demonstrated that known 

PFASs explained only 0.9–7% of EOF in unexposed fish and < 7%–60% in exposed fish. They concluded 

that both known PFASs and unknown organofluorines could be bioconcentrated in fish tissues. 

To investigate whether unknown PFASs could play a role in the trophic magnification of PFAAs in the 

Orge River, the TOP assay was applied to selected samples: water (n = 1), sediment (n = 1) and biota 

(n = 15). Upon oxidation, positive ΔPFCAs were systematically observed, i.e. + 15–424%, depending on 

the sample (Table S14). The largest relative increase was found at the base of the trophic web, e.g. in 

biofilm (424%), sediment (319%), leaf litter (298%), and macrophytes (196%). On the contrary, the 

lowest ΔPFCAs was found in fish, especially in catfish (+ 15–22%). Note that, the limited number of 

considered samples does not allow for inter-individual nor spatial variability. While a significant 

increase of C4–C12 PFCA concentrations was observed in all samples upon oxidation, this was not the 

case for PFTrDA and PFTeDA. Thus, pre-PFAAsunknown bearing perfluoroalkyl chains with more than 12 

carbons were either absent or present at extremely low levels in these samples, suggesting that the 

biomagnification of PFTrDA and PFTeDA was not affected by the biotransformation of precursors. 

These results are consistent with previous reports on the lack of very long-chain PFCA precursors in 

urban runoff and waste water effluent, indicating that they were little emitted into the aquatic 

environment 28,29,31.  

The profiles of PFCAs formed upon oxidation (ΔPFCA) are presented in Figure 3. While these patterns 

cannot be directly associated to precursors chain length profiles since oxidation of some precursors 

leads to the formation of a series of variable chain-length PFCAs, such information are used to provide 

general insights on the range of chain length of unknown PFAA-precursors homologues present in the 

different matrixes and a large approximation of their relative abundance. Different patterns of PFCAs 
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formed upon oxidation were observed between samples as highlighted by hierarchical clustering 

analysis based on Euclidian distance. In water, PFPeA presented the largest increase (+24.4 ng L-1, i.e. 

+ 202%) followed by PFHxA (+8.3 ng L-1, i.e. + 60%) and PFHpA (+ 3 ng L-1, i.e. + 62%) explaining 88% of 

ΔPFCAs. Although these compounds can result from the oxidation of precursors with higher number 

of perfluorinated carbon atoms (Table S8), the predominance of C4–C6 PFAA precursors in water would 

not be surprising for two reasons: i) the PFAS solubility decreases with increasing chain length and ii) 

regulatory bodies encourage the use of PFASs with less than 8 perfluorinated carbons. Among pre-

PFAAstargeted, only 6:2 FTSA was detected in water and its concentration could explain 44%, 5%, 15% 

and 5% of the increase upon oxidation of PFBA, PFPeA, PFHxA and PFHpA levels, respectively. This 

strongly suggests the presence of unidentified short-chain pre-PFAAs in the water column, although 

chemicals behaving similarly to FTSAs or diPAPs upon oxidation could also yield such short-chain 

PFCAs. Some PFAA-precursors, including 6:2 FTSA, may also generate C2-C3 PFCAs upon TOP assay47. 

Ultrashort-chain PFASs, as named, were not addressed in the present study. However, a recent review 

pointed out that such PFASs pass through conventional wastewater treatment processes and were 

found in aqueous environment including rivers48.  

In sediment and biota samples, the formation of C8–C12 PFCAs upon oxidation was more predominant 

than in water, explaining 40–70% of ΔPFCAs (Figure 3). These results are consistent with previous 

reports indicating that both the KD and the bioaccumulation factor (BAF) of PFASs increase with 

increasing chain length 25,41. It should be noted that no significant increase of PFDoDA concentrations 

was observed in lymnaeidae and catfish upon oxidation (blue cluster on Figure 3). Conversely, the 

largest ΔPFDoDA was observed in bullhead and its main prey, gammarids (black cluster on Figure 3). 

The reason for this observation remains unclear, considering that no such trend was observed in the 

gammarid main food sources (i.e. leaf litter and biofilm, grouped in red cluster on Figure 3).  

∑pre-PFAAstargeted accounted for a higher contribution to ΔPFCAs in fish and invertebrates than at the 

base of the trophic web. For instance, based on the conversion factors obtained in ultra-pure water 
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(Table S15), the oxidation of 10:2 FTSA would explain on average 38% of ΔPFDA in fish and 

invertebrates against less than 11% in sediments and biofilm. Altogether, 8:2 FTSA, 10:2 FTSA and 

sulfonamides would contribute to 23–63% of ΔPFOA in fish and invertebrates against 3–11% in biofilm. 

The relative proportion of ∑PFCAs, ∑PFSAs, ∑pre-PFAAstargeted and ∑pre-PFAAsunknown in the trophic web 

of the Orge River is shown on Figure 4. In water and sediment, ∑pre-PFAAsunknown accounted 

respectively for 33% and 78% of ∑PFASs. The contribution of pre-PFAAsunknown to ∑PFASs in biofilm, leaf 

litter and macrophytes was in the same range that in sediment (64–80%). Pre-PFAAsunknown accounted 

for 30–42% of ∑PFASs in gammarids and lymnaeidae. In fish, the proportion of extractable ∑pre-

PFAAsunknown was similar between taxa (18–23%) and was significantly lower than in invertebrates or 

abiotic samples. Thus, a significant sharp decrease of the ∑pre-PFAAsunknown/∑PFAAs molar ratio was 

observed according to TL (Figure S7). Considering the large relative abundance of extractable pre-

PFAAsunknown at the base of the trophic web, it is therefore likely that the biotransformation of these 

chemicals contributes to the observed increase of the levels of some PFCAs and PFSAs at the higher 

TLs (i.e. C9–C12 PFCAs and C7–C10 PFSAs, based on the profiles of PFAAs formed upon oxidation, see 

Figure S7 and discussion above). The actual contribution of pre-PFAAs unknown to the 

biomagnification of these PFAAs cannot currently be estimated because i) the structure of pre-

PFAAsunknown occurring in the Orge River remains by definition undetermined at this stage, ii) the 

individual conversion rates and oxidation product patterns  of these compounds using the TOP assay 

are unknown and iii) toxicokinetics may differ among these compounds. Additionally, the TOP assay 

process does not mime biotransformation meaning that results from such approach cannot be directly 

used in the state to quantify the precursors contribution to the biomagnification of individual PFAAs. 

Indeed, Indeed, PFCAs formed upon oxidation do not systematically correspond to biotransformation 

products. For instance, PFOA is the main and single product of FOSA and MeFOSAA oxidation upon 

TOP assay (refer to Table S15) whereas PFOS has been identified as their major products through 

biotransformation 15,49. However, our results strongly point to the biotransformation of unattributed 

precursors along this trophic web that warrants further investigation. 
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Additionally, these results might also indicate that extractable sediment-bound unattributed 

precursors are either mainly metabolized by invertebrates or are poorly bioavailable. It should also be 

noted that no correlation was observed between ∑pre-PFAAsunknown/∑PFAAs and δ13C, indicating the 

absence of an obvious relationship between carbon sources and exposure to pre-PFAAs. 

4. Conclusion 

The bioaccumulation and biomagnification of PFAAs in aquatic biota have raised a growing concern 

over the last 15 years. Numerous studies have addressed this issue but very few investigated the role 

of pre-PFAAs in such processes. Here, an original approach was implemented based on i) the 

quantitative analysis of selected pre-PFAAS and ii) on the estimation of unknown extractable 

pre-PFAAs via the TOP assay. Such a strategy was applied to the food web of the Orge River that may 

be considered as a typical urban river, i.e. with point and diffuse inputs of PFASs mainly linked to 

domestic sources and atmospheric deposition.  

While selected precursors overall accounted for a relatively minor proportion of ∑PFASs, the TOP assay 

revealed the occurrence of substantial proportions of extractable unknown pre-PFAAs in all 

compartments of the Orge River trophic web. Sediments appear to be a sink for a complex mixture of 

unidentified pre-PFAAs and a source of long-chain fluoroalkyl chemicals that, upon biotransformation, 

could significantly contribute to the biomagnification of PFAAs (i.e. C7–C10 PFSAs and C9–C12 PFCAs in 

the present study). Thus, these results highlight the need of future research to get further insight into 

the exposure of aquatic biota to PFASs and into the trophodynamics of these chemicals. There is a 

clear need to identify the structure of the unattributed PFAA precursors occurring in the environment 

using a complementary approach (e.g. TOP and extractable organic fluorine assays vs suspect or non-

target screening based on high-resolution mass spectrometry). Further investigation of the 

toxicokinetics of newly identified pre-PFAAs is essential. The determination of biotransformation rates 

in biofilm, invertebrates and selected fish species would allow to accurately quantifying their 
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contribution to PFAA biomagnification, thereby contributing to better explain the spatial variability of 

TMFs. Additionally, modelling and experimental studies performed under controlled conditions would 

help getting further insight into the actual contribution of pre-PFAAs to PFAA biomagnification. 
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Graphical abstract 

 

 

In the Orge River, the contribution of perfluoroalkyl acid precursors decreases between the base and 

the top of the trophic web. 
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Figure 1: Mean total PFAS concentrations and molecular pattern in water, sediment and biota samples (the 
number of replicates is indicated between brackets). Concentrations are expressed in ng L-1 for water, 
ng g-1 dw for sediments and ng g-1 ww for biota samples. 
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Table 1: BMFTL and TMF determined in the Orge River trophic web; values between brackets indicate the 95% 
confidence interval while bold characters denotes TMF values significantly higher than 1. L-PFOS: linear 

isomer of PFOS; Br-PFOS: sum of PFOS branched isomers. 

  Detection 
frequency (%) 

Concentration 
range (ng g-1 ww) 

BMFTL  
(min–max) TMF 

PFHxA 39 <LD–0.57 not calculated 0.2 (0.2;0.3) 
PFOA  93 <LD–3.19 0.04–1.4 0.6 (0.5;0.6) 
PFNA  98 <LD–1.62 0.3–2.3 1.6 (1.5;1.7) 
PFDA  90 <LD–9.56 0.9–25.2 2.6 (2.2;3.0) 
PFUnDA 100 0.02–5.98 1.0–11.6 2.2 (2.1;2.3) 
PFDoDA 100 0.70–58.6 1.1–6.9 2.4 (2.3;2.5) 
PFTrDA 100 0.13–14.1 1.7–24.1 2.9 (2.8;3.0) 
PFTeDA 100 0.19–29.5 1.4–15.8 2.9 (2.7;3.0) 
PFHxS 78 <LD–4.47 0.8 not calculated 
PFHpS 73 <LD–0.50 0.8 1.6 (1.4;1.8) 
∑PFOS 100 0.12–84.0 2.0–169 1.5 (1.4;1.6) 
L-PFOS 100 0.12–70.54 2.1-173 1.6 (1.5;1.7) 
Br-PFOS 98 <LD–13.50 0.9-134 1.8 (1.7-2.0) 
PFDS  100 0.02–2.10 4.0–25.7 5.5 (5.3;5.7) 
6:2 FTSA 76 <LD–5.24 0.2–2.5 0.6 (0.5;0.6) 
8:2 FTSA 98 <LD–1.09 0.3–17.2 1.3 (1.2;1.4) 
10:2 FTSA 100 0.16–3.23 1.1–4.8 3.0 (3.0;3.0) 
FOSA  98 <LD–0.97 0.6–1.6 2.5 (2.3;2.6) 
FOSAA  44 <LD–0.12 not calculated 0.6 (0.5;0.8) 
MeFOSAA 80 <LD–0.11 0.8–2.5 1.5 (1.3;1.6) 
EtFOSAA 83 <LD–0.16 0.4–2.2 1.5 (1.3;1.6) 
6:2 diPAP 59 <LD–0.11 1.7 1.2 (0.9;1.4) 

 

  

Figure 2: Log ∑pre-PFOStargeted/ PFOS molar concentration ratios (a) and Log ∑pre-PFCAstargeted/PFCAs molar 
concentration ratios (b) according to the trophic level. White circles correspond to the base of the trophic web 
(e.g. biofilm, leaf litter and macrophytes), grey triangle and black circles refer to invertebrates and fish, 
respectively.  
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Figure 3: Hierarchical clustering analysis (method=ward, distance=Euclidian) of the pattern of PFCAs formed 
upon oxidation (i.e., ΔPFCA) in each sample.  

  

Figure 4: Relative contribution of pre-PFAAsunknown, pre-PFAAstargeted, PFSAs and PFCAs to ∑PFASs (expressed on 
a molar basis) in the trophic web of the Orge River. The number of replicates is indicated between brackets. 
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