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Abstract

A phenomenological damage model is proposed to account for the strain rate dependency of the damaging
processes at high temperature. Mechanical softening during tertiary creep and monotonic tension are modeled by
an isotropic scalar internal variable D, whose evolution is described using a rate damage law dD/dt = · · · gov-
erned by visco-plasticity and accounting for the enhancement by stress triaxiality. A novel rate sensitive damage
threshold is introduced in order to reproduce the rate dependency of the onset of damaging processes. Damage
evolution is coupled with the visco-plasticity model developed by the same authors for single crystal superalloys
and accounting for microstructural evolution (like γ ′-rafting and coarsening) in Desmorat et al (2017). The curves
presented in this article are identified at 1050◦C for the Ni base single crystal superalloy CMSX-4 but the pro-
posed rate sensitive threshold modeling can be applied to other alloys showing a rate sensitive damage onset, as
for example the single crystal superalloys MC2 but also the polycristalline aggregate AD 730TM.
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1. Introduction

Nickel-based single crystal superalloys are state of the art materials for the design of high temperature compo-
nents of aero-engines and land-based gas turbines for power generation (Pollock and Tin, 2006, Reed, 2006). They
are typically used for the manufacturing of first stages of blades and vanes in such gas turbines and they can even
be used for the manufacturing of intermediate and low pressure (uncooled) turbine blades in the most advanced
engines for aircraft propulsion. During service operations, in addition to the degradation of the microstructure for
temperature in excess of 900◦C under the form of γ′ rafting and/or coarsening (the interested reader is referred to
previous publications describing the driving forces for γ′ rafting (Kamaraj, 2003, Epishin et al, 2000, Reed et al,
1999)), different kind of damage may develop along a blade profile, involving creep and/or fatigue and/or oxidation
assisted damage, depending on the type of engine and operating conditions. As an example, creep is the main life
limiting solicitation for uncooled turbine blades while thermo-mechanical fatigue damage are mainly observed for
internally cooled components (Zhang, 2016). In the present paper, a special focus will be paid to damage, with
a special emphasis on identifying when its development, in the sense of a loss of the load bearing capacity, has a
major contribution to creep acceleration and monotonic tension softening. Given the variety in creep curves shapes
that can be encountered when changing creep conditions (Svoboda and Lukas, 1998, Reed et al, 1999, Matan et
al, 1999a, Reed, 2006, Kindrachuk and Fedelich, 2012), it is often difficult to clearly identify when cavitation or
development of cracks are really active based on the macroscopic creep curve. Damage, in the sense of a loss of
load bearing section, may already be active at low temperature/high stress despite no clear tertiary creep stage is
noticed (MacLachlan et al, 2002, MacLachlan and Knowles, 2001, MacLachlan et al, 2001), while at high tem-
perature, a continuous creep acceleration may be noticed (Epishin et al, 2001, Matan et al, 1999b), without any
noticeable increase in porosity, both in terms of pores density and pore volume fraction. Indeed, as noticed recently
by le Graverend et al (2017) using MC2 first generation Ni-based single crystal superalloy followed by X-ray to-
mography, the onset of tertiary creep in the 900◦C-1100◦C temperature range results from the γ/γ ′ microstructure
degradation, under the form of a topological inversion (Epishin et al, 2001, Matan et al, 1999b, Caron et al, 2008,
Epishin et al, 2000). This kind of microstructure degradation may be qualified as a microstructural damage and is
sometimes considered as a “true” damage (McLean and Dyson, 2000), even if not inducing a loss of stiffness or
load bearing capacity. Reed et al (2007) also observed that the very steep tertiary creep at 1150◦C / 100 MPa in
CMSX-4 Ni-based single crystal superalloy is not controlled by the initial pore volume/size. Indeed, creep lifetimes
of this alloy under these creep conditions remain unaffected after applying a Hot Isostatic Pressing (HIP) treatment
devoted to close pores. A similar conclusion was observed more recently by Steuer et al (2015) comparing creep
properties in a wide temperature range (from 750◦C to 1200◦C) using AM1 Ni-based single crystal superalloys
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processed using either a Liquid Metal Cooling or a standard Bridgman solidification techniques (both techniques
leads to different pore size distribution). Similar questions also arise about the monotonic tensile response. Many
literature studies show that at high temperatures (T>900◦C) and low strain rates ('10−5s−1) the monotonic tensile
response of this class of materials is characterized by the same deformation/damage mechanisms observed during
creep (Gabrisch et al, 1994, Cormier, 2006, Diologent, 2002, Giraud, 2013). Hence, damage mechanisms (i.e.
cavitation and γ ′ shearing) contribute to the degradation of the mechanical properties only when a certain amount
of softening —and thus of plastic deformation— has already been produced. Different deformation/damaging
mechanisms are instead observed during monotonic tensile tests performed at high temperature and higher strain
rates. In this case no time is left to the microstructure to evolve and to cavities to diffuse. Thus, deformation is
produced by the progressive filling of constant-size matrix channels by dislocations. Plastic damage, enhanced
by necking, takes places only at the end of the tests. Overall creep and tensile test results thus suggest that the
mechanical damage onset is a rate governed phenomenon.

In the context of Continuum Damage Mechanics (Lemaitre and Chaboche, 1985,1991, Lemaitre, 1992), kinetic
damage laws with loading dependent damage thresholds have been introduced: in the works of Lemaitre (1984)
for ductile rupture and Lemaitre and Doghri (1994) for High Cycle Fatigue and of Sermage et al (2000), Desmorat
and Otin (2008), Marull (2011), Chaboche et al (2013), Marull and Desmorat (2013) for creep-fatigue. In these
works, the loading dependency of the accumulated plastic strain at damage initiation is due to a formulation
of the damage threshold in terms of stored energy density (Lemaitre and Desmorat, 2005). The corresponding
constitutive equations apply to creep and fatigue —of a 2 1

4 Cr Mo steel, of HA188 alloy and of AM1 and CMSX-2
single crystal superalloys— but they do not model the ductility in monotonic tension, the ductility being defined
as the strain to fracture. A damage threshold has recently been considered in the works of Cornet et al (2011), of
Krairi and Doghri (2014) and, for MC2 single crystal superalloy, of le Graverend et al (2014a). It has been made
multiaxiality dependent in (Murakami and Hayakawa, 1998, Bouchard et al, 2011, Cao et al, 2014).

To answer the key question, which is when so-called mechanical damage starts to have a prominent contribution
to the material mechanical response, one will next use a microstructure modeling approach recently developed for
single crystal superalloys (Desmorat et al, 2017) and identified at 1050◦C for the CMSX-4 alloy. This visco-plastic
model (whose key points are described in the section 7), accounts for the γ ′-rafting, coarsening and dissolution.
According with what observed by le Graverend et al (2017), it is intended to describe the degradation of the
mechanical response until the firsts stage of tertiary creep (up to ' 2 − 5% of plastic deformation) and the first
mechanical softening observed during slow monotonic tension (up to ' 10% of plastic deformation). The objective
of the continuum damage modeling proposed in this article is then to describe the last stage of creep as well as
monotonic the tensile response of single crystal superalloys. The curves presented next are identified on the tests
considered in Desmorat et al (2017), but specific experimental tests have been performed expressly for the present
study in order to enrich the experimental database for the mechanical modeling.

Moreover, the formulation of Kelvin projectors for cubic materials will be based on the harmonic decomposi-
tion of the elasticity tensorEEE having cubic material symmetry (Backus, 1970, Onat, 1984, Olive et al, 2017b). This
will allow us to compute Kelvin projectors without using the spectral decomposition.

Finally, it has to be highlighted that a rate sensitive ductility at high temperature has been observed not only
for single crystal superalloys (Gabrisch et al, 1994, Cormier, 2006), but also for other materials presenting very
different deformation/damage mechanisms. Examples are the nano-twinned crystal of pure copper (Lu et al, 2005),
the oxide dispersion strengthened (ODS) steels (Steckmeyer, 2012) and the polycrystalline aggregates AD 730TM

(Thébaud et al, 2016), which all show a positive rate sensitivity of the (mechanical) damage onset and, as a
consequence, a positive rate sensitivity of the ductility. Thus, the damage model proposed in this article can be
used for modeling the monotonic mechanical response of other materials, having visco-plastic properties different
from the one observed for single crystal superalloys. Further details are given in next section, where the damage
modeling issues for CMSX-4 and AD 730TM are described.

2. Background and motivations

As mentionned, a positive rate sensitive ductility has been observed on γ′ hardened superalloys such as the AD
730TM and the CMSX-4 (Fig. 1 and Fig. 3).

For the AD 730TM this rate dependency can be attributed to oxidation: higher loading rates lead to a shorter
interaction with the environment and to a lower time to rupture (Fig. 1, Thébaud et al (2016)),

– at high strain rate ε̇, the specimens deform until the plastic damage —enhanced by necking— classically
leads to rupture (Kachanov, 1958, Rabotnov, 1969): in this case oxidation does not play a main role in the
damage process,

– inversely, during the tests performed at lower strain rate (ε̇ = 10−4s−1 in Fig. 1), oxidation has enough time
to develop and to contribute to the degradation of the material.

Fig. 2 is a post-mortem observation of an AD 730TM Fine Grain (FG) specimen tested under tensile creep at 700◦C
and 250 MPa. Since AD 730TM FG is a polycrystal, oxidation takes place at grain boundaries and it is present even
at 700◦C.

CMSX-4 has no grain boundaries, it is a Ni based single crystal superalloy. Its oxidation is observed only at
temperature in excess of 900◦C and this phenomenon does not impact significantly the mechanical response of the
material (Reed, 2006). At such temperature levels, the main causes of the material degradation are
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Figure 1: AD 730TM Fine Grain (FG): uniaxial tension tests at 750◦C (Thébaud et al, 2016)

Figure 2: AD 730TM Fine Grain (FG): post-mortem observation after tensile creep 700◦C and 250 MPa (Thébaud
et al, 2016).

– first, the microstructural evolution of the γ′ phase, i.e. the rafting phenomenon (Tien and Copley, 1971, Tien
and Gamble, 1972, Caron and Khan, 1983, Draper et al, 1989, Pollock and Argon, 1994, Reed et al, 1999)),

– second, after a non negligible threshold, the standard plastic damage (le Graverend et al, 2017, Link et al.,
2006, Srivastava and Needleman, 2015).

Two types of microstructural evolution affect the CMSX-4 response: the rafting and coarsening of the harden-
ing phase.

The first consist in a morphology change of the cubic γ − γ′ microstructure. The coexistence of the two γ/γ′
crystal phases having different lattice parameters produces internal residual stresses at the microscale (Pollock
and Argon, 1994, Kamaraj, 2003). When the equilibrium of the internal stress is perturbed by the external loads,
the potentials of the chemical species change and a diffusive phenomenon, enhanced by visco-plasticity, takes
place (Biermann et al., 1996, Epishin et al, 2000, Mughrabi, 2009). The mass transport direction depends on
the crystal direction solicited and cause the migration of the hardening species from the more loaded to the less
loaded matrix channels. During tensile creep along 〈001〉 this leads to the saturation of vertical channels and to the
widening of the horizontal ones (Fig. 4). Precipitates then became plate-shaped and γ horizontal channel appear
wider and longer. Since the direction of such a diffusive phenomenon depends on the internal stress state, the γ′
coalescence depends on the crystallographic orientation and it tends to respects the crystal symmetry. A different
morphology of the degraded microstructure is observed if the loading is performed along 〈111〉 crystallographic
orientation, called ”mechanical coarsening” of the γ′ phase as the γ channel widths equally increase in the three
space directions (Fig. 5). The γ′ coarsening consist of an Ostwald-ripening like phenomenon (Ostwald, 1897).
This consists in a homothetic growth of the γ−γ′ (cubic or plate-shaped) microstructure which causes an additional
widening of the active γ channels.

Concerning the observation technique, mirror surface finish has been realized after slow cooling by performing
mechanical polishing up to 4000 SiC with grit papers and then by polishing with 3µm and 1µm diamond solutions.
A final chemical etching with acqua ragia (1/3 HNO3 + 2/ HCl / vol. part) has been used to reveal the γ/γ′
microstructure. Scanning Electron Microscopy (SEM) is realized using a Jeol 7000F microscope.

These microstructural evolutions have a detrimental impact, time dependent, on the tensile response (Gabrisch
et al, 1994, Diologent, 2002): as in the oxidation case, the diffusive process has time to set when the loading
rate is low enough. For this reason a gradual softening is observed during the tensile test at 10−5s−1 on a 〈001〉
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oriented CMSX-4 specimen (Fig. 3a, the linear part of the softening up to ε ≈ 0.15 is at zero damage). On the
contrary, a higher loading rate leads to shorter time to rupture but larger rupture strain: the tensile tests at strain
rates ε̇ ≥ 10−4s−1 are too quick for the γ′ evolution to occur.

Figure 3: Stress-strain curves of CMSX-4 at different strain rates (1050◦C). Computed Orowan stress σORO re-
ported. (a) crystallographic orientation 〈001〉, (b) crystallographic orientation 〈111〉.

The main cause of the initial plastic strain (convex) acceleration in creep of CMSX-4 at 1050◦C is the mi-
crostructure degradation (Fig. 4). It is not mechanical damage: indeed it has been shown that microcracks or
cavities growth takes place in a second step (le Graverend et al, 2017). As observed in Fig. 6, final failure at dif-
ferent applied stresses results from the linkage of micro-cracks initiated from different interdendritic casting pores.
Indeed, these pores, already present before any inelastic deformation, may coarsen during high temperature/low
stress creep (see, e.g., Link et al. (2006)). According to Fig. 6, it is seen a greater density of cracked casting pores
close to the fracture surface due to a locally higher triaxiality. According to le Graverend et al (2017), such a
kind of pore cracking —represented next by scalar damage variable D— occurs in the very last stages of the creep
curve, far in excess of 1-2 precent(s) creep strain under the investigated creep conditions.

Thus, continuous damage D in the sense of Continuum Damage Mechanics occurs only when a sufficient
amount of plastic deformation, pD, is reached. Such a damage threshold is also observed in monotonic tension
(the onset of final acceleration of the softening in Fig. 3): concerning the tests at ε̇ ≥ 10−4s−1, for which almost
no microstructural evolutions take place, the samples deform first with a plateau (no damage); the plastic damage,
enhanced by necking, occurs only in a second stage at large enough plastic strains (> 0.18).

From a mechanical point of view, previous observations allow us to define a damage threshold pD in terms of
accumulated plastic strain p =

∫
( 2

3 ε̇
p : ε̇ p)1/2dt, such as as long as the accumulated plastic strain remains below

pD there is no damage growth (Lemaitre, 1984):

p < pD −→ D = 0 (1)

Contrary to standard results (Lemaitre, 1992, Lemaitre and Doghri, 1994, Sermage et al, 2000), the damage
threshold will next be made dependent, in an original manner, on the accumulated plastic strain rate. Remark that
threshold pD
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Figure 4: γ/γ′ microstructure evolution (rafting) of CMSX-4 Ni-based single crystalline superalloys: (a) initial
morphology at 1050◦C, γ channel widths w1 ≈ w2 ≈ w3 ≈ w0, (b) after 101 h of creep at 1050◦C and 140 MPa
along 〈001〉, w1 > w0 and w2 = w3 = 0.

Figure 5: γ/γ′ microstructure evolution of CMSX-4 Ni-based single crystalline superalloys: (a) initial morphology
at 1050◦C, γ channel widths w1 ≈ w2 ≈ w3 ≈ w0, (b) morphology after 67 h of creep at 1050◦C and 200 MPa
along 〈111〉, w1 ≈ w2 ≈ w3 > w0.

– is of the order of magnitude of a few percent in creep (assumed to be the limiting case ṗ ≈ 0),

– and reaches almost 0.2 (i.e. 20%) in tension at 10−3s−1.

Proposed modeling will be applied to CMSX-4 superalloy. In order to account for the rafting phenomenon and for
the mechanical damage, both in creep and in tension at different strain rates, we use then the tensorial representation
of the γ channel width proposed in (Desmorat et al, 2017). Kelvin modes based formulations of anisotropic (cubic)
visco-plasticity (Cowin et al, 1991, Biegler and Mehrabadi, 1995, François, 1995, Bertram and Olschewski, 1996,
Arramon et al., 2000, Mahnken, 2002, Desmorat and Marull, 2011) will be introduced and a link between Kelvin
decomposition and harmonic decomposition of cubic elasticity made (Section 4).

The decrease of the yield stress and the acceleration of plastic strain rate due to γ ′ rating phenomenon are
attributed to Orowan stress, inversely proportional to the γ channel width (Benyoucef et al., 1993, Fedelich et
al, 2009, Tinga et al, 2009, Cormier and Cailletaud, 2010a, Staroselsky et al, 2011), denoted σORO when directly
summed to yield stress σy in a macroscopic criterion function, possibly anisotropic. Fig. 3 shows that it evolves
only at low strain rate ε̇ ≤ 10−5s−1 (dotted lines, CMSX-4 at 1050◦C).
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Figure 6: Post-mortem observations of CMSX-4 specimens, after a creep test at 1050◦C and 140 MPa (left), and
after a creep test at 1050◦C and 200 MPa (right).

3. Generalities on continuous damage

Isotropic damage evolution laws for metals are mainly of two kinds: micromechanically based and phenomeno-
logical. To the first kind belong the Rice-Tracey-Gurson porosity growth damage models (Rice and Tracey, 1969,
Gurson, 1977, Tvergaard and Needleman, 1984), extended to visco-plasticity in (Pan et al, 1983, Tvergaard and
Needleman, 1986, Leblond et al, 1994, Hao and Brocks, 1997, Gaffard et al, 2005, Besson, 2009a, Mbiakop et al,
2015, Srivastava and Needleman, 2015, Ling et al, 2017). To the second kind belong the pioneering damage mod-
els for tertiary creep (Kachanov, 1958, Rabotnov, 1969) and the Lemaitre-Chaboche phenomenological damage
models (Lemaitre and Chaboche, 1985,1991, Lemaitre and Dufailly, 1987, Lemaitre, 1992, Altenbach and Kruch,
2013), coupled to visco-plasticity in (Chaboche, 1979, Benallal et al, 1988, Saanouni and Chaboche, 1989, Saa-
nouni et al, 1994, Sermage et al, 2000, Lemaitre and Desmorat, 2005, Krairi and Doghri, 2014). For both families
of models, including for first kind the representation of void nucleation (Chu and Needleman, 1980), the damage
rate is proportional to the accumulated plastic strain rate ṗ and enhanced by the stress triaxiality

TX =
σH

σeq
=

1
3

trσ
σeq

(2)

with σH = 1
3 trσ the hydrostatic stress and σeq = ( 3

2σ
′ : σ′)1/2 von Mises (1928) stress, (·)′ = (·) − 1

3 tr(·) 1
denoting the deviatoric part.

The stress level has a strong effect in Lemaitre’s damage law when written, for p ≥ pD (Lemaitre and Dufailly,
1987)

Ḋ =

(Y
S

)s
ṗ Y =

1
2
εe : EEE : εe =

1
2
σ̃ : EEE−1 : σ̃ (3)

with Y the strain energy release rate density, εe the elastic strain, σ̃ = σ/(1 − D) the effective stress. According to
the principle of strain equivalence (Lemaitre, 1971, Lemaitre and Chaboche, 1985,1991) the elasticity law coupled
with damage writes σ̃ = EEE : εe (with EEE elasticity tensor of virgin material). The damage parameters are S , the
damage strength, and s, the damage exponent. Damage law (3) leads then to a rate dependent ductility (Lemaitre
and Desmorat, 2005, Besson, 2009b), but the higher the stress level the lower the ductility. Some authors prefer
then to use —even in high strain rate visco-plasticity (Borvik et al, 2002)— the damage law

Ḋ = ARs
ν ṗ H(p − pD) Rν =

2
3

(1 + ν) + 3(1 − 2ν)
(
σH

σeq

)2

(4)
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with Rν Lemaitre’s triaxiality function, ν Poisson’s ratio, A and s as damage parameters and where H(x) is Heavi-
side function. This evolution law may be rewritten (Lemaitre and Chaboche, 1985,1991)

Ḋ =
Rs
ν

εpR − pD
ṗ H(p − pD) (5)

in order to make appear the accumulated plastic strain to rupture εpR and the damage threshold pD, both identified
in monotonic tension in Eq. (5).

Damage law (4) is in fact derived from a rate independent analysis with isotropic elasticity when the effective
stress saturates at the ultimate stress σu, a material constant then, so that for p ≥ pD (Lemaitre, 1992)

Ḋ =

 σ̃2
eqRν

2ES

s ṗ ≈ ARs
ν ṗ with A =

(
σ2

u

2ES

)s
(6)

Setting A as a material parameter and using law Ḋ = ARs
ν ṗ —with s = 0 in (Borvik et al, 2002) recovering then Chu

and Needleman (1980) nucleation term— for visco-plasticity coupled with damage analyses leads to a constant
ductility independent from the loading rate (but dependent of the stress triaxiality for s > 0). This is the damage
law that we propose next to generalize (with s = 1 for the sake of simplicity).

A possibility to account for the rate dependency exists, usually dedicated to dynamics and impact (Johnson and
Cook, 1985): to enforce a zero damage threshold (this needs to make nonlinear the damage law) and to consider
as rate dependent the damage parameter A (in an equivalent manner to make rate dependent the plastic strain to
rupture εpR within Eq. (5)). This would make difficult the modeling of tertiary creep which may exhibit quite
large strains to rupture (> 0.1–0.2) after a secondary creep stage at very low strain rate. Another possibility, used
by Naumenko et al (2011), is to enforce an adequate stress dependency of the plastic strain to rupture εpR within
damage law (5), the stress being rate dependent by the viscosity law. It is then very difficult to model both tertiary
creep at different stress levels and monotonic tension at different strain rates. Naumenko et al (2011) mention
that in monotonic tension the acceleration of the stress softening at high strains is then not reproduced (by taking
pD = 0 and by adding a strong nonlinearity of the damage evolution).

We propose in present work to gain a positive rate sensitivity of the ductility by introducing a rate dependent
damage threshold pD such as in Eq. (1) but formulated in an equivalent manner by means of a rate dependent
threshold criterion fD such as

fD < 0 −→ D = 0 (7)

We will formulate this threshold in the case of cubic material symmetry in Section 6.

4. Cubic elasticity from harmonic decomposition

In order to model the cubic anisotropy encountered for single crystal superlloys, such as CMSX-4, we now
use the elasticity framework. We first present adequate mathematical tools: harmonic decomposition (Schouten,
1951, Backus, 1970, Spencer, 1970), Kelvin stresses and projectors (Kelvin, 1856, 1878, Rychlewski, 1984, Cowin
et al, 1991, Biegler and Mehrabadi, 1995, François, 1995, Bertram and Olschewski, 1996, Arramon et al., 2000,
Mahnken, 2002, Desmorat and Marull, 2011). We describe their use in continuum mechanics and define stress and
plastic strain tensors dedicated to cubic material symmetry.

4.1. Cubic elasticity parameters
The three independent components of a cubic elasticity tensor EEE (of components Ei jkl, having major and minor

indicial symmetries Ei jkl = Ekli j = E jikl) are Young’s modulus E , Poisson’s ratio ν and the shear modulus G ,
E

2(1+ν) , the bulk modulus being K = E
3(1−2ν) .

In Natural Anisotropy Basis, the compliance tensor SSS = EEE−1 (S i jkl = S kli j = S jikl) of a material having cubic
material symmetry has for Kelvin matrix representation (Cowin and Mehrabadi, 1990)

[EEE−1] =



1
E − ν

E − ν
E 0 0 0

− ν
E

1
E − ν

E 0 0 0
− ν

E − ν
E

1
E 0 0 0

0 0 0 1
2G 0 0

0 0 0 0 1
2G 0

0 0 0 0 0 1
2G


NAB

(8)

according to 
E1111 = E2222 = E3333 =

(1 − ν)E
1 − ν − 2ν2

E1122 = E1133 = E2233 =
νE

1 − ν − 2ν2

E1212 = E1313 = E2323 = G

(9)

The other Ei jkl are either obtained from the indicial symmetries or are equal to zero.
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4.2. Harmonic decomposition of cubic elasticity tensor
An elasticity tensor EEE belonging to the cubic symmetry class can be recast as

EEE = 2µ III + λ1 ⊗ 1 +HHH, tr12 HHH = tr13 HHH = 0 (10)

with III the fourth order unit tensor. Eq. (10) is the harmonic decomposition of EEE cubic (Backus, 1970, Cowin et
al, 1991, Baerheim, 1993, Forte and Vianello, 1996). Generalized Lamé constants λ = λ(EEE), µ = µ(EEE) are two
invariants of the elasticity tensor. Fourth order harmonic part HHH = HHH(EEE) is uniquely defined (Backus, 1970). It is
both

– totally symmetric: having the major and minor indicial symmetries of the elasticity tensor and the additional
Cauchy symmetry Hi jkl = Hik jl,

– traceless: (tr12 HHH)i j = Hkki j = (tr13 HHH)i j = Hkik j = 0.

More precisely, λ, µ are functions of the invariants tr(tr12 EEE) and tr(tr13 EEE),

λ =
1

15
(2 tr(tr12 EEE) − tr(tr13 EEE)) (11)

µ =
1
30

(− tr(tr12 EEE) + 3 tr(tr13 EEE)) (12)

The fourth order harmonic part HHH is then

HHH = EEE − 2µ III − λ1 ⊗ 1 (13)

A third (rational) invariant of elasticity tensorEEE belonging to cubic symmetry class is material constant δwhich
is defined as (Auffray et al (2014), Section 5.1)

δ =
J3

4J2
=

tr(tr13 HHH3)
4 tr(tr13 HHH2)

(14)

where
J2 = tr(tr13 HHH2) = ‖HHH‖2 = Hi jklHi jkl, J3 = tr(tr13 HHH3) = Hi jklHklpqHpqi j (15)

are the first two polynomial invariants of HHH after Boehler et al (1994) (here J2 = 480δ2 and J3 = 1920δ3). Note
that Olive et al (2017a) give the minimal integrity basis made of 297 polynomial invariants for elasticity tensor
(whatever its symmetry class).

4.3. Kelvin stresses – Kelvin projectors
A cubic elasticity tensor EEE and, in an equivalent manner, its invert EEE−1 have three eigentensors: the hydrostatic

stress tensor σH, and two deviatoric stress tensors σd and σd (σd diagonal in Natural Anisotropy Basis, deviatoric,
σd out-of-diagonal in this basis, also deviatoric), such as

EEE : σH =
E

1 − 2ν
σH, EEE : σd =

E
1 + ν

σd, EEE : σd = 2Gσd (16)

with the orthogonality properties σd : σH = σd : σH = σd : σd = 0 and the deviatoric and total stresses partitions
(Bertram and Olschewski, 1996)

σ′ = σd + σd and σ = σd + σd + σH (17)

Such partitions are objective —i.e. frame invariant— in case of cubic material symmetry.
The second order tensors σH, σd and σd are the so-called Kelvin stresses, associated with Kelvin moduli

E
1−2ν = 3K, E

1+ν
and 2G (the three eigenvalues of EEE, Kelvin (1856, 1878), Cowin et al (1991)). They are obtained

thanks to Kelvin fourth order projectors PPPH, PPPd, PPPd (François, 1995),

PPPH : σ = σH =
1
3

trσ 1

PPPd : σ = σd

PPPd : σ = σd

(18)
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with PPPH = 1
3 1⊗ 1 standard hydrostatic projector. The two other projectors can be build directly from the harmonic

part HHH = EEE − 2µ III − λ1 ⊗ 1 of cubic elasticity tensor as

PPPd =
1
5

(
JJJ +

HHH
µ −G

)
, PPPd = JJJ −PPPd, JJJ = III −

1
3

1 ⊗ 1 (19)

with µ , G and HHH , 000 for cubic symmetry class (see Appendix A) and PPPH +PPPd +PPPd = III.
To get the projectorsPPPd andPPPd we only have to use Eq. (19) with rational invariant µ−G = 4δ = tr(tr13 HHH3)/ tr(tr13 HHH2)

(Eq. (14)-(82)) easily computed in any working basis and withHHH given by linear relationship HHH = EEE − 2µ III − λ1 ⊗ 1
with λ, µ from (11)-(12). Present determination of the Kelvin projectors does not need to solve the characteristic
polynomial nor to find the eigenvectors of [EEE].

The Kelvin stresses can be used to particularize Hill equivalent stress to cubic symmetry as writing in Natural
Anisotropy Basis

σHill =

√
1
2

(
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2

)
+

3
2

h2
(
σ2

12 + σ2
21 + σ2

13 + σ2
31 + σ2

23 + σ2
32

)
(20)

is equivalent to intrinsic writing

σHill =

√
3
2

(
σd : σd + h2σd : σd

)
=

√
(σd)2

eq + h2(σd)2
eq (21)

with h a material parameter (h = 1 for isotropy, standard von Mises stress σeq then recovered).
The notations σd

eq, σd
eq are used next for the following norms of deviatoric stress tensors σd, σd,

σd
eq = (σd)eq =

√
3
2
σd : σd, σd

eq = (σd)eq =

√
3
2
σd : σd (22)

with in Natural Anisotropy Basis
σd

eq =

√
1
2
[
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2]

σd
eq =

√
3
2

[
σ2

12 + σ2
21 + σ2

23 + σ2
32 + σ2

31 + σ2
13

] (23)

Note that von Mises equivalent stress σeq is limiting case h = 1 in (20)-(21), i.e.

σeq =

√
3
2
σ′ : σ′ =

√
(σd

eq)2 + (σd
eq)2 (24)

with σ′ = σ − 1
3 trσ 1 usual deviatoric part of stress tensor.

The non quadratic norm for cubic materials (expressed in Natural Anisotropy Basis, Desmorat et al (2017))

‖σd‖a = 3
(
|σ12|

a + |σ21|
a + |σ13|

a + |σ31|
a + |σ23|

a + |σ32|
a

6

)1/a

(25)

is a generalization of equivalent stress σd
eq such as i) σd

eq = ‖σd‖a=2, ii) ‖σd‖a = 0 for tension in orientation 〈001〉

and iii) ‖σd‖a = σ for tension in orientation 〈111〉.

4.4. Plastic strains dedicated to cubic symmetry from Kelvin projectors
The Kelvin projectors allow to define different strain tensors (total, elastic and plastic) dedicated to cubic

symmetry class (Biegler and Mehrabadi, 1995, François, 1995, Bertram and Olschewski, 1996, Desmorat and
Marull, 2011). When applied to the —here deviatoric— plastic strain tensor they define for cubic symmetry two
deviatoric tensors ε pd and ε pd as

ε pd = PPPd : ε p and ε pd = PPPd : ε p (26)

such as the partition ε p = ε pd + ε pd is frame invariant for cubic symmetry class. In such a plastic strain partition
ε pd is the diagonal part of ε p in Natural Anisotropy Basis, ε pd is the out-of-diagonal part of ε p in this basis, with
the orthogonality property ε pd : ε pd = 0.

From these two plastic strain tensors, one defines two accumulated plastic strains (Desmorat and Marull, 2011),
one (pd) associated to the ”deviatoric diagonal” Kelvin mode, another to the ”deviatoric out of diagonal” Kelvin
mode (pd)

pd =

∫ √
2
3
ε̇ pd : ε̇ pd dt and pd =

∫ √
2
3
ε̇ pd : ε̇ pd dt (27)

Usual (isotropic) accumulated plastic strain p =
∫ √

2
3 ε̇

p : ε̇ p dt is such as

ṗ =

√
( ṗd)2 + ( ṗd)2 (28)
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4.5. Stresses and plastic strains for tensions along 〈001〉 and along 〈111〉
The Kelvin stresses and strains decouple the constitutive equations for two particular loading often used for the

identification of crystal (visco-)plasticity of cubic superalloys (uniaxial loading in orientations 〈001〉 and 〈111〉):

– σd = σ′, σd = 0, ε pd = ε p and ε pd = 0 for tension along 〈001〉, for which (σd)eq = σeq = σ, pd = p, pd = 0.

– σd = 0, σd = σ′, ε pd = ε p and ε pd = 0 for tension along 〈111〉, for which (σd)eq = σeq = σ, pd = 0, pd = p.

This decoupling allows to represent independently —i.e. with two different subsets of material parameters— by
a single multiaxial model the uniaxial responses of cubic superalloys both in crystallographic orientation 〈001〉
and in orientation 〈111〉 (Desmorat and Marull, 2011). The material parameters for orientation 〈111〉 will be next
overlined. For example if σy, KN , N, ε0

pD, B, ṗ0, A are material parameters for orientation 〈001〉, the parameters
(having the same role) for orientation 〈111〉 will be denoted σy, KN , N, ε0

pD, B, ṗ0, A.

5. Thermodynamics of coupling cubic elasticity / isotropic damage

We consider Lemaitre and Chaboche (1985,1991) thermodynamics framework for isotropic damage. We fur-
thermore use the Kelvin mode based formulation of François (1995), but with a single scalar damage variable D.
The hardening and the coupling with microstructural changes are here neglected. The Gibbs enthalpy density for
cubic material, function of the stress tensor σ, of the plastic strain tensor ε p and of the damage D, is

ρψ? =
1 + ν

2E(1 − D)
σd : σd +

1
4G(1 − D)

σd : σd +
〈trσ〉2+

18K(1 − D)
+
〈trσ〉2−
18K

+ σ : ε p (29)

with ρ the density, and where it is assumed that the damage does not affect the bulk modulus K = E/3(1 − 2ν) at
negative hydrostatic stress σH = 1

3 trσ. The notations 〈x〉+ = max(0, x) and 〈x〉− = min(0, x) denote respectively
the positive and negative parts of scalar x. The state potentiel is convex with respect to both variables σ and D.

5.1. State laws – Effective stress and triaxiality function
The elasticity law writes then

ε = ρ
∂ψ?

∂σ
(30)

which is equivalent to

εe =
1 + ν

E
σ̃d +

1
2G

σ̃d +
1 − 2ν

3E
tr σ̃ 1 = E−1 : σ̃ (31)

with εe = ε − ε p the elastic strain. Fourth order tensor E is Hooke’s tensor of virgin (cubic) material. Eq. (30)
defines the effective stress

σ̃ =
σ′

1 − D
+

1
3

[
〈trσ〉+
1 − D

+ 〈trσ〉−

]
1 (32)

which is symmetric and independent from the elasticity parameters. We have set

σ̃d = PPPd : σ̃, σ̃d = PPPd : σ̃ (33)

At positive hydrostatic stress Eq. (32) recovers standard definition σ̃ = σ/(1−D). A partial stiffness recovery due
to microcracks closure at negative hydrostatic stresses is modeled.

The strain energy release rate density writes:

Y = ρ
∂ψ?

∂D
=

1 + ν

2E
σ̃d : σ̃d +

1
4G

σ̃d : σ̃d +
1

18K
〈tr σ̃〉2+ (34)

where σ̃d = PPPd : σ̃ and σ̃d = PPPd : σ̃ so that

Y =
σ̃2

Hill

2E
Rν ≥ 0 Rν =

2
3

(1 + ν)

σd
eq

σHill

2

+
E

3G

σd
eq

σHill


2

+ 3(1 − 2ν)
〈
σH

σHill

〉2

+

(35)

in which cubic Hill equivalent stress (20)-(21) has been introduced. Triaxiality function Rν extends to cubic
material symmetry the isotropic definition (4) of (Lemaitre and Chaboche, 1985,1991, Lemaitre, 1992). Isotropy
(G = E/2(1 + ν) and Hill’s parameter h = 1) gives back Rν = 1 for uniaxial tension performed in any direction.

For an uniaxial stress state in crystallographic direction 〈001〉:{
Rν = 1 if σ > 0
Rν = 2

3 (1 + ν) if σ < 0
(36)
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For an uniaxial stress state in crystallographic direction 〈111〉:Rν = 1
3h2

[
E
G + 1 − 2ν

]
if σ > 0

Rν = E
3h2G if σ < 0

(37)

We set
R〈111〉
ν =

1
3h2

[ E
G

+ 1 − 2ν
]

(38)

5.2. Positivity of intrinsic dissipation
The intrinsic dissipation due to visco-plasticity coupled with damage is, in present case without hardening

(Lemaitre and Chaboche, 1985,1991)
D0 = σ : ε̇ p + YḊ (39)

If furthermore the plastic strain is split in two, setting

ε p = ε p
1 + ε p

2 (40)

and the associated normality rules are written

ε̇ p
α = ṙα

∂ fα
∂σ

=
ṙα

1 − D
∂ fα
∂σ̃

, α = 1, 2 (no sum) (41)

with two criterion functions fα = fα(σ̃′) convex in the deviatoric effective stress σ̃′ = σ′/(1−D) (according to Eq.
(32)) and two visco-plastic multipliers ṙα. Examples for cubic single crystals are f1 = σ̃Hill −σy and f2 = σ̃d

eq −σy

or f2 = ‖σ̃d‖a − σy (Eq. (25)), which make appear as material parameters the yield stresses σy, σy respectively in
directions 〈001〉 and 〈111〉. The plastic strains rates ε̇ p

α are then deviatoric (so is ε p, considered visco-plasticity is
incompressible) and

D0 = ṙ1 σ̃ :
∂ f1
∂σ̃

+ ṙ2 σ̃ :
∂ f2
∂σ̃

+ YḊ (42)

The terms σ̃ : ∂ fα/∂σ̃ are positive by convexity (Halphen and Nguyen, 1975). The strain energy release rate Y ,
given by Eq. (34), is positive. Simply enforcing positive visco-plastic multipliers ṙα ≥ 0 and damage rate Ḋ ≥ 0
by adequate viscosity and damage evolution laws implies the positivity of the intrinsic dissipation

D0 ≥ 0 (43)

for any loading case.

6. Damage threshold and evolution law for cubic symmetry class

Let us use the decoupling of the mechanical responses obtained for orientations 〈001〉 and 〈111〉 when accumu-
lated plastic strains pd and pd are introduced within visco-plasticity coupled with damage constitutive equations.

6.1. Rate dependent damage threshold for cubic material symmetry
We define for cubic materials the dimensionless equivalent visco-plastic strain P̂ as

P̂ = sup
t

 pd

ε0
pD

exp
(
−B

〈
1 −

ṗ0

ṗd

〉)
+

pd

ε0
pD

exp
−B

〈
1 −

ṗ0

ṗd

〉 (44)

The damage threshold criterion is expressed as

fD = P̂ − 1 (45)

and satisfies (7), i.e. fD < 0 → no damage growth, fD ≥ 0 → damage growth by considered damage evolution
law.

Even if we have in mind applications with monotonic loading mainly, due to the supremum over time in Eq.
(44), the scalar P̂ behaves as a dimensionless accumulated plastic strain (it is positive monotonic, P̂ ≥ 0, dP̂

dt ≥ 0),
but rate dependent. Due to this feature, once the damage threshold has been reached the damage variable D always
grows in visco-plasticity stages (i.e. when ṗ > 0), as in original Lemaitre’s damage model (Lemaitre (1984, 1992),
with Ḋ = 0 in the elastic loading-unloading stages only). We expect that Eq. (45) can be used for cyclic loading
also. But recall that in that case, an accurate damage modeling of the creep-fatigue interaction needs kinematic
hardening (Sermage, 1998, Sermage et al, 2000), which is not considered in present work.

We have then the following main two practical particular cases, for which the condition P̂ ≥ 1 −→ Ḋ > 0
simplifies:
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– case of monotonic tension (including creep) in orientation 〈001〉: pd = p = εp, pd = 0, so that in such an
uniaxial case writing fD ≥ 0 → Ḋ > 0 gives

p ≥ p〈001〉
D ( ṗ) = ε0

pD exp
(
B
〈
1 −

ṗ0

ṗ

〉)
−→ Ḋ > 0 (46)

– case of monotonic tension (including creep) in orientation 〈111〉: pd = 0, pd = p = εp so that in such a case
to write fD ≥ 0 → Ḋ > 0 gives

p ≥ p〈111〉
D (ṗ) = ε0

pD exp
B

〈
1 −

ṗ0

ṗ

〉 −→ Ḋ > 0 (47)

The material parameters ε0
pD, B, ṗ0, are then those of the damage threshold rate dependency measured in direction

〈001〉 (monotonic loading, Fig. 7) . The material parameters ε0
pD, B, ṗ0, are those of the damage threshold rate

dependency measured in direction 〈111〉 (Fig. 8).

Figure 7: Damage threshold pD as a function of the accumulated plastic strain rate ṗ for 〈001〉 CMSX-4 (bullets:
experiments, solid line: Eq. (46)).

Figure 8: Damage threshold pD as a function of the accumulated plastic strain rate ṗ for 〈111〉 CMSX-4 (bullets:
experiments, solid line: Eq. (47)).

In order to determine the damage growth condition for the other crystallographic orientations or for multiaxial
loading simply apply criterion (44)-(45) with pd and pd defined by Eq. (26)-(27).

6.2. Damage evolution law for cubic material symmetry
We now extend the damage law Ḋ = ARν ṗ to cubic material symmetry as :

Ḋ = Rν

(
Aṗd + Aṗd + Adis

√
ṗd ṗd

)
H( fD) (48)
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with Heaviside function H(x) such as H(x) = 0 for x < 0 and H(x) = 1 for x ≥ 0 and previous threshold function
fD (Eq. (44)-(45)). Eq. (48) satisfies fD < 0 → no damage, fD ≥ 0 → damage increase.

When introduced, the additional damage parameter Adis induces a faster damage increase for loadings not
aligned with the 〈001〉 and 〈111〉 directions. The extra term Adis( ṗd ṗd)1/2 vanishes ∀Adis in uniaxial loading per-
formed either in crystallographic orientation 〈001〉 or in orientation 〈111〉.

As for original Rice & Tracey’s, Gurson’s and Lemaitre’s laws, the damage evolution law (48) does not intro-
duce a strain rate dependency by itself: ṗd, ṗd and (ṗd ṗd)1/2 are all homogeneous to s−1, i.e. to ṗ (Eq. (49)).

dD = Rν

(
A dpd + A dpd + Adis

√
dpddpd

)
H( fD) (49)

Cubic triaxiality function Rν is defined in Eq. (35). We have then the main two practical particular cases:

• for monotonic tension (including creep) in orientation 〈001〉: Rν = 1, pd = p = εp, pd = 0 and

Ḋ = A ṗ H
(
p − p〈001〉

D ( ṗ)
)

(50)

• for monotonic tension (including creep) in orientation 〈111〉: Rν = R〈111〉
ν = const (given by Eq. (38)),

pd = 0, pd = p = εp and
Ḋ = A R〈111〉

ν ṗ H
(
p − p〈111〉

D ( ṗ)
)

(51)

They exhibit anisotropy of the damage growth when A R〈111〉
ν , A. The damage threshold functions p〈001〉

D ( ṗ) and
p〈111〉

D ( ṗ) are given by Eq. (46)-(47)
The curves damage D versus accumulated plastic strain p obtained for monotonic tension of CMSX-4 along

the 〈111〉 direction are plotted in Fig. 9 (with then p = pd). A critical damage Dc = 0.15 is assumed in order to
recover the observed (experimental) time to rupture (tr) when performing gauss point simulation (anticipating Fig.
15). For the structural computations, we will allow for the strain localization phenomenon to take place by setting a
large value for critical damage, Dc = 0.999. The damage parameters are: ε0

pD = 0.05, ε0
pD = 0.025, ṗ0 = 210−6s−1,

ṗ0 = 2.510−6s−1, B = 1.35, B = 2.21, A = 2.8, A R〈111〉
ν = 2.5, Adis = 0. The slopes of the curves are independent

from the loading rate (but they differ, equal to A for 〈001〉 and to A for 〈111〉). The experiments are plotted thanks
to the plateaux σplateau of the curves of Fig. 3 for 〈111〉 orientation using formula Dexp = 1 − σplateau/σ (Lemaitre,
1992). The increase of ductility with ε̇ is attributed to the rate dependent damage threshold. The corresponding
stress-strain curves are those of Fig. 12.

Figure 9: D(p) curves in monotonic tension at different strain rates up to critical damage Dc = 0.15 (CMSX-4 at
1050◦C, 〈111〉 crystallographic orientation).

7. Full damage model with microstructure degradation and rate dependent threshold

In order to obtain a close link with Schmid based single crystal visco-plasticity (Schmid and Boas, 1935,
Hill and Rice, 1972, Rice, 1975, Asaro, 1983, Peirce et al., 1983, Asaro and Lubarda, 2006, Altenbach and
Kruch, 2013), multi-criterion by nature, a two criterion framework inspired from (Cowin et al, 1991, Bertram
and Olschewski, 1996, Mahnken, 2002) has been used by Desmorat et al (2017) and applied to CMSX-4 single
crystal superalloy. It allows for the modeling of visco-plasticity coupled with microstructure degradation (without
”mechanical” damage D in previous work). The material parameters of this initial model are kept, they are those
for CMSX-4 at 1050◦C given in (Desmorat et al, 2017) (see Appendix D).
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We follow next a physically based approach dedicated to single crystals, the coupling visco-plasticity / mi-
crostructure degradation being represented by an Orowan macroscopic stress (Fedelich et al, 2009, Cormier and
Cailletaud, 2010a, Staroselsky et al, 2008, 2011, Fedelich et al, 2012b). Such constitutive equations have some-
times been coupled to continuous damage (Tinga et al, 2009b, Ghighi et al, 2012, le Graverend et al, 2014a).
These microstructure sensitive approaches coupled with damage, and also the micromorphic approach of Aslan
et al (2011) and the damage models of Kaminski (2007) and Marull and Desmorat (2013), for single crystals
still, did not model the ductility in monotonic tension. In a complementary point of view for initially isotropic
materials, note that Besseling and van der Giessen (1994) and Naumenko et al (2011) characterize high tempera-
ture hardening and recovery —and softening processes by continuous damage for the second authors— by a two
phase composite model with creep-hard and creep-soft constituents, representative of the coarsening of subgrain
structure: in second work on X20CrMoV12-1 steel at 600◦C, the volume fraction of the creep-hard constituent is
assumed to decrease toward a saturation value by means of a macroscopic evolution law. The generalization to
cubic symmetry of these authors hardening rules and associated constitutive equations for primary creep is left to
further work.

We now couple the initial model of Desmorat et al (2017) to damage by means of the principle of strain
equivalence (Lemaitre, 1971): the stress in the elasticity law as well as in criterion functions is replaced by the
effective stress (32) and damage evolution law (48) is considered with rate dependent threshold (44)-(45). The
hardening is neglected at considered temperature. Considered damage modeling approach is not formulated at the
slip system scale and is hence not directly driven by plastic activity on slip systems.

7.1. Tensorial γ channel width variables w and ω
The effect of the microstructure change/degradation has not to be mistaken with mechanical damage D, rep-

resentative of the microcracks and voids present within RVE of Continuum Mechanics. Rafting phenomenon
is represented by a tensorial variable: the γ channel width second order (symmetric) tensor w, of initial value
w(t = 0) = w0 1 (i.e. wi j(t) = w0 δi j in terms of components, eigenvalues denoted wi in Fig. 6). We have w0 ≈ 80
nm for CMSX-4 at 1050◦C. Such an initial value w0 = w0( fγ′ (T )) is temperature dependent through the change
of γ′ volume fraction with fγ′ ≈ 0.7 at room temperature, fγ′ ≈ 0.55 at 1050◦C (Roebuck et al, 2001, Fedelich et
al, 2012b, Desmorat et al, 2017). The mechanical effect of the microstructure degradation is quantified by macro-
scopic Orowan stress, inversely proportional to the norm ‖w‖ =

√
w : w of γ channel width tensor. This is therefore

inversely proportional to the norm of dimensionless tensor ω = w/w0, taken as a state variable of thermodynamics

σORO =
κOROG
‖ω‖

ω =
w
w0

(52)

with κORO a material parameter and G the shear modulus. The model is completed by an evolution law ω̇ = . . . for
variable ω. The details concerning the derivation of the full set of constitutive equations, with no damage, can be
found in (Desmorat et al, 2017).

Figure 10: Schematic microstructural evolution in tension creep along the 〈001〉 direction in Natural Anisotropy
Basis, reprinted from (Desmorat et al, 2017): 1) initial microstructure (w1 = w2 = w3 = w0), 2) intermediate
microstructure (w1 > w2 = w3), 3) rafted and coarsened microstructure (w1 > w0, w2 = w3 = 0).

Following Leckie and Onat (1981) and Onat (1984) (working in the context of anisotropic damage by inter-
granular voids at grain boundaries or by microcracks), Caccuri et al (2018) measure the directional distribution
Ω(nnn) of the γ channel width for different microstructures degradations. Assuming an expansion of degree q in
the components ni of unit vector nnn, Ω(nnn) is approximated by an even homogeneous polynomial, Ω(nnn) = Ω(−nnn) ≈
Wi1...iq ni1 . . . niq , which uniquely defines W of components Wi1...iq as a totally symmetric tensor of even order q. A
γ channel width tensor of order q = 2 corresponds then to a γ channel width directional distribution approximated
by

Ω(nnn) ≈ nnn · w · nnn = wi jnin j, w = wT , ‖nnn‖ = 1 (53)

which is an homogeneous polynomial of degree 2 in the components n1, n2, n3 of nnn and where w is symmetric γ
channel width second order tensor. If needed, the order of the γ channel width tensor can be increased: at order
q = 4, Ω(nnn) ≈ Wi jklnin jnknl with W totally symmetric, i.e. Wi jkl = W jikl = Wkli j = Wik jl, with 15 independent
components. Caccuri et al (2018) compare different tensorial orders for W.
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Figure 11: Schematic microstructural evolution in pure coarsening mode (i.e. pure thermal expansion): 1) initial
microstructure (w1 = w2 = w3 = w0), 2) final microstructure (w1 = w2 = w3 > w0),

We recall that totally symmetric tensors of order q are isomorphic to homogeneous polynomials of degree q
in three variables xi (or ni above), i = 1, 2, 3, they have (q + 1) (q + 2) /2 independent components. Such tensors
are —uniquely— defined by polarization (Olive et al, 2017b, Gorodentsev, 2017, p.35) from an homogeneous
polynomial of degree q.

7.2. Proposed model (Part I Mechanics)
The first part of constitutive equations for cubic elasto-visco-plasticity coupled with tensorial rafting and dam-

age are:

• elasticity law coupled with damage,

σ̃ =
σ′

1 − D
+

1
3

[
〈trσ〉+
1 − D

+ 〈trσ〉−

]
1, σ̃ = E : (ε − ε p) (54)

with Hooke’s tensor EEE of cubic symmetry class. It defines the Kelvin projectors PPPd and PPPd by Eq. (19).

• effective stress partition in cubic symmetry,

σ̃ = σ̃d + σ̃d +
1
3

tr σ̃ 1 σ̃d
eq =

√
3
2
σ̃d : σ̃d σ̃d

eq =

√
3
2
σ̃d : σ̃d (55)

introducing effective equivalent von Mises norms σ̃d
eq = σd

eq/(1−D) and σ̃d
eq = σd

eq/(1−D), with σ̃d = PPPd : σ̃,

σ̃d = PPPd : σ̃.

• criterion functions with Orowan stress effect: Hill criterion for f1, non quadratic norm for f2,

f1 = σ̃Hill −
κOROG
‖ω‖

− σy, f2 = ‖σ̃d‖a −$
κOROG
‖ω‖

− σy (56)

where

σ̃Hill =

√
3
2

(
σ̃d : σ̃d + h2σ̃d : σ̃d

)
, ‖σ̃d‖a = 3

1
6

∑
i, j

∣∣∣σ̃i j

∣∣∣a
1
a

(57)

• accumulated plastic strain rates,

ṗHill
1 =

√
2
3

(
ε̇ pd

1 : ε̇ pd
1 +

1
h2 ε̇

pd
1 : ε̇ pd

1

)
, ṗd

2 = 2

1
6

∑
i, j

∣∣∣∣ε̇ p
i j

∣∣∣∣ a
a−1


a−1

a

(58)

• normality rule and normal nd,

ε̇ p = ṗHill
1
∂ f1
∂σ̃

+ ṗd
2
∂ f2
∂σ̃

, nd =

(
∂ f1
∂σ̃

)d
= PPPd :

∂ f1
∂σ̃

(59)

Comparison with Eq. (41) shows that ṙ1 = (1 − D) ṗHill
1 , ṙ2 = (1 − D) ṗd

2.
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• viscosity laws, formulated in a different manner for f1 and for f2 criteria to represent well the high strain rate
viscosity,

ṗHill
1 =

〈
−
σv∞

KN
ln

(
1 −

f1
σv∞

)〉N

, ṗd
2 =

〈
f2

KN

〉N 1

max
(
κ(‖σ̃d‖a − σ0), 1

) (60)

The material parameters are: E, ν, G for elasticity, yield stresses σy and σy, Hill’s parameter h and parameter a
for non quadratic norm, parameters κORO and $ for Orowan stress effect, Norton’s viscosity parameters KN , N,KN ,
N and high strain rate viscosity parameters σv∞ and κ, σ0 = σ

µ
lim.

Parameter a has an important effect in torsion as illustrated by the Finite Element computation of Appendix B.
It has no effect at all for an uniaxial loading along 〈001〉 nor for an uniaxial loading along 〈111〉.

7.3. Proposed model (Part II Microstructure degradation)
The second part of constitutive equations concerns the microstructure degradation occurring at high tempera-

ture and the evolution law for the γ channel width variables ω and w.

• evolution law for dimensionless γ channel width variable ω,

ω̇ = ω̇raft + ω̇mc 1 +
√

3 ω̇LSW
ω

‖ω‖
(61)

where rafting contribution (through tensorωraft), mechanical coarsening contribution (through isotropic con-
tribution ωmc) and homethetic growth contribution (diffusion controlled isotropic coarsening of γ′ particles
in the absence of applied stress (Lifshitz and Slyozov, 1961, Wagner, 1961) satisfy

ω̇raft = Kraft exp
(
uraft min(σ̃d

eq, σ
µ
lim)

)
H(pHill

1 − ε
p
th)H nd

ω̇mc = Kmc exp
(
umcσ̃

d
eq

)
H(pd

2 − ε
p
th)

ω̇LSW =
KLSW

3ω2
LSW

(62)

withH = H(D) = 0 or 1, Heaviside function of the intrinsic dissipation.
The initial values are: ωLSW(t = 0) = 1, ωraft(t = 0) = 000, ωmc(t = 0) = 0 and ω(t = 0) = 1. See Appendix C
for the stress triaxiality effect.

• γ channel width tensor,
w = w0 ω (63)

gained from initial temperature dependent value w0 (w0 = 80nm for CMSX-4 at 1050◦C),

• minimum eigenvalues ωi (resp. wi) of second order tensor ω (resp. w) bounded to zero.

Note that a particular Heaviside function H (of values 0 or 1) is introduced in evolution law (62), with most
oftenH = 1. As described in (Desmorat et al, 2017) the valueH = 0 is set only when needed to enforce an always
positive intrinsic dissipation (see Section 7.5).

The material parameters for microstructure evolution are w0, Kraft, uraft, σ
µ
lim, εp

th, Kmc, εp
th and KLSW. The

visco-plasticity normal nd is a deviatoric second order tensor introduced by Tinga et al (2009a), it is defined Eq.
(59). Second order tensor ωraft = (ωraft)′ is deviatoric.

7.4. Proposed model (Part III Damage)
The constitutive equations for final (damage) part of the model are those derived in Sections 6.1 and 6.2 with

Adis = 0. They are recalled here.

• Rate dependent threshold criterion,
fD = P̂ − 1 (64)

such as fD < 0 → no damage, fD ≥ 0 → damage growth, with

P̂ = sup
t

 pd

ε0
pD

exp
(
−B

〈
1 −

ṗ0

ṗd

〉)
+

pd

ε0
pD

exp
−B

〈
1 −

ṗ0

ṗd

〉 (65)
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• Damage evolution law,

Ḋ = Rν

(
Aṗd + Aṗd

)
H( fD) (66)

where triaxiality function

Rν =
2
3

(1 + ν)

 σ̃d
eq

σ̃Hill

2

+
E

3G

 σ̃d
eq

σ̃Hill


2

+ 3(1 − 2ν)
〈
σ̃H

σ̃Hill

〉2

+

(67)

is equivalent to definition (35) due to damage isotropy.

Failure by crack initiation occurs when the damage D reaches the critical value Dc (measured equal to Dc = 0.15
from all 〈001〉 and 〈111〉 creep and tension tests). Material parameters ε0

pD and ε0
pD are the damage thresholds in

creep, respectively measured in 〈001〉 and in 〈111〉 creep, ṗ0, ṗ0, B, B are the rate dependency parameters, A, A
are the damage parameters.

7.5. Positivity of the intrinsic dissipation
We consider the thermodynamics framework for microstructural changes, including rafting, of Desmorat et al

(2017) for CMSX-4 within Lemaitre (1992) damage framework.
Helmholtz free energy density becomes function of the internal variables r1 ≥ 0 and r2 ≥ 0 homogeneous to

accumulated plastic strains for isotropic hardening (whose effect on the yield stress is not modeled here) and of
tensorial mechanical rafting variable ω = w/w0( fγ′ (T )),

ρψ = ρψe +
κOROG
‖ω‖

(r1 +$r2) +
1
2

(
κu − κω ωeq

)
δ2

u (68)

where ρψe = 1
2 (ε − ε p) : EEE(1 − D) : (ε − ε p) is the Legendre transform of potential (4.5) and where ωeq =

√
3
2‖ω

′‖

is von Mises norm of symmetric second order tensor ω; κu, κω and the misfit δu are material parameters (Fedelich
et al, 2009). For the sake of simplicity the thermal expansion and heat capacity contributions have been omitted.

The criterion functions are those defined Eq. (56), function of Orowan stress σORO = κOROG/‖ω‖. Due to the
use of non quadratic norm for f2 and ṗd

2 (given by (58)), the dissipation σ : ε̇ p + YḊ due to visco-plasticity and
damage (42) writes

D1 = (1 − D)
(
σ̃Hill ṗHill

1 + ‖σ̃d‖a ṗd
2

)
+ YḊ ≥ 0 (69)

Recall that (1 − D) ṗHill
1 = ṙ1 ≥ 0 and (1 − D) ṗd

2 = ṙ2 ≥ 0. As Y ≥ 0 and D ≤ Dc < 1,D1 is positive.
To the visco-plastic dissipation D1 is added the dissipation D2 due to microstructure degradation, by rafting,

mechanical coarsening and homothetic growth,

D2 = ΩΩΩ : ω̇ (70)

with

ΩΩΩ = −ρ
∂ψ

∂ω
=
κOROG
‖ω‖2

ω

‖ω‖
(r1 +$r2) +

√
3
8
κω δ

2
u
ω′

‖ω′‖
(71)

the thermodynamics force associated with the internal variable ω.
The evolution law (61), coupled with damage by means of the effective stress in the scalar prefactors of (62),

is of generic form
ω̇ = ṘH nd + Ċ111 + Ġ

ω

‖ω‖
(72)

with normal nd defined by Eq. (59) and where Ṙ ≥ 0 (for rafting phenomenon), Ċ ≥ 0 (for mechanical coarsening),
Ġ ≥ 0 (for homothetic growth). Under these conditions completed with

H = H(D) i.e.
{
H = 1 ifD ≥ 0,
H = 0 ifD < 0

(73)

it is proved in (Desmorat et al, 2017) thatD2 ≥ 0.
The total intrinsic dissipation

D = D1 +D2 ≥ 0 (74)
is therefore positive for any loading, isothermal or not, proportional or not. The second principle of thermodynam-
ics is fulfilled by proposed constitutive equations coupled with damage.

8. Creep and monotonic failure of cubic CMSX-4 superalloy at 1050◦C

Let us finally present the responses of the proposed set of constitutive equations (parts I, II and III) coupling
microstructural changes, visco-plasticity and mechanical damage. Rupture corresponds to D = Dc = 0.15, the
damage value at which are stopped the computations, whatever the loading type or direction.
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8.1. Computed stress-strain curves
The true stress-true strain tension curves are plotted in Fig. 12. The increase of ductility with the strain rate is

well obtained, due to proposed rate dependent damage threshold (the plateaux or the gradual (linear) softening are
at zero damage). It is here recalled that there is no isotropic (nor kinematic) hardening in the modeling (parameters
R∞ = R∞ = 0) so that one can expect a better fit of the pre-plateau curves for 〈111〉 orientation if introduced. Also,
the modeling of the initial (quick) softening at strains lower than 0.03 is left to further work (note that this usually
requires a multi scale modeling (Tinga et al, 2009a, Kindrachuk and Fedelich, 2012)).

Figure 12: Full model response for 〈001〉 and 〈111〉 tension curves at different strain rates (CMSX-4 at 1050◦C).
Computed Orowan stress σORO reported.

8.2. Computed microstructure degradation in creep
The microstructure evolution of the different specimens tested in creep is plotted in Fig. 13 and compared to

experiments with a good agreement. The wi are the 3 principal components of the γ channel width tensor, here in
Natural Anisotropy Basis, either measured (bullets) or computed (lines).
• For 〈001〉 orientation: longitudinal mean channel width w1 measured in the loading direction increases when

the transverse widths w2 = w3 → 0. This is a macroscopic representation of the phenomenon of rafting. The
effect of the stress level is well obtained for creep in 〈001〉 orientation, enhanced by the damage at plastic
strain larger than 0.05.

• For 〈111〉 orientation: the 3 components remain equal w1 = w2 = w3 and increase with time. This is the
representation of the phenomenon of mechanical coarsening, here stress independent.

Note that under loading the LSW homothetic growth term ωLSW (Eq. (61)) has a negligible contribution. The
effect of damage on the microstructural changes is quite small.

8.3. Computed creep curves
The creep responses are given in Fig. 14, also with a very good agreement. We have made the choice of a

critical damage independent from the loading direction, therefore identical for 〈001〉 creep and for 〈111〉 creep.
This is why the creep curves for 〈111〉 crystallographic orientation look shorter than the experimental ones. The
time to failure is nevertheless very accurate for both orientations.
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Figure 13: Evolution of the microstucture in creep of CMSX-4 at 1050◦C: (a) 〈001〉 creep, applied stress levels:
σ = 140 MPa, σ = 200 MPa, (b) 〈111〉 creep, stress levels: σ = 180 MPa, σ = 200 MPa (bullets: observations,
solid lines: model).

Figure 14: Full model response for 〈001〉 and 〈111〉 creep at different stress levels (CMSX-4 at 1050◦C, σ =
140, 180, 200 MPa).

Figure 15: Comparison between the creep lifetimes measured after experimental tests along 〈001〉 and along 〈111〉
and the ones predicted by the model at D = Dc = 0.15.

9. Remarks on proposed modeling in the limiting case of isotropic visco-plasticity

If one assumes Hill’s parameter h = 1, the criterion f1 becomes isotropic von Mises criterion. If furthermore
σy → ∞, the second viscosity is deactivated as ε p

2 = 0 (with then ε p = ε p
1 and pHill

1 = p). Previous visco-plasticity
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coupled with damage constitutive equations become isotropic.
A few comments can then be made.

• The viscosity law (60) recovers Norton’s law σv ≈ KN ṗ1/N at low strain rates, with f1 = σv equal to the
viscous stress when yielding. Remark also that the viscosity law is inverted into

σv = σv∞

(
1 − exp

(
−

KN

σv∞
ṗ1/N

))
(75)

a form which exhibits the saturation of the viscous stress σv (to σv∞) at high strain rate.

• An isotropic rate dependent damage threshold criterion fD, such as fD < 0 → no damage growth, fD ≥ 0 →
damage growth, is obtained as

fD = P̂ − 1, P̂ = sup
t

 p
ε0

pD

exp
(
− B

〈
1 −

ṗ0

ṗ

〉) (76)

• In creep (at low strain rate) one has 1− ṗ0
ṗ < 0 so that P̂ ≈ p/ε0

pD and one recovers standard constant threshold
of Lemaitre (1992), p < pD = ε0

pD → no damage growth.

• The material parameter B is related to both the damage threshold in creep (at low strain rate) ε0
pD and the

damage threshold in tension at infinite strain rate ε∞pD as

B = ln

 ε∞pD

ε0
pD

 (77)

At high strain rate 1 − ṗ0
ṗ ≈ 1, one has then P̂ ≈ p e−B/ε0

pD so that the damage threshold becomes

p < pD = ε0
pD eB = ε∞pD → no damage growth. (78)

• There is no Lode angle dependency in the damage modeling obtained in this limiting case, as there is none in
initial Lemaitre’s damage law for isotropic materials. To model this dependency in Lemaitre and Chaboche
(1985,1991) damage framework consider the works of Malcher and Mamiya (2014) and of Cao et al (2014)
or, as discussed in (Desmorat, 2012, 2015), consider anisotropic damage (which always introduce a Lode
angle dependency of the damage growth).

10. Conclusion

A phenomenological damage model has been proposed to describe the (anisotropic) strain rate sensitivity of
damage onset and evolution in single crystal superalloys. A novel strain rate sensitive damage threshold has been
introduced, which allows to describe the damage onset dependence on the strain rate during creep and monotonic
tension. A novel formulation of the Kelvin projectors is proposed for cubic material symmetry as well. This latter,
based on the harmonic decomposition of the elasticity tensor, allows to determine the Kelvin projectors for cubic
material symmetry without solving any eigenvalues problem.

The curves obtained for the CMSX-4 at 1050◦C along the 〈001〉 and 〈111〉 crystallographic directions show
that, thanks to this model, tertiary creep, time to rupture and ductility can be quite accurately described for single
crystal superalloys. However, the proposed damage can be extended to other materials, possibly isotropic or of
other material symmetry class, deforming and degrading by mechanisms different from the ones observed in single
crystal superalloys but still exhibiting a rate dependent ductility.

Recall that no hardening, neither isotropic nor kinematic, has been introduced. This was not necessary for
considered monotonic applications at 1050◦C, but hardening and primary creep is observed at other temperatures
for CMSX-4 (Svoboda and Lukas, 1998, Matan et al, 1999a, Reed et al, 1999, Epishin et al, 2001, Jun Chang et al,
2018). Further modeling effort must focus on kinematic hardening: indeed it has been shown by Sermage (1998),
Sermage et al (2000), but for isotropic steels, that kinematic hardening plays a major role in the nonlinearity of
the creep-fatigue interaction. Power laws for kinematic hardening may also prove useful (Desmorat, 2010, 2013).
The generalization to cubic symmetry of existing hardening rules and associated constitutive equations for primary
creep is left to further work.
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A. Harmonic decomposition of cubic elasticity tensor in its Natural Anisotropy Basis

In Natural Anisotropy Basis (NAB) the generalized Lamé constants of harmonic decomposition are, using Eq.
(9),

λ =
1
5

(E1111 − 2E1212 + 4E1122) =
1
5

(
1 + 3ν

1 − ν − 2ν2 E − 2G
)

(79)

µ =
1
5

(E1111 + 3E1212 − E1122) =
1
5

( E
1 + ν

+ 3G
)

(80)

The harmonic fourth order partHHH carries both the third cubic elasticity parameter and the Natural Anisotropy Basis
(NAB) of cubic symmetry. It has for Kelvin matrix representation, in Natural Anisotropy Basis still (Auffray et al,
2014)

[HHH] = δ



8 −4 −4 0 0 0
−4 8 −4 0 0 0
−4 −4 8 0 0 0
0 0 0 −8 0 0
0 0 0 0 −8 0
0 0 0 0 0 −8


NAB

(81)

with invariant δ defined by Eq. (14). In terms of components:

δ =
1

20
(E1111 − 2E1212 − E1122) =

1
4

(µ −G) (82)

The condition HHH = 000 corresponds to δ = 0 and to µ = E
2(1+ν) = G, i.e. to isotropic elasticity. And keep in mind

that E, ν,G but also λ, µ, δ and µ −G = 4δ are (non independent) invariants of cubic elasticity tensor EEE.

B. Consequences on torsion of non quadratic norm in criterion function f2

A non quadratic norm is used within second criterion function f2. This is a key-point allowing to represent the
feature of several yield zones observed in torsion of single crystals such as CMSX-4.

Remark first that the uniaxial model response for applied stresses in orientation 〈001〉 and in orientation 〈111〉
remains for any value of parameter a the same as the one of simpler (quadratic) case a = 2, which corresponds to
‖σ̃d‖2 = σ̃d

eq.
In torsion around axis y ≡ 2 ≡ [010], a value a ∈]1, 2[ allows to model a non homogeneous plastic strain field

(Fig. 16), as observed experimentally by Nouailhas and Cailletaud (1995). The prescribed rotation for the Finite
Element computation is such that the damage D remains equal to zero at all points.

21



Figure 16: Map of equivalent plastic strain field
√

2
3 ‖ε

p(x)‖ in torsion. Geometry = tube of length 12 mm, of
diameter 4 mm, of thickness 1 mm. Left and right nodes rigidly linked, prescribed rotation α = 2 rad around
[010]-axis.

C. Triaxiality effect on microstructure evolution

The stress triaxiality has an effect on the microstructure evolution, compressive loads inducing slower evolu-
tions than positive ones. A way to model this is to replace the (effective) von Mises equivalent stress σ̃d

eq = (σ̃d)eq
in evolution law (62) by a Drucker-Prager stress, i.e. by setting

ω̇raft = Kraft exp
(
uraft min(σ̃d

DP, σ
µ
lim)

)
H(pHill

1 − ε
p
th)H nd

ω̇mc = Kmc exp
(
umc min(σ̃d

DP, σ
µ
lim)

)
H(pd

2 − ε
p
th)

ω̇LSW =
KLSW

3ω2
LSW

(83)

where
σ̃d

DP = ζσ̃d
eq + (1 − ζ) tr σ̃ (84)

and
σ̃d

DP = ζσ̃d
eq + (1 − ζ) tr σ̃ (85)

with ζ a material parameter (possibly different in each definition).

D. Material parameters

The initial yield stresses are zero, σy = σy = 0 and there is no hardening introduced at 1050◦C.
The material parameters for the microstructure change and damage identified at this temperature are:

– the elasticity parameters, E = 88000 MPa, ν = 0.4, G = 96150 MPa,

– the initial γ channel width w0 = 80 nm and γ′ volume fraction fγ′ = 0.54;
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– κORO = 2.2 10−3 MPa−1, $ = 0.85 for the Orowan stress effect;

– KLSW = 1.1 10−6 s−1 for LSW homothetic growth;

– ε
p
th = 5 10−5 and εp

th = 0+ for Matan et al thresholds in terms of plastic strain;

– Kraft = 2.2 10−7s−1, uraft = 0.0233, σµlim = 280 MPa for rafting;

– Kmc = 1.4 10−5s−1, umc = 0.0012, for mechanical coarsening;

– the damage thresholds in creep ε0
pD = 0.05 and ε0

pD = 0.025;

– ṗ0 = 2 10−6s−1, ṗ0 = 2.5 10−6s−1, B = 1.35, B = 2.21, for the rate dependency of the damage threshold;

– A = 2.8, A R〈111〉
ν = 2.5 as damage parameters;

– the critical damage Dc = 0.15 (take Dc = 0.999 for Finite Elements computations).
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