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Abstract

Mycobacterium tuberculosis bacilli display two signature features: acid-fast staining and the capacity to induce long-term
latent infections in humans. However, the mechanisms governing these two important processes remain largely unknown.
Ser/Thr phosphorylation has recently emerged as an important regulatory mechanism allowing mycobacteria to adapt their
cell wall structure/composition in response to their environment. Herein, we evaluated whether phosphorylation of KasB, a
crucial mycolic acid biosynthetic enzyme, could modulate acid-fast staining and virulence. Tandem mass spectrometry and
site-directed mutagenesis revealed that phosphorylation of KasB occurred at Thr334 and Thr336 both in vitro and in
mycobacteria. Isogenic strains of M. tuberculosis with either a deletion of the kasB gene or a kasB_T334D/T336D allele,
mimicking constitutive phosphorylation of KasB, were constructed by specialized linkage transduction. Biochemical and
structural analyses comparing these mutants to the parental strain revealed that both mutant strains had mycolic acids that
were shortened by 4–6 carbon atoms and lacked trans-cyclopropanation. Together, these results suggested that in M.
tuberculosis, phosphorylation profoundly decreases the condensing activity of KasB. Structural/modeling analyses reveal
that Thr334 and Thr336 are located in the vicinity of the catalytic triad, which indicates that phosphorylation of these amino
acids would result in loss of enzyme activity. Importantly, the kasB_T334D/T336D phosphomimetic and deletion alleles, in
contrast to the kasB_T334A/T336A phosphoablative allele, completely lost acid-fast staining. Moreover, assessing the
virulence of these strains indicated that the KasB phosphomimetic mutant was attenuated in both immunodeficient and
immunocompetent mice following aerosol infection. This attenuation was characterized by the absence of lung pathology.
Overall, these results highlight for the first time the role of Ser/Thr kinase-dependent KasB phosphorylation in regulating the
later stages of mycolic acid elongation, with important consequences in terms of acid-fast staining and pathogenicity.
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Introduction

Mycobacterium tuberculosis (Mtb) is an extraordinarily versatile

pathogen that can exist in two distinct states in the host, leading to

asymptomatic latent infection in which bacilli are present in a non-

replicating dormant form, or to active tuberculosis (TB), charac-

terized by actively replicating organisms. Establishment of these

different (patho)physiological states requires mechanisms to sense a

wide range of environmental signals and to coordinately regulate

multiple metabolic and cellular processes. Many of the stimuli

encountered by Mtb are transduced via transmembrane sensor

kinases, allowing the pathogen to adapt to survive in hostile

environments. In addition to the 12 classical two-component

systems [1], Mtb contains 11 eukaryotic-like Ser/Thr protein

kinases (STPK) [2,3], suggesting that these two phospho-based

signaling systems are of comparable importance in this microor-

ganism. Knowledge of the substrates of each of the Mtb STPK is

essential for understanding their function. Several kinase-sub-

strates pairs have been identified and characterized during the last

decade. In addition, a recent comprehensive understanding of in
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vivo phosphorylation event in Mtb was gained using a mass

spectrometry-based approach to identify phosphorylation sites in

Mtb proteins [4]. This provided insights into the range of functions

regulated by Ser/Thr phosphorylation, underpinning the involve-

ment of many STPK in regulating metabolic processes, transport

of metabolites, cell division or virulence [5,6,7].

Recent studies focusing on mycolic acid biosynthesis regulation

have shown that most essential enzymes forming the central core

of type II fatty acid synthase (FASII) are phosphorylated by STPK

[6] and that, at least in vitro, post-translational phosphorylation

inhibits the activity of these enzymes. These include the b-ketoacyl

ACP synthase KasA, the b-ketoacyl-ACP reductase MabA, the

hydroxyacyl-ACP dehydratases HadAB and HadBC and the

enoyl-ACP reductase InhA [8,9,10,11,12]. These studies culmi-

nated with the demonstration that InhA, also known as the

primary target of the first-line anti-TB drug isoniazid (INH), is

controlled via phosphorylation by STPK on Thr266 both in vitro

and in vivo [10,11]. The physiological relevance of Thr266

phosphorylation was demonstrated using inhA phosphoablative

(T266A) or phosphomimetic (T266D/E) mutant strains. Not only

was the enoylreductase activity severely impaired in the mimetic

mutants in vitro, but introduction of inhA_T266D/E failed to

complement an inhA-thermosensitive M. smegmatis strain, in

agreement with mycolic acid inhibition, in a manner similar to

that by isoniazid, and growth inhibition [10]. Altogether these

results strongly suggest that Mtb may control in a very subtle

manner its FASII system by regulating each step of the elongation

cycle. Since phosphorylation of HadAB and HadBC enzymes was

found to be increased during stationary growth phase, it was

proposed that mycobacteria shut down meromycolic acid chain

production under non-replicating conditions, a view which is

supported by the fact that the mycolic acid biosynthesis is growth

phase-dependent and is not functional during the stationary phase

[13]. However, whether phosphorylation of FASII components

may also directly participate in Mtb virulence, through the control

of the meromycolic acid chain length has not been reported yet.

It was previously demonstrated that targeted deletion of kasB,

one of two Mtb genes encoding distinct b-ketoacyl-ACP synthases,

results in loss of acid-fast staining and synthesis of shorter

mycolates [14]. Perhaps the most striking effect of kasB deletion

was the ability of the mutant strain to persist in infected

immunocompetent mice without causing disease or mortality.

This indicated that KasB participates in the latest elongation steps

by adding the last few carbon atoms to the growing acyl-ACP

chains and plays a critical role in controlling Mtb physiopathology.

From these data, it could be inferred that KasB activity may be

tightly regulated in order to control the mycolic acid chain length

during the infection process. We have previously reported that,

like KasA, KasB was a substrate of STPK [8], suggesting that

phosphorylation may represent a mechanism governing KasB

activity and, as a consequence, mycolic acid chain length and Mtb

virulence.

This prompted us to decipher an original mechanism linking

post-translational phosphorylation of KasB with Mtb virulence in a

mouse infection model. Herein, we demonstrate that phosphor-

ylation of KasB on Thr334 and Thr336 dramatically alters the

mycolic acid chain length and acid-fast staining. Importantly, a

KasB phosphomimetic mutant of Mtb was found to be extremely

attenuated in mice infection models. These results provide, for the

first time, insights into the contribution and importance of FASII

phosphorylation in vivo in the control of i) the clinically important

feature of acid-fast staining in Mtb and ii) the physiopathology of

TB.

Results

KasB is phosphorylated in vivo and in vitro on Thr334 and
Thr336

Previous work demonstrated that KasB is a substrate for several

Ser/Thr protein kinases with PknF being one of the most efficient

kinase [8]. However, the role and contribution of KasB

phosphorylation with respect to the Mtb physiology and pathoge-

nicity remains unknown, mainly because of the lack of information

regarding the identity of the phosphoacceptors. Therefore,

recombinant wild-type KasB (unphosphorylated form) was

expressed and purified from E. coli harboring pETPhos_kasB

and used in an in vitro kinase assay in the presence of PknF and

[c-33P]ATP. The reaction mixture was then separated by SDS-

PAGE and analyzed by autoradiography, revealing a specific band

corresponding to the phosphorylated form of KasB (Fig. 1A), as

reported previously [8]. To identify the number and nature of the

phosphosites, the protein was phosphorylated in vitro with PknF

and cold ATP and subjected to mass spectrometry analysis after

tryptic and chymotryptic digestions, a method successfully used to

elucidate the phosphoacceptors in a sequence-specific fashion for

several other Mtb STPK substrates [7,9,10,15,16,17]. Spectral

identification and phosphorylation determination were achieved

with the paragon algorithm from the 2.0 database-searching

software (Applied Biosystems) using the phosphorylation emphasis

criterion against a homemade database that included the

sequences of KasB and derivatives. The sequence coverage was

92% with the non-covered sequence free of serine or threonine

residues. Phosphorylation was detected only on a single peptide

315AIQLAGLAPGDIDHVNAHATGTQVGDLAEGR345. The

MS/MS spectra unambiguously confirmed the presence of two

phosphate groups on this peptide (data not shown). The 315–345

peptide possesses only two Thr residues representing the potential

phosphoacceptors, Thr334 and Thr336. Definitive identification

of the phosphosites was achieved by site-directed mutagenesis, by

replacing Thr with Ala, preventing subsequent phosphorylation.

The single (T334A, T336A) and double (T334A/T336A) mutants

were expressed via the pETPhos, purified as His-tagged proteins

and individually subjected to the kinase assay. As shown in Fig. 1A,

decrease of the phosphorylation signal was only partially limited in

the single mutants with respect to the wild-type protein. However,

phosphorylation was abrogated in the double mutant as evidenced

by the absence of a specific radioactive band, confirming that, in

Author Summary

Acid-fast staining has been used since 1882 as the
hallmark diagnostic test for detecting Mycobacterium
tuberculosis, the causative agent of tuberculosis. It has
been attributed to the presence of a waxy cell envelope,
and primarily to its key components, mycolic acids. Here,
we report a new mechanism of regulation in which
phosphorylation of KasB, involved in the completion of
full-length mycolic acids, leads to shortened mycolic acids
and loss of acid-fast staining. Moreover, a M. tuberculosis
mutant strain mimicking constitutive phosphorylation of
KasB is severely attenuated for growth in both immuno-
competent and immunosuppressed mice and fails to cause
mortality and pathophysiological symptoms. These results
emphasize the critical role of kinase-dependent phosphor-
ylation in the pathogenesis of M. tuberculosis by control-
ling the mycolic acid chain length. Our study demonstrates
the importance of a regulatory mechanism governing acid-
fastness and virulence of M. tuberculosis.
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Figure 1. M. tuberculosis KasB is phosphorylated on Thr334 and Thr336. (A) In vitro phosphorylation of KasB with PknF. The PknF
kinase encoded by the Mtb genome was expressed and purified as a GST fusion and incubated with purified His-tagged KasB_WT, KasB_T334A,
KasB_T336A and KasB_T334A/T336A in the presence of radiolabeled [c-33]ATP. Samples were separated by SDS-PAGE, stained with Coomassie Blue
and visualized by autoradiography after overnight exposure to a film as indicated. Upper bands reflect the autophosphorylation activity of PknF
whereas the lower bands correspond to the phosphorylation signal of KasB. (B) In vivo phosphorylation of KasB. A kasB deletion mutant of M.
bovis BCG was transformed with either pVV16_kasB_WT or pVV16_kasB_T334A/T336A and grown in Sauton medium. Exponential (expo) or stationary
(stat) phase cells were harvested, lyzed and processed for KasB purification by affinity chromatography on Ni2+-containing beads. The BCG-derived
KasB_WT and KasB_T334A/T336A proteins were separated by SDS-PAGE, either stained with Coomassie Blue (upper panel) or subjected to Western
blot analysis after probing the membrane with anti-phosphoThreonine antibodies (lower panel). Specificity of phosphothreonine recognition was
checked by probing the antibodies against recombinant KasB produced in E. coli strains carrying either pETPhos_kasB (non phosphorylated KasB) or
pETDuet_kasB that co-expresses KasB with PknF (phosphorylated KasB). (C) Localization of Thr334 and Thr336 phospho-sites in the three-
dimensional structure of KasB. Overall view (left panel) showing the KasB dimeric structure ([19]; PDB entry 2GP6) in ribbon representation with
the core domain in marine and the cap domain in orange. The second chain of the dimer is in light gray. The Cys-His-His catalytic triad and the two
phospho-sites are displayed as ball-and-stick with carbon atoms in magenta and green, respectively. Also shown with carbon atoms in yellow are the
TLM inhibitor and the PEG molecule as observed in the structure of the KasA C171Q acyl enzyme mimic ([20]; PDB entry 2WGG). The PEG molecule is
thought to delineate the acyl-binding channel [20]. Nitrogens are in blue, oxygens in red, and sulfur in gold. Close-up view (right panel) after a 45u
rotation of the left panel along a vertical axis. Side-chains of residues delineating the active site hydrophobic tunnel and of aspartic residues at
positions 334 and 336 were also represented (carbons in cyan and white, respectively).
doi:10.1371/journal.ppat.1004115.g001
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vitro, phosphorylation of KasB occurs at Thr334 and Thr336.

Similar results were obtained when KasB_T334A/T336A was

incubated in the presence of either PknA, PknB, PknD, PknH or

PknL, indicating that these two residues are the phosphoacceptor

for all six kinases (Figure S1 in Text S1).

In vivo phosphorylation of KasB was next investigated in

recombinant M. bovis BCG by Western blotting using anti-

phosphothreonine antibodies. Specificity of the antibodies was first

assessed against KasB purified from either E. coli (pETPhos_kasB)

or E. coli co-expressing PknF (pETDuet_kasB), thanks to a recently

developed duet strategy [18]. Phosphorylated KasB derived from

pETDuet_kasB was specifically revealed with anti-phosphothreo-

nine antibodies, while the unphosphorylated isoform from

pETPhos_kasB failed to react (Fig. 1B), confirming the specificity

of Thr phosphorylation. To confirm the phosphorylation status of

KasB in mycobacteria, and in order to exclude eventual

interference/association between the endogenous and the recom-

binant His-tagged KasB monomers (KasB being a dimer, see

below), a DkasB BCG mutant was transformed with

pVV1::kasB_WT or pVV16::kasB_T334A/T336A in which the

wild-type or phosphoablative kasB genes were placed under the

control of the hsp60 promoter. BCG carrying either

pVV16::kasB_WT or pVV16::kasB_T334A/T336A was harvested

from exponential or stationary cultures prior to protein purifica-

tion by affinity chromatography on Ni2+-containing agarose beads

and Western blotting using phosphothreonine antibodies. Specific

phosphorylation was only detected for the wild-type but not the

T334A/T336A protein (Fig. 1B). The lack of reactivity with the

double Ala mutant excludes the possibility of additional phos-

phorylation sites. Interestingly, phosphorylation of KasB was more

pronounced during stationary phase than exponentially-growing

bacteria, indicating that KasB phosphorylation is growth phase-

dependent. Taken collectively, these data suggest that phosphor-

ylation occurs at Thr334 and Thr336, in vitro and in vivo.

Thr334 and Thr336 are in the vicinity of the catalytic triad
The crystal structure of KasB (438 residues, MW 46.4 kDa) in

its apo-form has been determined to 2.4 Å resolution [19]. It

consists of a dimer with each protomer adopting the typical

thiolase fold decorated with specific structural features in the form

of a cap (Fig. 1C). The structures of wild-type KasA (416 residues,

MW 43.3 kDa), the other fatty acyl elongation b-ketoacyl

synthase, and of the acyl enzyme mimic C171Q, both unliganded

and with bound thiolactomycin (TLM), were also resolved to high

resolution [20]. In line with their high sequence homology, KasA

and KasB are structurally similar and superposition of the wild-

type apo-dimers (PDB codes 2WGD and 2GP6, respectively) led

to a root mean square deviation value of 1.1 Å for 814 aligned Ca
atoms sharing 66% sequence identity. The active site, containing

the Cys-His-His catalytic triad, is located in the core domain. As

shown for KasA [20], TLM binds close to the active site in the

malonyl-binding pocket and the hydrophobic acyl-binding chan-

nel of the substrate is connected to the malonyl-binding pocket and

also directly accessible from the surface of the protein (Fig. 1C, left

panel). Thr334 and Thr336 together with Ile235, Phe258, Val299,

Ala300, Val338, Pro301, and Phe426 (most of these residues being

strictly conserved in KasA) line a molecular tunnel that leads to the

catalytic cysteine [19] (Fig. 1C, right panel). Thr334 is located

close to the tunnel aperture whereas Thr336 directly faces the

catalytic triad. Their side chains are aligned when looking from

outside the tunnel with their OG atoms at a distance of 3.6 Å.

Replacement of Thr334 and Thr336 by alanine would result in a

slight broadening of one side of the tunnel. In contrast, ThrRAsp

replacements that mimic constitutive phosphorylation [9,10,17,21]

are very likely to induce a profound perturbation in terms of steric

hindrance and electrostatic potential. In addition, the carboxyl

group of the Asp at position 334 could establish hydrogen bonds

with the NE2 atoms of the two catalytic histidines. Thus, the

perturbation brought by the ThrRAsp substitution might lead to

severe impairment of the enzyme activity but not of the three-

dimensional structure. Moreover, this was confirmed by analysis of

the trypsinolysis kinetics of wild-type and mutated KasB proteins

(Figure S2 in Text S1), and was consistent with the structural

analysis indicating that introduction of Asp or Ala at position 334

and 336 does not seem to modify the folding of the protein as the

proteolysis profiles of the different KasB derivatives were identical

to the wild-type protein.

Loss of acid-fast staining in a M. tuberculosis
phosphomimetic mutant

To study the effect of the two KasB phosphorylation sites in

Mtb, the Thr334 and Thr336 amino acids were replaced either

with phosphomimetic (aspartate) or phosphoablative (alanine)

amino acid. Previous studies have shown that acidic residues such

as aspartate qualitatively recapitulate the effect of phosphorylation

with regard to functional activity [15,17,21,22]. Specialized

linkage transduction [23] was used to transfer single point mutant

alleles, respectively kasB T334D/T336D and kasB T334A/T336A

in Mtb CDC1551 (Table S1 in Text S1, Fig. 2A). These strains

contained a sacB and hyg cassettes inserted between kasB and accD6.

The introduction of the sacB and hyg cassettes was confirmed by

Southern blot (Fig. 2B) and presence of the point mutation(s) was

verified by sequencing kasB. An additional kasB deletion strain in

Mtb CDC1551 was constructed using the same plasmid

(pYUB1471) as the one used for the allelic exchanges.

Quantitative reverse transcription real-time PCR analyses were

conducted to measure the kasB expression level in the different

mutant strains. Expression levels were standardized using the sigA

internal standard (Fig. 2C). As expected, no specific kasB mRNA

was produced in the DkasB mutant. In contrast, kasB expression

levels were found to be comparable in the parental strain, the

double Ala and the double Asp mutants. Similar results were

obtained when using either 16S rRNA or rrnAP1 as alternative

internal control (data not shown). These results were confirmed by

Western blot analysis using antibodies raised against KasA, which

cross-react with KasB, and revealing comparable levels of KasB

expression in the parental strain, the double Ala and the double

Asp mutants (Fig. 2D). Moreover, since kasB belong to the fasII

operon and is located upstream of accD6, we also checked whether

the introduction of the T/A or T/D replacements may affect

expression of the downstream accD6 gene. Immunoblotting using

rabbit anti-AccD6 antibodies clearly revealed the presence of

similar AccD6 levels in all strains (Fig. 2E). From these data it can

be inferred that mutations in kasB did not exert a polar effect on

AccD6 expression.

Together, these results indicate that introduction of the

phosphoablative or phosphomimetic mutations does not affect

kasB gene expression in Mtb, thus allowing analysis and

comparison of the phenotypes associated to these mutations.

The first phenotype tested in the KasB mutants was acid-

fastness using both the carbolfuchsin and auramine stainings

(Fig. 3A). Like the parental strain, the Ala mutant remained acid-

fast positive. In sharp contrast, the phosphomimetic T334D/

T336D mutant strain behaved like the kasB deletion mutant, losing

its ability to retain the primary stain following washing with the

acid-alcohol decolorizer. The phosphomimetic and deletion strains

regained acid-fast staining when a wild-type copy of kasB was

introduced into these strains on a multicopy plasmid (Fig. 3B).

KasB Phosphorylation Impairs Mtb Virulence
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Figure 2. Construction of isogenic M. tuberculosis CDC1551 strains bearing the phosphoablative or phosphomimetic kasB alleles. (A)
Schematic representation of the specialized transduction phage. A replicating shuttle phasmid derivative of phAE159 containing kasB carrying the
mutations T336A/T336A or T334D/T336D, sacB, a hyg resistance cassette, and the first 959 bp of accD6 was used to transduce Mtb CDC1551. If

KasB Phosphorylation Impairs Mtb Virulence
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This indicates that phosphorylation on Thr334/Thr336 abrogated

the acid-fast property, presumably by negatively regulating the

activity of KasB. The results support, for the first time, a control of

acid-fastness by STPK-dependent signaling in Mtb.

Phosphorylation of KasB results in shorter mycolic acids
The lack of acid-fastness prompted us to investigate the mycolic

acid content in the various strains. Since kasB deletion results in a

strain producing shorter mycolic acids [14], we compared the

mycolic acid profiles of the double Ala and double Asp mutants to

the parental and DkasB strains. Mycolic acids were extracted after

saponification from the strains grown to stationary phase and

analyzed by thin-layer chromatography (TLC) (Fig. 4A). When

separated, the mycolates of the parental and phosphoablative strains

presented similar mobility shifts, whereas those from the phospho-

mimetic and the DkasB strains were found to be slightly retarded.

This lower mobility shift has been earlier reported to occur in M.

marinum and Mtb kasB mutants and correlated to reduced carbon

chain lengths [14,24]. The normal mobility shift was restored in the

corresponding complemented strains (Fig. 4A).

Individual mycolic acid species from all four strains were then

purified from preparative TLC plates, re-extracted and analyzed by

proton nuclear magnetic resonance (1H NMR) spectroscopy (Fig. 4B

and Figure S3 in Text S1) and matrix-assisted laser desorption/

ionization-time of flight (MALDI-TOF) mass spectrometry (Fig. 4C).
1H NMR analyses revealed that mycolates from the DkasB and

KasB_T334D/T336D strains significantly differed from those of

the parental strain. In particular, the relative quantification of

signals at 20.33 and 0.55 ppm and signal at 0.45 ppm established

that the ratio of cis/trans-cyclopropanation changed in oxygenated

mycolic acids, as reported for the DkasB mutant [14]. For methoxy-

mycolic acids, it decreased from 20% of trans-cyclopropanation in

parental strain to 0% in the DkasB and KasB_T334D/T336D

strains (Figure S3B in Text S1) and for keto-mycolic acids from 50%

to 0% (Figure S3C in Text S1 and Fig. 4B). In contrast, mycolates

from the phosphoablative mutant exhibited spectra similar to those

of the parental strain (data not shown).

Next, the mycolic acid size distribution was assessed by

MALDI-TOF MS, and similarly to the 1H NMR analysis, the

double Ala mutant was found to produce mycolates identical to

those from the parental strain. In contrast, the double Asp mutant,

like DkasB, synthesized shorter a-, methoxy, and keto-mycolic

acids (up to C80:2, up to C84:1, and up to C85:1) than the

parental strain (up to C84:2, up to C89:1, and up to C89:1), and

accumulated a trans-unsaturated precursor of both methoxy- and

keto-mycolic acids, thus confirming the slightly reduced TLC

mobility shift. The average size reduction of oxygenated mycolates

was higher than that of a-mycolates because it resulted from both

size reduction of aliphatic chain and loss of the -CH3 group of

trans-cyclopropane groups (Fig. 4C).

Lack of trans-cyclopropanation does not result from
altered cmaA2 expression

NMR analysis indicates the lack of trans-cyclopropane rings in

oxygenated mycolic acids in the phosphomimetic mutant, which

accumulates the corresponding trans-double bonds precursors, as

found in the DkasB strain and in agreement with previous work

[14]. Trans-double bonds have been reported to be the substrates

of the trans-cyclopropane synthase CmaA2 [25]. We reasoned that

lack of trans-cyclopropanation in the phosphomimetic strain

mutant may be due to the shortened oxygenated meromycolates

that are poor substrates for CmaA2. Alternatively, alteration/lack

of cmaA2 expression may occur in this particular strain. Indeed,

multiple direct interactions have been reported to happen between

various FASII enzymes in specialized multifunctional complexes

[26,27]. Consequently, phosphorylation of KasB may hinder/

prevent association of KasB with other partners, including

CmaA2. cmaA2 expression levels were therefore measured and

found to be comparable in all four strains (Fig. 2C), indicating that

neither phosphomimetic mutations within KasB nor deletion of

kasB altered cmaA2 expression. Similar results were obtained using

sigA, 16S rRNA or rrnAP1 as internal standards (data not shown).

This implies that absence of trans-cyclopropane rings is likely due

to the shortened mycolates that are poor substrate for CmaA2,

rather than to a defect in cmaA2 expression.

Phosphorylation of KasB leads to increased cell wall
permeability

Given the effect of KasB phosphorylation on the meromycolate

chain length, we inquired whether shorter mycolic acids would

alter drug susceptibility. The KasB strains were tested for growth

in the presence of INH, ethionamide (ETH), and rifampicin (RIF)

(Table 1). The KasB_T334D/T336D mutant was found to be

more susceptible to INH, ETH, and RIF, suggesting that this

strain exhibits a cell wall permeability defect.

To confirm the permeability defect of this mutant in logarithmic

phase, we compared how the phosphomimetic, phosphoablative,

deletion and parental strains incorporated two different types of

dye: the cyanine dye 3,39-diethyloxacarbocyanine iodide DiOC2,

which penetrates all cells, and the SYTOX Red dead cell stain,

which is excluded from cells with intact membranes [28,29]. The

highest amount of Sytox Red was found in the KasB phospho-

mimetic strain (Figure S4 in Text S1), suggesting that this strain

had the most permeable membrane. This set of data support the

view of a permeability defect in the KasB phosphomimetic strain.

Reduced pathogenicity and mortality of the KasB
phosphomimetic strain

Growth curves of Mtb bearing either the kasB_T334A/T336A or

the kasB_T334D/T336D allele were also similar, indicating that

the phosphomimetic or phosphoablative mutations did not impact

recombination occurs before the point mutation in kasB, this results in recombinant strains carrying the T334A/T336A or T334D/T336D mutations.
The transductants were selected on hygromycin and screened by PCR amplification of kasB and presence of the desired mutations was confirmed by
sequencing. (B) Southern blot analysis of M. tuberculosis kasB mutant strains. Genomic DNA from each strain was extracted, digested with
BglII and analyzed: left panel, Southern for kasB point mutants (probe kasB); right panel, Southern for DkasB (probe kasA). The expected size of each
band was: wild-type, 4219 bp; kasB point mutants, 7898 bp; DkasB, 6764 bp. Lane 1, CDC1551 wild-type strain; lane 2, CDC1551 KasB T334A/T336A;
lane 3, CDC1551 KasB T334D/T336D; lane 4, CDC1551 DkasB. (C) kasB and cmaA2 expression levels in the different isogenic mutants.
Analysis of kasB and cmaA2 mRNA levels of Mtb strains as determined by quantitative RT-PCR. The mean 6 standard deviation of three real-time RT-
PCR experiments is shown for each strain. The values were normalized to sigA mRNA levels. (D) KasA/KasB immunoblotting. Western blotting
showing the expression level of KasB in the crude lysates of the parental strain and the various KasB mutant strains. The membrane was probed with
rat anti-KasA antibodies which cross-react with KasB and the proteins revealed using secondary antibodies labeled with IRDye infrared dyes. (E)
AccD6 immunoblotting. Western blot analysis showing the expression level of AccD6 in the crude lysates of the parental strain and the various
KasB mutant strains. The membrane was probed with rabbit anti-AccD6 antibodies and the incubated with anti-rabbit antibodies conjugated to
alkaline phosphatase.
doi:10.1371/journal.ppat.1004115.g002
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Figure 3. Acid-fast staining of M. tuberculosis kasB isogenic mutant strains. (A) Cultures were fixed on glass slides and acid-fast staining was
performed on the fixed smears using either the BD TB Auramine Kit or the BD Carbolfuchsin kit. The left panels show phase contrast microscopy
images of Mtb CDC1551 parental strain and the phosphomimetic and phosphoablative Mtb isogenic strains. (B) Restoration of the acid-fast staining
phenotype in the DkasB and phosphomimetic KasB mutant strains complemented with pMV261::kasB. Magnification = 1006.
doi:10.1371/journal.ppat.1004115.g003
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Figure 4. Structural analysis of mycolic acids in the phosphomimetic and phosphoablative kasB mutants. (A) Mycolic acid profile of
the various KasB mutants and complemented strains. Culture were grown at 37uC, harvested, and FAMEs and MAMEs were extracted and
analyzed by one-dimensional TLC using hexane/ethyl acetate (19:1, v/v; 3 runs). a-, methoxy- and keto-mycolic acids were revealed by spraying the
plate with molybdophosphoric acid followed by charring. Mycolates migrating slightly faster in the Asp mutants than in the parental control strain
can be observed. ‘‘-C’’ indicates complemented strain (with pMV261::kasB). (B) Relative proportions of cis- and trans-cyclopropanes in
mycolates established from 1H NMR spectra. The relative quantification of specific signals associated to trans- and cis-cyclopropanes revealed
that oxygenated mycolates synthesized by the KasB T334D/T336D and DkasB strains exclusively contain cis-cyclopropane rings. The % of trans-
cyclopropanes for each mycolic acid sub-species and for each strain is indicated. (C) MALDI-MS analysis. Mass spectrometry analysis revealed that
all three families of mycolates isolated from the KasB T334D/T336D and DkasB strains display reduced sizes compared to the parental or
phosphoablative strains.
doi:10.1371/journal.ppat.1004115.g004

Table 1. MICs of various antitubercular drugs.

MIC (mg/l) Parental T334A/T336A T334D/T336D DkasB

INH 0.04–0.06 0.04–0.06 0.015–0.03 0.02–0.03

ETH 1–2.5 1–2.5 0.25–0.3 1.25–2.5

RIF 0.03–0.06 0.016–0.06 0.008–0.015 0.002–0.007

Range of MICs (mg/ml) obtained in two or three independent experiments is shown.
doi:10.1371/journal.ppat.1004115.t001
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in vitro growth (data not shown). To address the physiological

relevance of KasB phosphorylation with respect to Mtb virulence

and physiopathology, low-dose aerosol infection of mice were

performed with the parental, double Ala, double Asp and DkasB

isogenic Mtb strains. Previous work showed that whereas

CDC1551 DkasB was severely attenuated and failed to cause

active infection in immunocompetent mice, it caused mortality in

immunodeficient SCID mice [14]. Therefore, in vivo growth of the

different KasB mutants was tested in both SCID mice and

immunocompetent C57BL/6 mice. Although all the strains grew

in the lung of SCID mice, the double Asp was found to be much

more attenuated than the other KasB variants. Indeed, the

phosphomimetic mutant strain was strikingly less virulent relative

to the other strains following aerogenic challenge, as assessed by

the mean survival time of SCID mice infected with these strains

(57.5, 75, 76 and 147 days post-infection for parental,

KasB_T334A/T336A, DkasB and KasB_T334D/T336D, respec-

tively). Mice infected with the double Asp mutant survived on

average 90 days longer than the mice infected with the parental

strain, while the mice infected with the double Ala or DkasB strain

survived only 20 days longer than the mice infected with the

control strain (Fig. 5A). In agreement with the survival data,

quantification of tissue bacterial burden revealed a severe growth

defect (3–4 Logs) of the KasB phosphomimetic strain (Fig. 5B).

Manifestation of this hypovirulent phenotype is apparent as early

as one week post-infection with the lung bacterial burden of mice

infected with Mtb KasB_T334D/T336D about 30-fold lower than

the parental strain-infected mice. The bacterial burden of the Mtb

KasB_T334A/T336A strain was comparable to that of the

parental strain. Consistent with previously published data [14],

the DkasB strain exhibited a growth defect, albeit less pronounced

than the Mtb KasB_T334D/T336D strain (Fig. 5B). Extensive

granulomatous inflammation was visible in the lungs of SCID

mice infected with the parental strain, and to a lesser extent in

mice infected with the KasB_T334A/T336A and the DkasB strains

but not in those infected with the KasB_T334D/T336D (Fig. 5C).

Monitoring of colony-forming units (CFU) in spleen and liver at

three and eight weeks post-infection revealed that the

KasB_T334D/T336D mutant was also severely attenuated for

growth in these organs (Fig. 5D). The restricted bacterial loads in

both organs increase by three orders of magnitude after eight

weeks of infection. In contrast, replication of the KasB_T334A/

T336A strain was comparable to that of the parental strain in both

organs, although a 1-log growth defect was observed in the liver

eight weeks after infection, whereas replication of the DkasB

mutant was also severely impeded in these two organs.

Next, immunocompetent C57BL/6 mice were infected via

aerosol and assessed for both survival and bacterial replication.

Monitoring of CFU in the lungs at different time points after

infection indicated that both the parental and double Ala mutant

grew for the first three weeks following a similar kinetic (Fig. 6A).

Consistent with previous observations, the DkasB was severely

attenuated for growth in mice [14]. In contrast to the DkasB, the

KasB phosphomimetic mutant failed to replicate, even after the

first three weeks of infection and was never found in the lungs of

C57BL/6 in two independent aerosol infection experiments.

Histological examination of stained lung sections from infected

mice revealed multifocal, moderate infiltration after 21 days of

infection with the parental strain (Fig. 6B) but not with the

KasB_T334A/T336A, DkasB or KasB_T334D/T336D mutant

strains, which may be attributed to the lower bacterial loads of

these strains at this particular time point. Bacterial loads in the

liver and spleen at different time points after infection indicated

that the KasB phosphomimetic mutant was extremely attenuated,

since CFU could not be obtained at either 3 or 8 weeks post-

infection (Fig. 6C). Replication of the DkasB mutant was also

severely impeded in these two organs.

Together, this suggests that KasB phosphorylation regulates the

growth of Mtb in both immunocompromised and immunocom-

petent mice. In the presence of phosphorylated KasB, the tubercle

bacillus fails to establish a chronic persistent infection, and exhibits

a severely attenuated phenotype.

KasB phosphorylation reduces the uptake of M.
tuberculosis by macrophages

The difference in virulence between the DkasB and the

phosphomimetic strains led us to investigate how these two strains

infect and survive in macrophages, the primary cellular targets of

Mtb. C57BL/6 bone marrow-derived macrophages (BMDM) were

infected with the various Mtb KasB variants, lysed at 0, 1, 3 and 6

days post-infection, and the numbers of viable bacteria were

counted (Fig. 7A). Both the parental and the KasB_T334A/

T336A mutant grew similarly whereas the DkasB mutant, as

expected, was attenuated for growth in macrophages, with day

6 CFU counts similar to day 0 numbers, versus an approximately

one log increase for the parental strain. In contrast, the KasB

phosphomimetic strain had no significant growth defect in

macrophages but exhibited a marked impairment in macrophage

uptake (Fig. 7A, day 0 time point). This effect was further

investigated by measuring internalization of the various strains in

BMDM. In three independent experiments, the uptake of the

KasB phosphomimetic strain was significantly lower than the one

of the parental strain by around 50% (Fig. 7B, left panel), a defect

that was reversed when the phosphomimetic strain was comple-

mented with a wild-type kasB on a multicopy plasmid (Fig. 7B,

right panel). To confirm that these macrophages phenotypes were

not specific to C57BL/6 BMDM, the growth of the KasB strains

was also tested in the human acute monocytic leukemia cell line

THP-1. In THP-1 macrophages, the phosphomimetic KasB

mutant had also no growth failure and did present an uptake

defect similar to the one observed in BMDM (Figure S5 in Text

S1). Taken together, this set of data suggests that phosphorylation

of KasB regulates the early interaction event between Mtb and

macrophages.

Increased polyacyled trehalose levels in the KasB
phosphomimetic strain

The distinct in vivo phenotypes between the KasB phosphomi-

metic mutant and the DkasB mutant may reflect different

physiological/metabolic status. To identify transcriptional differ-

ences that may be relevant to the differential phenotypes of these

strains, a whole-genome transcriptional analysis was performed

(Figure S6 in Text S1). Several genes were commonly up- or

down-regulated two-fold or more in the KasB mutant strains.

Most up-regulated genes were genes participating in cell wall, cell

processes and lipid metabolism, whilst the majority of the down-

regulated genes were associated with intermediary metabolism and

respiration. Interestingly, a few genes were uniquely up-regulated

in the KasB phosphomimetic strain such as the esterase/lipase

lipF, proposed to play an important role in Mtb pathogenesis [30],

and five genes involved in lipid or drug transport (MmpL4,

MmpL5, MmpL10, MmpS4, and Rv1258c) [31,32], as well as five

other genes involved in lipid metabolism (Pks3, Pks16, PapA1,

PapA3, and FadD21). The genes specifically down-regulated in

the KasB phosphomimetic mutant encoded: NrdF1, an enzyme

involved in DNA replication; two oxidoreductases (Rv3741c,

Rv3742c) which are in an operon with a triacylglycerol synthase;
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two enzymes (Rv3084, Rv3085) part of the mymA operon which

might be implicated in the modification, activation and transfer of

fatty acids to the cell envelope [33]. Strikingly, most of the

biosynthetic gene cluster (pks3/4, papA3, mmpL10, fadD21) required

for the synthesis of polyacylated trehalose (PAT) [34] was specifically

up-regulated in the KasB phosphomimetic mutant suggesting that

PAT biosynthesis in this mutant might be altered.

Metabolic labeling with 14C-propionate and subsequent lipid

analysis of parental, phosphoablative, phosphomimetic and deletion

strains showed that the phosphomimetic KasB mutant produced

more PAT than the three other strains (Fig. 8). Quantification of the

TLC spots revealed a reproducible two-fold increase in PAT

production in the KasB_334D/336D mutant compared to the three

other strains and to its complemented strain, suggesting that

phosphorylation of KasB positively affects PAT synthesis.

Discussion

Recent studies have provided clear insights into the vast range

of pathways regulated by STPK in Mtb. These include multiple

metabolic processes, transport of cell wall components as well as

cell division or virulence functions [5,6,7]. Several STPK, such as

PknH or PknG, have been reported to play a crucial role in

modulating Mtb virulence [6,35,36,37,38]. However, little is

known regarding the specific substrates contributing to mycobac-

terial virulence and regulated by these kinases. Here, we report the

critical role of STPK-dependent phosphorylation of KasB, which

is directly linked to Mtb virulence. Through the design of a KasB

phosphomimetic Mtb mutant, we demonstrate that, in vivo, the

replacement of the two Thr by Asp residues was characterized by

highly pronounced phenotypes corresponding to i) loss of acid-

fastness, ii) production of shorter mycolic acids with defects in

trans-cyclopropanation, iii) defect in macrophage invasion, iv)

incapacity to grow and establish a persistent infection in both

immune-compromised and immune-deficient mice, and v) absence

of pathology in infected animals (Fig. 9). The long-term persistence

of the KasB phosphomimetic strain without causing disease or

mortality makes it an attractive model for studying latent Mtb

infections and suggests that this attenuated strain may represent a

valuable vaccine candidate against TB.

Figure 5. Infection of immunocompromised SCID mice with M. tuberculosis kasB isogenic mutants. (A) Survival curves in infected
SCID mice. Low-dose aerosol infection of SCID mice (as in B) was performed with the following Mtb strains: parental, KasB_T334A/T336A,
KasB_T334D/T336D and DkasB. (B) Growth of Mtb kasB strains in the lungs of SCID mice. At 1, 7, 21 and 56 days post-infection, one lung from
each infected SCID mouse was harvested, homogenized and serial dilutions were plated on Middlebrook 7H10 supplemented with 10% OADC and
0.2% glycerol. (C) Pathology of lungs from infected SCID mice. One lung from each infected SCID mouse was harvested and fixed in 10%
paraformaldehyde for a month prior to photography. (D) CFU plots in the liver and spleen three weeks (black bars) and eight weeks (grey
bars) post-infection.
doi:10.1371/journal.ppat.1004115.g005
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Figure 6. Infection of immunocompetent C57Bl/6 mice with M. tuberculosis kasB isogenic strains. (A) Growth of Mtb kasB strains in
the lungs. Low-dose aerosol infection was performed with the following Mtb strains: parental, KasB_T334A/T336A, KasB_T334D/T336D, and DkasB.
Lungs from infected mice were harvested at 1, 7, 21 and 57 days post-infection, homogenized and serial dilutions were plated onto Middlebrook
7H10 plates supplemented with 10% OADC and 0.2% glycerol. (B) Pathology slides of lungs from infected mice at 21 days post-infection.
Lung tissue sections from mice infected with the Mtb CDC1551 parental, KasB_T334A/T336A, KasB_T334D/T336D, and DkasB were stained with
hematoxylin/eosin and observed. Magnification =620. (C) CFU plots in the liver and spleen three weeks (black bars) and eight weeks
(grey bars) post-infection.
doi:10.1371/journal.ppat.1004115.g006
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By analogy with a DkasB mutant, these phenotypes strongly

support the view that phosphorylation has a detrimental effect on

KasB activity. This is also emphasized by the modelling studies

highlighting the strategic localization of the two phosphosites in

the vicinity of the catalytic triad. That phosphorylation of these

residues is likely to perturb the condensing activity of KasB

contrasts with an earlier study proposing that phosphorylation of

KasA and KasB reduces and increases their condensing activity in

vitro, respectively [8]. The discrepancy between these two studies

could be explained by several reasons. First, in the in vitro study,

KasB activity was assessed using C16-AcpM, which represents a

preferred substrate for KasA, but not for KasB [39] which

catalyzes the last step in the elongation cycle [14], therefore acting

on very long fatty acyl chains, such as C48-C52-AcpM substrate.

Second, to conduct these studies, preparation of purified KasA or

KasB from recombinant BCG were used, which contain large

proportions of non-phosphorylated proteins, as usually within

bacteria only a small proportion of proteins gets phosphorylated. A

heterogeneous preparation containing a mixture of phosphorylat-

ed and non-phosphorylated isoforms may affect the overall activity

of KasB. Finally, several studies have shown that most FASII

components interact together [26,27,40] and a ‘‘mycolome’’

concept has recently emerged from work demonstrating that

FASII system of Mtb is organized in specialized interconnected

complexes composed of the condensing enzymes, dehydratase

heterodimers and the methyltransferases [26,27,40]. In this model

of interactome, three types of FASII specialized complexes are

interconnected together: i) the initiation FASII is formed by a core

consisting of the reductases, FabD and FabH, linking FASI and

FASII together; ii) two elongation FASII complexes consisting of a

core and either KasA (E1-FASII) or KasB (E2-FASII) which are

capable of elongating acyl-AcpM to produce full-length meromy-

colyl-AcpM (Fig. 9); and iii) the termination FASII involving Pks13

which condenses the a branch with the meromycolic branch. One

may therefore hypothesize that phosphorylation of KasB may also

alter/disrupt heterotypic interactions with other FASII partners of

Figure 7. Infection of C57BL/6 bone marrow-derived macrophages with M. tuberculosis kasB variants. (A) Growth of the KasB
mutants and parental strain in BMDM. An MOI of 1 was used to infect the BMDM with the strains. Macrophages were lysed after 0, 1, 3 and 6
days post-infection and viable bacteria were counted by plating dilutions of the lysates on agar plates. Three independent experiments were
performed and each experiment was done in triplicate. (B) Uptake of KasB strains by BMDM. The ratio between the bacterial titer after a 4 h
infection and the inoculum titer is shown. A T-test (two-tailed distribution, unequal variance) was performed and showed a statistical difference
between the uptake of the KasB phosphomimetic strain compared to deletion strain (left panel). Complementation with a functional KasB restores
the uptake of the phosphomimetic mutant (right panel). Blue bar, parental strain; green bar, KasB_T334A/T336A; black bar DkasB, black bar with
white stripes, DkasB pMV261-kasB; red bar, KasB_T334D/T336D; and red bar with white stripes, KasB_T334D/T336D pMV261-kasB.
doi:10.1371/journal.ppat.1004115.g007
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E2-FASII which may in turn affect the activation of E2-FASII,

leading to shortened mycolates. This would be missed in in vitro

assays using single purified proteins.

To address the possibility that phosphorylation of KasB could

also affect the localization of the protein, recombinant strains of M.

smegmatis and M. bovis BCG expressing green fluorescent protein

(GFP)-tagged KasB variants proteins were produced, comprising

wild-type KasB, a phosphoablative (T334A/T336A) and a

phosphomimetic (T334D/T336D) KasB isoform. We found that

all KasB/eGFP fusion proteins localized in the mycobacterial cell

wall, mostly on the bacterial poles (Figure S7 in Text S1). These

findings strongly suggest that mycolic acid biosynthesis takes place

during mycobacterial division at the bacterial poles and indicate

that phosphorylation of KasB does not affect its localization in

mycobacteria. Therefore, one can hypothesize that the primary

consequence of KasB phosphorylation in vivo, is very likely to result

in alteration of its enzymatic activity.

A recent study revealed that there were no detectable

differences in the thickness of the cell envelope among the wild-

type Mtb and DkasB mutant as determined by conventional

transmission electron microscopy [41]. However, cryo-electron

microscopy demonstrated that the region between the inner and

outer membranes of the mutant strain, mainly composed of

mycolic acids, showed a significant decrease in electron density as

compared to the wild-type strain, suggesting that the altered

mycolic acid pattern in the DkasB mutant may have affected the

packing of the lipid-rich layer of the envelope [41]. One may

hypothesize that the attenuated pathogenicity of the KasB

phosphomimetic strain results in the increased permeability of its

cell envelope due to the reduction in the number of tight bundles

of mycolic acids, which facilitates the direct attack of effector

molecules from the host cells. This altered mycolic acid packing

and/or reduced chain length may also be responsible for the

reduced capture of the dye, leading to loss of acid-fastness.

Previously, we have demonstrated that the mycolic acid

cyclopropane synthase PcaA, which introduces cis-cyclopropane

rings at the proximal position in a-mycolic acids, was phosphor-

ylated by STPK [17]. As for KasB, phosphorylation of PcaA was

associated with a significant decrease in the enzymatic activity. A

PcaA phosphomimetic (T168D/T183D) strain, like the DpcaA

mutant, exhibited reduced survival in human macrophages and

was unable to prevent phagosome maturation, compared to the

wild-type strain. This added new insights into the importance of

mycolic acid cyclopropane rings in the phagosome maturation

block and provided the first evidence of a Ser/Thr kinase-

dependent mechanism for modulating mycolic acid composition

and phagosome maturation block [17]. The present study extends

these results by adding KasB in the growing list of virulence factors

associated with mycolic acid metabolism, whose activities are

directly regulated by phosphorylation. However, in contrast to

PcaA, phosphorylation of KasB significantly altered colonization

of macrophages and, unexpectedly, this phenotype was not shared

by the DkasB strain. These differences were reflected in the

different transcriptional profiles between the two strains. Among

these transcriptional differences, specific up-regulation of the PAT

biosynthetic gene cluster occurred in the phosphomimetic strain

and correlated with increased production of PAT. Earlier studies

demonstrated that PAT deficiency affects the surface global

composition of the mycobacterial cell envelope, improving the

efficiency with which Mtb binds to and enters phagocytic host cells

[42], implying that PAT production affects early interaction

between Mtb and macrophages. From these results, one can

propose that the increased PAT production in the KasB

phosphomimetic strain could be, at least partially, responsible

for the decreased uptake by macrophages, which in turn may also

explain the attenuation of the phosphomimetic mutant in mice. As

shown in Figure S8 in Text S1, the phosphomimetic strain also

Figure 8. Expression of PAT in the M. tuberculosis kasB variants.
Left panel: autoradiographs of thin layer chromatograms of apolar lipids
derived from [1-14C]-propionate labeling in the various Mtb KasB strains
and complemented strains carrying pMV261-kasB. Total lipids (6,000
counts) were loaded on TLC plates and developed thrice in petroleum
ether/acetone (92:8, v/v) in the first direction and once in toluene/
acetone (95:5, v/v) in the second direction. Right panel: quantification of
the PAT production (corresponding to the circled spots in left panel).
Results are expressed in fold increase relative to the parental strain.
Results are representative of two independent experiments.
doi:10.1371/journal.ppat.1004115.g008
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produced PDIM, thus excluding the possibility that the attenuated

phenotype of the phosphomimetic strain could be a consequence

of the loss of PDIM. However, as suggested by the microarray

data, multiple genes belonging to different classes such as

adaptation, cell wall processes, intermediary metabolism, and

respiration or regulatory proteins were found to be differentially

regulated between the KasB phosphomimetic and knock-out

strains. They may also, in addition to the PAT biosynthetic genes,

participate in the phenotypic differences between the two strains.

Analysis of the phosphorylation status of KasB in BCG using

anti-phosphothreonine antibodies indicated that phosphorylation

was more prominent in stationary cultures than in replicating

cultures. These finding are reminiscent of those reporting that

phosphorylation of the FASII HadAB and HadBC complexes is

growth phase-dependent and that phosphorylation occurred at

higher levels in non-replicating bacteria [12], suggesting that

phosphorylation is a mechanism by which mycobacteria might

tightly control mycolic acid biosynthesis under non-replicating

conditions. Mtb bacilli have two signature characteristics: acid-fast

staining and the ability to cause long-term latent infections in

humans. Acid-fast staining, such as Ziehl-Neelsen (ZN) staining,

remains the cornerstone of diagnosis of TB, particularly in poor

countries where the infection is highly prevalent [43]. Dormant

bacilli have distinct structural alterations in the cell wall and are

ZN-negative [44]. It is noteworthy that in a high percentage of

patients exhibiting TB symptoms, analysis of patient’s tissue

samples may be positive for culture of mycobacteria and PCR

analysis but negative for ZN staining. However, the reason(s) for

the loss of acid-fastness during dormancy remain(s) unknown. A

connection between loss of acid-fast staining and latent infection

had been reported for a kasB deletion mutant [14] suggesting that

regulation of KasB activity may cause these linked phenotypes.

The present work provides the first evidence that phosphorylation

of KasB correlates the loss of acid-fast staining and a loss of

virulence allowing us to hypothesize that Mtb regulates these two

related phenotypes through a signal transduction pathway.

Further work will need to be done to elucidate these signals and

determine which specific kinases regulate them in vivo. This

knowledge might lead to better understanding of the molecular

signals that trigger reactivation and TB disease. Although we show

here that phosphorylation of KasB was more pronounced in

stationary phase, additional studies are required to demonstrate

whether this also happens in persistent mycobacteria and if it

would result in the loss of acid-fast staining. This would open the

way to improved methods for the diagnosis of latent TB infections.

Materials and Methods

Ethics statement
All animal experiments and protocols described in the present

study were reviewed and approved by the Animal Use and Care

Committee of the Albert Einstein College of Medicine (Bronx,

NY) complying with NIH guidelines under the Animal Study

Protocol 20120114.

Bacterial strains, plasmids, phage and growth conditions
Strains used for cloning and expression (Table S2 in Text S1) of

recombinant proteins were E. coli TOP10 (Invitrogen) and

Figure 9. Representation of the in vivo consequences of STPK-dependent phosphorylation of KasB. Changes in cell wall and mycolic
acid composition to various environmental stimuli are central to Mtb adaptation during infection. In response to external cues, STPKs undergo
autophosphorylation, which in turn induces phosphorylation of KasB on Thr334 and Thr336. This presumably results in inactivation of KasB activity,
thus directly affecting the activity of the elongation 2 FASII complex (E2-FASII) catalyzing the addition of the last carbon atoms required for full-length
meromycolic acids. This leads to the production of shorter mycolic acids which is associated to dramatic phenotype changes, such as loss of acid-
fastness, decreased cell wall permeability, severe attenuation in infected mice and defect in macrophage colonization.
doi:10.1371/journal.ppat.1004115.g009
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BL21(DE3)pLysS (Novagen) or BL21(DE3)Star (Novagen) grown

in LB medium at 37uC. Media were supplemented with ampicillin

(100 mg ml21) or kanamycin (25 mg ml21), as required. Mycobac-

terial strains used (Tables S1 and S2) were usually grown on

Middlebrook 7H10 agar plates with OADC (oleic acid, albumine,

dextrose, catalase) enrichment (Difco). Liquid cultures were

obtained by growing mycobacteria either in Sauton’s medium or

in Middlebrook 7H9 (Difco) supplemented with 10% OADC

enrichment, 0.2% (v/v) glycerol, and 0.05% (v/v) tyloxapol

(Sigma) supplemented with either kanamycin (25 mg ml21) or

hygromycin (75 mg ml21) when required. The multicopy expres-

sion plasmid pVV16 was reported earlier [45]. All plasmids used

in this study are listed in Table S2 in Text S1 and the shuttle

phasmid phAE159 was described previously [18,46,47].

Cloning, expression and purification of recombinant
KasB-derived mutant proteins

The kasB gene was cloned into pCR-bluntII-TOPO using

primers NtermKasB and CtermKasB (Table S3 in Text S1) to

yield pCR-bluntII-TOPO::kasB. Site-directed mutagenesis was

performed directly on pCR-bluntII-TOPO_kasB using inverse-

PCR amplification with self-complementary primers (Table S3 in

Text S1) carrying the desired mutation. The modified genes were

subcloned in pETPhos using NdeI and NheI restriction sites,

generating pETPhos_kasB_WT, pETPhos-kasB_T334A/T336A

and pETPhos_kasB_T334D/T336D (Table S2 in Text S1). All

constructs were verified by DNA sequencing. Recombinant KasB

proteins were overexpressed in E. coli BL21(DE3)Star (Novagen)

and purified as described previously [9]. Fractions containing pure

KasB proteins were pooled, dialyzed when required and stored at

220uC until further use. The kasB gene was further subcloned

from pETPhos_kasB_WT by NcoI/HindIII digest and ligated into

pCDFDuet_1 vector already containing the PknF kinase domain

[18], thus yielding pETDuet_kasB which allows co-expression of

both PknF and KasB (Table S2 in Text S1).

A DkasB BCG mutant was transformed with either

pVV16_kasB_WT [8] or pVV16_kasB_T334A/T336A which

was derived from pVV16_kasB_WT by site-directed mutagenesis

using inverse-PCR amplification with self-complementary primers

carrying the desired mutation (Table S3 in Text S1). Transfor-

mants were selected on Middlebrook 7H10 supplemented with

OADC enrichment, 50 mg ml21 hygromycin and 25 mg ml21

kanamycin and grown in Sauton’s broth containing the same

antibiotics. Exponential and stationary phase cultures were

harvested, lyzed using a French Pressure Cell and purification of

soluble KasB and KasB_T334A/T336A proteins was performed

on Ni-NTA agarose beads as described earlier [8].

Construction of transducing mycobacteriophages
carrying kasB mutations

Mycobacteriophages used for transduction were prepared as

described previously [47]. Briefly, kasB was PCR-amplified from

the plasmids pETPhos_kasB carrying either the T334A/T336A or

the T334D/T336D double mutations using the primers LL2 and

LR1 (Table S3 in Text S1). accD6 was PCR-amplified using the

primers RL and RR (Table S3 in Text S1). The kasB and accD6

PCR fragments were digested with AlwN1 and Van9I1, respec-

tively and ligated with the 1.6 kb and 3.6 kb fragments of Van9I1-

digested pYUB1471 (Table S2 in Text S1). The resulting plasmids

were digested with PacI and ligated with the Pac1-digested shuttle

phasmid phAE159. After packaging in vitro, the resulting phasmids

were electroporated into M. smegmatis and the phages were

amplified to obtain high-titer phage lysates.

Specialized transduction experiment
Mtb (50 ml) was grown to log phase, washed twice with

mycobacteriophage (MP) buffer (50 mM Tris, 150 mM NaCl,

10 mM MgCl2, 2 mM CaCl2; 50 ml) and resuspended in 5 ml of

MP buffer. For each transduction experiment, 0.5 ml of cell

suspension was mixed with 0.5 ml of high-titer phage lysate. The

suspension was incubated at 37uC for 4 h without shaking, spun

down, resuspended in 0.2 ml of 7H9 media (see above) and plated

on 7H10 plates supplemented with hygromycin. Plates were

incubated at 37uC for 4–5 weeks and transductants were picked

and patched onto two hygromycin-containing plates. Colonies

from one Hyg plate were used for DNA isolation using InstaGene

Matrix (BioRad). PCR was performed using 5 ml of DNA for a

50 ml PCR reaction with the primers kasB_F and kasB_R (Table

S3 in Text S1) and the resulting products were sequenced to check

for the presence of the desired mutations. Southern blotting was

done on genomic DNA isolated from Hyg-resistant transductants

digested with BglII and probed with the kasB or kasA gene to

confirm the allelic exchange and kasB deletion, respectively.

Acid-fast staining
The kasB mutants were grown to log phase and 10 ml of culture

were spread onto a glass slide. The slides were heated at 100uC for

2 min, dipped into 10% formalin for 30 min, dried and stained

using the TB Fluorescent Stain Kit M (BD, Auramine staining) or

the TB Stain Kit K (BD, Carbolfuchsin staining).

Mouse experiments
SCID mice and C57BL/6 mice (Jackson Laboratories) were

infected via the aerosol route using a 26106 CFU/ml mycobac-

terial suspension in PBS containing 0.05% tyloxapol and 0.04%

antifoam. Five mice from each group were sacrificed at day 1, 7,

21 and 56 to determine the bacterial burden in the lung, spleen,

and liver (one aerosol experiment was carried on for 119 days). Six

mice per group were kept for survival experiments. All mice

infected with Mtb were maintained under appropriate conditions

in an animal biosafety level 3 laboratory.

Growth in primary macrophages
C57BL/6 mice were used to obtain bone marrow-derived

macrophages (BMDM). Isolated femurs were flushed with

Dulbecco modified Eagle medium (DMEM; Gibco) supplemented

with 10% heat-inactivated fetal bovine serum (FBS), 2 mM L-

glutamine, and 16non-essential amino acids (complete DMEM).

The cells were cultured for 7 days in complete DMEM containing

M-CSF (ebioscience) at 30–50 ng/ml, and then seeded into 24-

well plates (,46105 cells/well) or 48-well plates (,26105 cells/

well) as described previously [48]. The cells were allowed to

adhere overnight prior to infection. The strains were grown as

described above, washed and resuspended in DMEM supple-

mented with 10% FBS and diluted in this medium to achieve the

appropriate titer. The bacteria were added to the wells at an

approximate multiplicity of infection (MOI) of 1. Following 4 hrs

incubation at 37uC to permit bacterial uptake, macrophage

monolayers were washed twice with PBS to remove extracellular

bacteria, following which wells were replenished with complete

DMEM containing M-CSF at 10–50 ng/ml. At various times after

infection, the medium in each well was removed to a tube

containing sufficient SDS to give a final concentration of 0.025%;

the cell monolayers were lysed with 0.025% SDS and combined

with the medium. Lysates were diluted in PBS and plated onto

Middlebrook 7H10 (see above) for determination of bacterial

numbers.
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RNA extraction for qRT-PCR
Mtb strains were cultured to an OD600 of 0.5 in 7H9 broth

supplemented with OADC, 0.2% glycerol and 2.5 ml 20% Tween

80. Cells were pelleted at 4500 rpm in 15 ml falcon tubes for

15 min, decanted, resuspended in 1 ml Trizol reagent (Invitro-

gen), and then transferred into new 2 ml screw cap microcen-

trifuge tubes containing 0.5 ml of zirconia-silica beads (diameter,

0.1 mm). Bacteria were disrupted in a Bead Beater (FastPrep Cell

Disrupter, FP120) using two 45 second pulses at maximum speed

of 6.5 m/sec, incubated on ice for 5 min, then 250 ml of

chloroform was added, following by vigorous mixing for 15 s

and then a 2–3 min room temperature incubation. Samples were

then centrifuged at 12, 000 g for 5 min and the upper clear phase

transferred carefully to a new tube and mixed with an equal

volume of 70% ethanol, applied to an RNeasy mini column

(QIAGEN) and processed according to the manufacturer’s

recommendations.

Reverse transcription real time PCR
Five mRNA targets (kasB, cma2, sigA, 16S and rrnAP1) were

reverse-transcribed, using a QuantiFast Multiplex RT-PCR kit

(QIAGEN) according to the manufacturer’s recommendations

using a primer specific for each target gene. The conditions for

Reverse Transcription PCR were 50uC for 50 min, 95uC 2 min.

The amount of cDNA produced was quantified by real time PCR

with the corresponding molecular beacon. All primer and

molecular beacon sequences are listed in Table S4 in Text S1.

The 10 ml PCR reaction mixture consisted of 16 PCR buffer,

250 mM dNTPs, 4 mM MgCl2, 0.5 mM each primer, 5 ng/ml

molecular beacon and 0.03 U/ml Jumpstart Taq polymerase

(Sigma-Aldrich). In order to normalize the individual reactions 6-

carboxy-x-rhodamine (ROX) was always included as passive

reference dye. PCRs were performed in 384-well microtiter plates

in an ABI 7900 Prism (Applied Biosystems, Foster City, CA)

according to the following parameters: initial denaturation at 95uC
for 1 min, followed by 50 cycles of denaturation at 95uC for

30 seconds, annealing at 58uC for 30 seconds, and extension at

72uC for 15 seconds. PCR conditions were identical for all assays.

The fluorescence was recorded during the annealing step of the

assay. The quantity of specific target DNA was determined from

the threshold cycle (CT) value with reference to a standard curve

of genomic DNA. The copy numbers of target standards used

ranged from 1 to 10E6 genomic copies per reaction (i.e. 10 fg to

10 ng DNA from CDC1551 strains). The lower limit of detection

for each of the five assays was 10 fg which is equivalent to 1–5

copies of cDNA. RT reactions were performed in triplicate. The

data for kasB and cmaA2 was normalized against 3 different control

genes viz. sigA, rrnAP1 and 16S rRNA [49,50,51]. The mean of

each triplicate was used in calculations.

Microarrays
Triplicate samples were prepared by harvesting growing

cultures of Mtb CDC1551 KasB strains (OD600 nm<1). Extraction

of RNA, preparation of cDNA, and microarray analysis were

performed as described previously [52]. The array data have been

deposited in the Gene Expression Omnibus at NCBI with

accession number GSE47640.

In vitro kinase assay
In vitro phosphorylation was performed as described [53] with

4 mg of KasB in 20 ml of buffer P (25 mMTris-HCl, pH 7.0; 1 mM

DTT; 5 mM MgCl2; 1 mM EDTA) with 200 mCi ml21 [c-33P]ATP

corresponding to 65 nM (PerkinElmer, 3000 Ci.mmol21), and 0.2 to

1.0 mg of PknF kinase in order to obtain its optimal autophospho-

rylation activity for 30 min at 37uC. Cloning, expression and

purification of the PknFGST-tagged kinase from Mtb were described

previously [8].

Immunoblotting
Bacteria were disrupted by bead beating with 1-mm-diameter

glass beads and the total protein concentration in each cell lysate

was determined using a bicinchoninic acid (BCA) protein assay

reagent kit (Pierce). Equal amounts of proteins (20 mg) were

separated on 12% SDS-PAGE gels and were transferred to a

nitrocellulose membrane. The membrane was saturated with 1%

BSA in PBS/Tween 0.1% and either probed with rat anti-KasA

antibodies (dilution1:500) [54], rabbit anti-AccD6 antibodies

(dilution, 1:1,000) [55] or anti-phosphothreonine antibodies

(dilution, 1:1,000) (Cell Signaling). After washing, the membrane

was incubated with either secondary antibodies labeled with

IRDye infrared dyes (Odyssey Classic) or alkaline-conjugated anti-

rabbit secondary antibodies (dilution, 1:7,000) and revealed with

BCIP/NBT, according to the manufacturer’s instructions.

Mycolic acid extraction and purification
50–100 ml cultures of Mtb strains were grown to mid-log phase

in Middlebrook 7H9 medium at 37uC. Cells were harvested and

FAMEs and MAMEs were extracted as reported [56], subjected to

one-dimensional thin layer chromatography (TLC) with silica gel

plates (silica gel 60F254; Merck, Germany) and developed in

hexane/ethyl acetate (19:1, v/v; 3 runs). Lipids were revealed by

spraying the plates with molybdophosphoric acid followed by

charring. a-, methoxy- and keto-mycolic acids were then purified

using preparative TLC plates and detection by spraying with

ethanolic Rhodamine 6G to visualize the lipids under a UV lamp.

Areas corresponding to the different mycolic acid subspecies were

scrapped off the plates and extracted from the silica gel with diethyl

ether. Samples were then resolved again on a second preparative

TLC plate and re-extracted. Purity of the mycolates was then

assessed on a standard TLC plate in hexane/ethyl acetate (19:1, v/

v; 3 runs) prior to NMR and MALDI-TOF analysis.

Extraction and analysis of PAT
Mtb cultures (10 ml), grown in Middlebrook 7H9-OADC-

glycerol-tyloxapol to an OD600 nm of 0.2, were treated with either
14C-acetate (10 mCi) or 14C-propionate (20 mCi) for 20 h or 2

days, respectively. Apolar lipids were extracted by mixing the cell

pellets with methanol (2 ml), 0.3% aqueous NaCl solution (0.2 ml)

and petroleum ether (1 ml) for 15 min. The suspensions were

centrifuged and the upper petroleum ether phases were removed.

The cell pellets were extracted a second time with petroleum ether

(1 ml) for 15 min. The petroleum ether phases were combined,

dried, and resuspended in dichloromethane (0.2 ml). The same

amount of cpm was loaded onto a Silica gel 60 F254 250-mm

aluminum plate (10610 cm) and eluted [1st dimension:petroleum

ether/acetone 23:2, 63; 2nd dimension:toluene/acetone 19:1].
14C-Radiolabeled species were detected by autoradiography after

exposure at 280uC for 2 days on X-ray film.

NMR analyses
For NMR analyses, MAMEs were dissolved into deuterated

chloroform containing 0.01% of TMS and transferred into Shigemi

tubes matched for D2O. Then 0.1 ml of deuterium oxide was added

to avoid solvent evaporation during long acquisition. 1D proton NMR

spectra were recorded at 300K on a 400 MHz Avance II Bruker

spectrometer equipped with a 5 mm broad-band inverse probe.
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Mass spectrometric analyses
Mass spectrometric analyses of MAMEs were performed on a

Voyager Elite reflectron MALDI-TOF mass spectrometer (Per-

SeptiveBiosystems, Framingham, MA, USA), equipped with a

337 nm UV laser. Samples were solubilized in 1 ml chloroform/

methanol (2:1, v/v) and mixed on target with 1 ml of 2,5-

dihydroxybenzoic acid matrix solution (10 mg/ml dissolved in

chloroform/methanol 2:1, v/v).

Supporting Information

Text S1 Contains supplementary Materials and Methods, supplemen-

tary Tables 1–4, supplementary Figures 1–8 and references.
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