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AN ALEXANDROV THEOREM IN MINKOWSKI

SPACETIME

OUSSAMA HIJAZI, SEBASTIÁN MONTIEL, AND SIMON RAULOT

Abstract. In this paper, we generalize a theorem à la Alexandrov of
Wang, Wang and Zhang [WWZ] for closed codimension-two spacelike
submanifolds in the Minkowski spacetime for an adapted CMC condi-
tion.

1. Introduction

The classical Alexandrov theorem [A] asserts that the only compact em-
bedded hypersurfaces with constant mean curvature (CMC) in the Euclidean
space are the round spheres. Natural generalizations of this result has been
obtained for such hypersurfaces in the hyperbolic space and the open hemi-
sphere [MR] as well as in some warped product manifolds (see [Mo] or [Br]
more recently).

Since Euclidean space and hyperbolic space arise as spacelike hypersur-
faces in the Minkowski spacetime, a natural question is whether one can ob-
tain these two results as a particular case of a more general result concerning
codimension-two submanifolds in the Minkowski spacetime. From the point
of view of submanifolds theory, a natural analogue of the CMC condition
for higher codimensional submanifolds is the parallel mean curvature condi-
tion. From the general relativity point of view, the most relevant physical
phenomenon is the divergence of light rays emanating from a codimension-
two submanifolds. More precisely, the causal future or past of a geometric
object is of great importance. It is interesting to characterize when a sur-
face lies in the null hypersurface generated by a “round sphere”. These are
called “shearfree” null hypersurfaces in general relativity literature, and are
analogues of umbilical hypersurfaces in Riemannian geometry. This type of
condition has recently been introduced by Wang, Wang and Zhang [WWZ]
and is described as follow.

Consider Σn a codimension-two spacelike orientable submanifold in a (n+
2)-dimensional Lorentzian manifold (En+1,1, 〈 , 〉). We will represent by H
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the mean curvature vector field on Σn, defined as

H = tr II,

where II is the second fundamental form of the immersion Σn →֒ En+1,1

given by

II(X,Y ) = ∇̃XY −∇Σ
XY

for all X,Y ∈ Γ(TΣ) and where ∇̃ (resp. ∇Σ) is the Levi-Civita connec-
tion of En+1,1 (resp. Σn). Since the normal space at each point of Σn is
a Lorentzian plane, it can be spanned by two future-directed null normal
vector field L+ and L− normalized in such a way that 〈L+,L−〉 = −2. In
this frame, the second fundamental form can be expressed as

II(X,Y ) =
1

2
χ+(X,Y )L− +

1

2
χ−(X,Y )L+

where χ± is the null second fundamental form with respect to L± defined
by

χ±(X,Y ) = 〈∇̃XL±, Y 〉 (1)

for all X, Y ∈ Γ(TΣ). We denote by θ± = trχ± the so-called future-directed
null expansions of H which measure the area growth when Σn varies in the
corresponding directions. It is then clear that

H =
1

2
θ+L− +

1

2
θ−L+ and |H|2 = −θ+θ−.

If θ+ and θ− are both negative, the submanifold will be called a trapped
submanifold. A codimension-two submanifold with θ+ = 0 or θ− = 0 is
called a marginally trapped submanifold. Remark that if Σn is trapped or
marginally trapped, then the mean curvature vector H is a causal vector
at each point. This is why that if the mean curvature field H is spacelike
everywhere, Σ will be refer to as an untrapped submanifold.

In the case where Σn spans a spacelike hypersurface in the Lorentzian
manifold, that is, when there exists a spacelike hypersurface Ωn+1 immersed
in En+1,1 such that ∂Ωn+1 = Σn, the normal null vector fields L+ and L−

may be ordered in such a way that they project onto directions tangent to
Ωn+1 which are respectively outer and inner normal at each point of Σn. In
other words, if N is an inner normal unit vector field on Σn tangent to Ωn+1

and T is a future-directed timelike normal to Ωn+1 in En+1,1, we put

L+ = T −N, L− = T +N.

The second fundamental form of Σn in En+1,1 is given in terms of the
Lorentzian basis of the normal bundle provided by the hypersurface Ωn+1

by

II(X,Y ) = 〈AX,Y 〉N + 〈BX,Y 〉T,

for all X,Y ∈ Γ(TΣ) and where

〈BX,Y 〉 = 〈∇̃XT, Y 〉 (2)
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and

AX := −∇Ω
XN (3)

denote respectively the shape operators of Ωn+1 in En+1,1 and Σn in Ωn+1.
Here ∇Ω denotes the Levi-Civita connection of the Riemannian metric 〈 , 〉
on Ω. The mean curvature vector field H of Σ in E can be re-expressed by:

H = HN +KT,

where H = trA is the mean curvature of Σn in Ωn+1 and K is the trace on
Σn of the shape operator B of Ωn+1 in En+1,1, that is K = trΣB. The norm
of H can also be re-expressed as

|H|2 = H2 −K2,

with θ± = K ±H are the future-directed null expansions of H. The space-
like codimension-two submanifolds with θ+ < 0 (respectively, θ− < 0) are
referred to as outer (respectively, inner) trapped submanifolds. For these
reasons, a codimension-two untrapped submanifold which bounds a com-
pact connected spacelike hypersurface Ω in E and which is mean convex in
Ω will be referred to as an outer untrapped submanifold. It is worth noting
that round spheres in Euclidean slices of the Minkowski spacetime are outer
untrapped submanifolds as well as large radial spheres in asymptotically flat
spacelike hypersurfaces.

Now recall that a closed oriented spacelike codimension-two submanifold
Σ in a (n+2)-dimensional Lorentzian manifold is said to be torsion-free with
respect to a null normal vector field L along Σ if the connection one-form
ζL defined by

ζL(X) =
1

2
〈∇̃XL,L〉

is zero for all X ∈ Γ(TΣ). Here L is another null normal such that 〈L,L〉 =

−2. This condition is easily seen to be equivalent to (∇̃L)⊥ = 0 where ( . )⊥

denotes the normal component.

Definition 1. A codimension-two submanifold of a Lorentzian manifold is
said to have constant normalized null curvature (CNNC) if there exists a
future null normal vector field L such that Σ is torsion-free with respect to
L and 〈H,L〉 is a constant.

Obviously, the CNNC assumption reduces to the CMC assumption when
Σ lies in a totally geodesic spacelike hypersurface of a Lorentzian manifold.
In [WWZ], the authors prove among other things the following result

Theorem 1. [WWZ] Let Σn be a future incoming null smooth, closed, em-
bedded, spacelike codimension-two submanifold in the Minkowski spacetime.
Suppose that Σ has CNNC with respect to a future incoming null normal
vector field L and 〈H,L〉 > 0. Then Σ lies in a shearfree null hypersurface.
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A closed, spacelike codimension-two submanifold Σ in a static spacetime is
future (resp. past) incoming null smooth if the future (resp. past) incoming
null hypersurface of Σ intersects a totally geodesic time-slice of the spacetime
at a smooth orientable hypersurface. Moreover a null hypersurface C in E is
shearfree if there exists a spacelike hypersurface S ⊂ C (so a codimension-
two submanifold of E) such that the null second fundamental form χ of S
with respect to some null normal L satisfies χ = f〈 , 〉 for function f and
where 〈 , 〉 is the Riemannian metric induced on S by the Lorentzian one.
Note that being shearfree is a property of the null hypersurface.

Their proof relies on Heintze-Karcher-type inequalities and on a certain
monotonicity formula which strongly use the incoming null smoothness of
Σ in the spacetime.

In this paper, we will use the spinorial approach developed by the first
two authors and X. Zhang [HMZ] (see also [HMRo]) to generalize this result
by relaxing the assumption on the incoming null smoothness of Σ. More
precisely, we have

Theorem 2. Let Σn be an untrapped codimension-two submanifold in the
Minkowski spacetime. Suppose that Σ has CNNC with respect to a future
null normal vector field L. Then Σ lies in a shearfree null hypersurface.

The proof of this result relies on a conformal eigenvalue estimate for
a Dirac-type operator acting on spinors of Σ and especially on a careful
treatment of its equality case. Note that our method does not seem to
apply directly in the general context treated in [WWZ] since we need the
existence of a particular section of the spinor bundle, namely an extrinsic
imaginary Codazzi spinor (see (EIC)).

Remark 1. It should be point out that in [HMR2] we investigate the rigidity
of time flat submanifolds in Minkowski spacetime using a similar method.
However the Dirac-type operator we used in this paper is not the one study
in the present work.

2. Preliminaries on spacetime geometry

2.1. The Einstein equation, the dominant energy condition and ge-

ometry of codimension-two spacelike submanifolds. Let (En+1,1, 〈 , 〉)
be a time-oriented spacetime satisfying the Einstein field equations, that is
En+1,1 is an (n + 2)-dimensional smooth manifold endowed with a smooth
Lorentzian metric 〈 , 〉 such that

R̃ic−
1

2
R̃〈 , 〉 = T , (4)

where R̃ (respectively, R̃ic) denotes the scalar curvature (respectively, the
Ricci curvature) of (En+1,1, 〈 , 〉) and T is the energy-momentum tensor
which describes the matter content of the ambient spacetime.

LetMn+1 be an immersed spacelike hypersurface of En+1,1 whose induced
Riemannian metric is also denoted by 〈 , 〉. Let T be the future-directed
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timelike unit vector field normal toM and denote by B the associated shape
operator given by (2). Then the Gauß, Codazzi and Einstein equations
provide constraint equations on Mn+1

µ =
1

2

(
R− |B|2 + (trB)2

)
(5)

J = div
(
B − (trB)I

)
(6)

where R is the scalar curvature of (Mn+1, 〈 , 〉), |B|2 and trB denote the
squared norm and the trace of B onMn+1 with respect to 〈 , 〉. The quantity
µ (respectively, J) is the energy (respectively, the momentum) density of the
matter fields given by

µ = T (T, T )
(
respectively, 〈J, v〉 = T (T, v)

for each spacelike vector v tangent to Mn+1
)
. A triplet (Mn+1, 〈 , 〉, B)

which satisfies the constraint equations (5) and (6) for given densities µ and
J is called an initial data set for the Einstein field equations.

Let us suppose from now on that the spacetime satisfies the dominant
energy condition (DEC), that is, its energy-momentum tensor T has the
property that the vector field dual to the one-form −T (u, ·) is a future-
directed causal vector of TE , for every future-directed causal vector u ∈
Γ(TE). This implies in particular that the following inequality holds

µ|v| ≥ |〈J, v〉|, (DEC)

for all v ∈ TM .

2.2. Spin geometry of spacelike hypersurfaces in En+1,1. From now
we assume that the hypersurface Mn+1 is spin and let Ωn be a domain in
Mn+1. In this situation, the spinor bundle over E exists globally along M .
Indeed, if Spin(E) stands for the Spinn+1,1-bundle of spinorial frame locally
defined in a neighborhood of M in E then the associated complex spinor
bundle SE is defined by:

SE := Spin(E)×γ̃n+1,1
Sn+2,

where γ̃n+1,1 is the complex representation of the group Spinn+1,1 and Sn+2

is the Spinn+1,1-module of complex dimension 2[
n+2

2
]. On the other hand,

the existence of a unit timelike vector T normal to M (and so to Ω) allows
to define the restricted spinor bundle S/Ω by:

S/Ω = SE |Ω := Spin(Ω)×γ̃n+1,1◦η Sn+2

where η is the natural inclusion Spinn+1 ⊂ Spinn+1,1 and where Spin(Ω) :=
Spin(E)|Ω. The natural action of ω ∈ Cl(E), an element of the complex

Clifford bundle over E , on a spinor field ψ ∈ Γ
(
S/Ω

)
will be denoted by

γ̃(ω)ψ. This action induces a Clifford multiplication on S/Ω denoted by γ/Ω

and related to γ̃ by:

γ/Ω(X)ψ = iγ̃(X)γ̃(T )ψ, (7)
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for all X ∈ Γ(TΩ) and ψ ∈ Γ
(
S/Ω

)
. According to [Ba], the spinor bundle S/Ω

carries a Spinn+1,1-invariant inner product ( , ) such that

(γ̃(X)ϕ,ψ) = (ϕ, γ̃(X)ψ),

for all X ∈ Γ(TE|Ω) and ϕ,ψ ∈ Γ
(
S/Ω

)
but which is not positive-definite.

However, if one let:

〈ϕ,ψ〉 := (γ̃(T )ϕ,ψ),

it defines a Spinn+1-invariant positive-definite inner product such that

〈γ̃(X)ϕ,ψ〉 = −〈ϕ, γ̃(X)ψ〉 and 〈γ̃(T )ϕ,ψ〉 = 〈ϕ, γ̃(T )ψ〉 (8)

for all X ∈ Γ(TΩ) and ϕ,ψ ∈ Γ
(
S/Ω

)
.

From a Lorentzian point of view, the Gauß formula gives a relation be-

tween the space-time connection ∇̃ and the one induced on TΩ denoted by
∇Ω. Namely, we have

∇̃XY = ∇Ω
XY + 〈BX,Y 〉T

for all X,Y ∈ Γ(TΩ) and where B is defined by (2). The spin Gauß formula
gives the counterpart of this formula in the spinorial setting:

∇̃Xψ = ∇/Ω
Xψ +

1

2
γ̃
(
BX

)
γ̃(T )ψ (9)

for all X ∈ Γ(TΩ), ψ ∈ Γ
(
S/Ω

)
and where ∇̃ and ∇/Ω correspond to the

spin Levi-Civita connections obtained by lifting to the spinor bundle S/Ω the

Lorentzian and Riemannian connections ∇̃ and ∇Ω. From this identity, we
easily compute that

∇/Ω
X

(
γ̃(T )ψ

)
= γ̃(T )∇/Ω

Xψ

and since the connection ∇̃ and the inner product ( , ) are compatible, we
also deduce that

X〈ψ,ϕ〉 = 〈∇/Ω
Xψ,ϕ〉 + 〈ψ,∇/Ω

Xϕ〉

for all X ∈ Γ(TΩ) and ψ,ϕ ∈ Γ
(
S/Ω

)
. On the other hand, combining the

compatibility of the spin covariant derivative ∇̃ with the Clifford product
γ̃, that is

∇̃X(γ̃(Y )ψ) = γ̃(∇̃XY )ψ + γ̃(Y )∇̃Xψ

for X,Y ∈ Γ(TΩ) and ψ ∈ Γ(S/Ω), with (9) imply that

∇/Ω
X(γ̃(Y )ψ) = γ̃(∇Ω

XY )ψ + γ̃(Y )∇/Ω
Xψ. (10)

The extrinsic Dirac operator on M is then the first order elliptic differential
operator acting on S/M defined by D/Ω := γ/Ω ◦ ∇/Ω.

Assume now that Ωn+1 has a smooth boundary Σn := ∂Ωn+1. The ori-
entation of Ω induces an orientation of Σ which provides the existence of
a unit vector field N ∈ Γ(TΩ|Σ) normal to Σ and pointing inward Ω. The
existence of this vector field allows to induce on Σ a spin structure from the
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one over Ω. It follows that the bundle S/Σ := S/Ω|Σ is well-defined and is en-

dowed with a spinorial Levi-Civita connection ∇/Σ, a Clifford multiplication
γ/Σ and a Hermitian inner product 〈 , 〉. The Clifford multiplication γ/Σ is
defined for X ∈ Γ(TΣ) and ψ ∈ Γ(S/Σ) by

γ/Σ(X)ψ = γ/Ω(X)γ/Ω(N)ψ

and is related, from (7), to the space-time Clifford multiplication by

γ/Σ(X)ψ = γ̃(X)γ̃(N)ψ.

Using this identification, the spin Gauß formula for the embedding Σn →֒
Ωn+1 reads as

∇/Ω
Xψ = ∇/Σ

Xψ +
1

2
γ̃
(
AX

)
γ̃(N)ψ, (11)

for all ψ ∈ Γ(S/Σ), X ∈ Γ(TΣ) and where A is the shape operator of the
embedding of Σ in Ω whose expression is given by (3). The extrinsic Dirac

operator of Σ acting on S/Σ is defined by D/ Σ := γ/Σ ◦∇/Σ whose local expres-
sion is

D/Σψ =
n∑

j=1

γ/Σ(ej)∇/
Σ
ej
ψ =

n∑

j=1

γ̃(ej)γ̃(N)∇/Σ
ej
ψ

for all ψ ∈ Γ
(
S/Σ) and where {e1, · · · , en} is a local orthonormal frame of

TΣ. It is then straightforward to check that D/Σ is a first order elliptic linear
differential operator which is formally self-adjoint for the L2-scalar product
on S/Σ. On the other hand, a direct calculation using (10) and the Gauß
formula (11) gives the skew-commutativity rule

D/Σ
(
γ̃(N)ψ

)
= −γ̃(N)D/Σψ (12)

for any spinor field ψ ∈ Γ(S/Σ).

3. Spin outer untrapped submanifolds and eigenvalue estimates

3.1. The Dirac-Witten operator. We first recall some standard facts
about the Dirac-Witten operator first introduced by Witten [Wi] in his proof
of the positive energy theorem. Here we focus on the boundary expression
of the associated Schrödinger-Lichnerowicz formula obtained by Gibbons,
Hawking, Horowitz and Perry [GHHP] in the context of positive energy
theorems for black holes in the (3 + 1) dimensional case. The Dirac-Witten
operator is the first order elliptic differential operator acting on S/Ω locally
given by

Dψ =

n+1∑

j=1

γ̃(ej)∇̃ejψ
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where {e1, · · · , en+1} is a local orthonormal frame of the tangent bundle
of Ω. It is by now well-known that the following Schrödinger-Lichnerowicz
type formula holds for ψ ∈ Γ(S/Ω)

D2ψ = ∇̃∗∇̃ψ +Rψ (13)

where R is the endomorphism of S/Ω defined by

Rψ :=
1

4

(
R− |B|2 +

(
Tr(B)

)2
− 2 γ̃

(
div

(
B − Tr(B)I

))
γ̃(T )

)
ψ

and

∇̃∗
Xψ = −∇̃Xψ + γ̃(BX)γ̃(T )ψ (14)

is the L2-formal adjoint of the spin connection ∇̃. On the other hand, using

the compatibility property of the spin connection ∇̃ with the Hermitian
product ( , ) and the Stokes formula, we derive the following integration by
parts formula

∫

Ω
〈Dψ,ϕ〉dΩ −

∫

Ω
〈ψ,Dϕ〉dΩ = −

∫

Σ
〈γ̃(N)ψ,ϕ〉dΣ (15)

for all ψ,ϕ ∈ Γ(S/Ω) and where dΩ (resp. dΣ) is the volume form of Ω (resp.
Σ). Now using (14) and (15) when integrating (13) on Ω gives
∫

Ω

(
|∇̃ψ|2 + 〈Rψ,ψ〉 − |Dψ|2

)
dΩ = −

∫

Σ
〈γ̃(N)Dψ + ∇̃Nψ,ψ〉 dΣ.

A consequence of the dominant energy condition (DEC) is the non-negativity
of the endomorphism R. Indeed, it is straightforward to check that the
lowest eigenvalue of R is

T (T, T )−

√√√√
n+1∑

j=1

T (ej , T )2 = µ− |J |,

which is non negative by taking v = J in (DEC). So if the dominant energy
condition holds on E , the previous formula reads

−

∫

Ω
|Dψ|2 dΩ ≤ −

∫

Σ
〈γ̃(N)Dψ + ∇̃Nψ,ψ〉 dΣ

with equality if and only if ψ satisfies ∇̃Xψ = 0 for all X ∈ Γ(TΩ). Following
[BM], such a spinor field is referred to as an extrinsic imaginary Codazzi
spinor (or (EIC)-spinor) since using the Gauß formula (9) and the Clifford
multiplications identification (7), we observe that

∇̃Xψ = 0 ⇐⇒ ∇/Ω
Xψ =

i

2
γ/Ω(BX)ψ (EIC)

for all X ∈ Γ(TΩ).
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On the other hand, if {e1, · · · , en, en+1 = N} is a local orthonormal frame
of TΩ|Σ, we compute using the Gauß formula (9) and (11):

−∇̃Nψ − γ̃(N)Dψ = D/ψ −
1

2
Hψ −

1

2
γ̃(BN)γ̃(T )ψ.

where

D/ψ := D/Σψ +
1

2
Kγ̃(N)γ̃(T )ψ (16)

for all ψ ∈ Γ(S/Σ) and BN ∈ Γ(TΣ) is defined by:

〈BN,X〉 = B(X,N)

for all X ∈ Γ(TΣ). We have in particular, the following important formula

D/ψ =
1

2
Hψ +

1

2
γ̃(BN)γ̃(T )ψ +

n∑

j=1

γ̃(ej)γ̃(N)∇̃ejψ (17)

for all ψ ∈ Γ(S/Σ). We also note that since D/ is a zero-order modification
of the extrinsic Dirac operator D/Σ, it is obvious to check that it defines an
elliptic linear differential operator of order one. Moreover from (8), one sees
that the endomorphism γ̃(N)γ̃(T ) is pointwise self-adjoint with respect to
the Hermitian scalar product 〈 , 〉 so that D/ is symmetric for the L2-scalar
product on S/Σ.

Remark 2. The normal bundle NΣ of Σ in E is a rank-two vector bundle
over Σ with induced metric of signature (−,+). Moreover, the induced

connection ∇̃⊥ on NΣ is defined to be the fiberwise orthogonal projection

of the space-time connection ∇̃ onto NΣ. Fix any section ν ∈ Γ(NΣ) that
is outward-spacelike and of unit length. Then, there exists a unique 1-form
αν on Σ so that for all X ∈ Γ(TΣ) we have

αν(X) = 〈∇̃⊥
Xν, ν

⊥〉

where the map ν 7→ ν⊥ is the involutive linear isomorphism of NΣ defined
as follow: for p ∈ Σ and u, v ∈ NpΣ comprising an orthonormal basis,

with u future-directed and v outward-spacelike, define u⊥ = v and v⊥ = u
and extend linearly. The 1-form αν is the connection 1-form of the normal

bundle which, with ν, completely determine ∇̃⊥. The vector field BN can
be expressed in term of the vector field dual to the one-form α−N . Indeed,
since N is inward-spacelike, we have (−N)⊥ = T and T⊥ = −N so that

α−N (X) = −〈∇̃⊥
XN,T 〉 = −〈∇̃XN,T 〉 = B(X,N) = 〈BN,X〉

for all X tangent to Σ. This implies that

BN =
(
α−N

)♯

where ( )♯ : T ⋆Σ → TΣ is the musical isomorphism between the co-tangent
and the tangent bundles of Σ. Note that, in the following, since N is always
assumed to be inward-pointing, we let αN := −α−N .
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As we will see, it is enough for our purpose to consider spin outer un-
trapped submanifolds with αN = 0. From Remark 2 and the previous
discussion, we obtain the following Reilly-type identity

Proposition 3. Let Σn := ∂Ωn+1 a spin outer untrapped submanifold in
a time-oriented space-time En+1,1 satisfying the Einstein equations (4) and
the dominant energy condition (DEC). If αN = 0 then the inequality

−

∫

Ω
|Dψ|2 dΩ ≤

∫

Σ
〈D/ψ −

1

2
Hψ,ψ〉 dΣ (18)

holds for all ψ ∈ Γ(S/Ω). Moreover, equality occurs if and only if ψ is a
(EIC)-spinor.

Proof : It only remains to prove that if ψ is a (EIC)-spinor on Ω, then
equality occurs in (18). Indeed, from (EIC), we immediately get Dψ = 0
so that the left-hand side of (18) vanishes. On the other hand, using (EIC)
and the fact that αN = 0 in (17) finally lead to

D/ψ =
1

2
Hψ,

which implies that the right-hand side also vanishes and so equality holds.
q.e.d.

3.2. An elliptic boundary problem for the Dirac-Witten operator.

As before, Σn is the boundary hypersurface of an (n + 1)-dimensional Rie-
mannian spin compact manifold Ωn+1 lying in a spacelike hypersurface of a
time-oriented space-time En+1,1. We define two pointwise projections

P± : S/Σ −→ S/Σ

on the induced Dirac bundle S/Σ over the submanifold Σ by letting

P±ψ =
1

2

(
ψ ± i γ̃(N)ψ

)
, ∀ψ ∈ Γ(S/Σ). (19)

This boundary condition has been introduced in the seventies in order to pro-
pose a model for elementary particles [CJJTW, CJJT, J]. It is a well known
fact that the two orthogonal projections P± defined on the spin bundle S/Σ in
(19), provide local elliptic boundary conditions for the Dirac-Witten opera-
tor D of Ωn+1 (see [BäBa, BC]). The ellipticity of the boundary conditions
P+ and P− and that of the Dirac-Witten operator D on Ω allow to assert
that the boundary problems associated to the realization (D, P±) on the
domain Ωn+1 is of Fredholm type with smooth spinor fields as solutions, if
they existed. Note also that the integration by parts formula (15) shows
that none of the conditions provided by P± makes D a formally self-adjoint
operator. Instead, one can easily see that the boundary realizations (D, P+)
and (D, P−) of D are adjoint to each other. We first deduce
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Proposition 4. The following two types of inhomogeneous problems for the
Dirac-Witten operator D of a (n+1)-dimensional Riemannian spin compact
manifold with smooth boundary Σ lying in a spacelike hypersurface of a time-
oriented space-time E

{
Dψ = Φ on Ω
P±(ψ|Σ) = 0 on Σ

(20)

have a unique smooth solution for any Φ ∈ Γ(S/Ω).

Proof : The two realizations of D associated with the two boundary condi-
tions P± are the two unbounded operators

D± : DomD± = {ψ ∈ H1(S/Ω) |P±(ψ|Σ) = 0} −→ L2(S/Ω)

where H1(S/Ω) stands for the Sobolev space of L2-spinors with weak L2

covariant derivatives. From (15), it follows that for the adjoint, one has
(D±)

∗ = D∓. Moreover, if ψ ∈ DomD± is a solution of the corresponding
homogeneous problem, the ellipticity of both the Dirac-Witten operator D
and the boundary condition P± = 0 imply that ψ is smooth. On the other
hand, taking ϕ = iψ in (15) and recalling that the metric on S/Ω is Hermitian,
we have

0 = 2

∫

Ω
〈Dψ, iψ〉 dΩ =

∫

Σ
〈ψ, i γ̃(N)ψ〉 dΣ = ∓

∫

Σ
|ψ|2 dΣ.

Then one sees that the smooth D-harmonic spinor ψ on the compact man-
ifold Ω has a vanishing trace ψ|Σ along the boundary hypersurface Σ. On
the other hand, from the Gauß formula (9), it is straightforward to see that

Dψ = 0 ⇐⇒ D/Ωψ = −
i

2

(
trB

)
ψ,

where D/Ω is the extrinsic Dirac operator of Ω. As a consequence of this
fact we get that, since ψ is non-trivial and Ω is connected, its zeroes set has
Hausdorff measure at most n− 1 (see [Bä1]). This contradicts the fact that
ψ vanishes identically on Σ and so we conclude that ψ vanishes on the whole
of Ω. Then

kerD± = {0} and cokerD±
∼= ker(D±)

∗ = kerD∓ = {0}.

Then the two realizations D± are invertible operators, hence if Φ ∈ Γ(S/Ω)
is a smooth spinor field on Ω, there exists a unique solution ψ ∈ H1(S/Ω) of
(20). The classical regularity results imply the required smoothness of the
solution ψ. q.e.d.

As a consequence of the previous proposition, we prove that the associated
non-homogeneous boundary value problem has a unique solution.
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Proposition 5. On a (n+1)-dimensional Riemannian spin compact man-
ifold Ω with smooth boundary Σ lying in a spacelike hypersurface of a time-
oriented space-time E, the following boundary problem{

DΨ = 0 on Ω
P±Ψ|Σ = P±ϕ along Σ

has a unique smooth solution Ψ ∈ Γ(S/Ω) for all ϕ ∈ Γ(S/Σ).

Proof : Extend ϕ to a spinor field φ̂ ∈ Γ(S/Ω). From Proposition 4, there

exists a unique ψ̂ ∈ Γ(S/Ω) smooth solution to the boundary problem
{

Dψ̂ = −Dφ̂ on Ω

P±ψ̂|Σ = 0 on Σ

and so Ψ = ψ̂ + φ̂ ∈ Γ(S/Ω) is the desired solution.
q.e.d.

3.3. A generalized Reilly formula. First, it is important for the following
to study the behavior of the projections P± with respect to the Dirac-type
operator D/ :

Lemma 1. For any smooth spinor field ψ ∈ Γ(S/Σ) we have

D/P±ψ = P∓D/ψ (21)

and ∫

Σ
〈D/ψ, ψ〉 dΣ = 2

∫

Σ
〈D/P+ψ,P−ψ〉 dΣ. (22)

Proof : From (12), it is straightforward to check that

D/Σ
(
P±ψ

)
= P∓D/

Σψ

for all ψ ∈ Γ(S/Σ). Moreover since

γ̃(N)γ̃(T )P±ψ = P∓

(
γ̃(N)γ̃(T )ψ

)

the relation (21) follows from the definition (16) of D/ . For the second point,
we remark that the pointwise orthogonality of the decomposition ψ = P+ψ+
P−ψ combined with the previous relations give∫

Σ
〈D/ψ, ψ〉 dΣ =

∫

Σ
〈P+D/ψ, P+ψ〉 dΣ +

∫

Σ
〈P−D/ψ, P−ψ〉 dΣ.

Then using (21) and the self-adjointness of D/ in the first term of the right-
hand side of this equality prove (22). q.e.d.

The proof of the main result of this section (see Theorem 8) relies on a
generalization of the classical Reilly formula for spinors (see Formula (27)).
This approach has been developed by the first two authors in the spin Rie-
mannian setting in [HM] (see also [HMR1]). It should also be noticed that
such a formula was also derived in [MTX] for the standard Reilly formula
on functions to study the critical points of the Wang-Yau quasi-local energy.
So here we first prove
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Proposition 6. Let Σn be a spin outer untrapped submanifold of codimension-
two in a spacetime En+1,1 which satisfies the Einstein equations (4) and the
dominant energy condition (DEC). If αN = 0, then for all ψ ∈ Γ(S/Σ), we
have:

∫

Σ

( 1

H
|D/P+ψ|

2 −
H

4
|P+ψ|

2
)
dΣ ≥ 0. (23)

Moreover, equality occurs if and only if there exists a (EIC)-spinor Ψ ∈
Γ(S/Ω) such that P+Ψ = P+ψ.

Proof : For a spinor field ψ ∈ Γ(S/Σ) consider the following boundary
value problem {

DΨ = 0 on Ω
P+Ψ = P+ψ along Σ

for the Dirac-Witten operator D and the pointwise boundary condition P+.
Existence and uniqueness of a smooth solution Ψ ∈ Γ(S/Ω) for this boundary
problem is ensured by Proposition 5. On the other hand, since we assume
that the spacetime E satisfies the dominant energy condition and αN = 0,
we can apply the inequality (18) to Ψ which gives

0 ≤

∫

Σ

(
〈D/Ψ,Ψ〉 −

1

2
H|Ψ|2〉

)
dΣ.

Then from the relations (21), (22) and the fact that P+Ψ = P+ψ we have

0 ≤

∫

Σ

(
2〈D/ (P+ψ), P−Ψ〉 −

1

2
H|P+ψ|

2 −
1

2
H|P−Ψ|2

)
dΣ. (24)

On the other hand, since Σ is an outer untrapped submanifold we have
H = θ+ − θ− > 0 and then

0 ≤
∣∣∣
√

2

H
D/ (P+ψ)−

√
H

2
P−Ψ

∣∣∣
2

implies that

2〈D/ (P+ψ), P−Ψ〉 −
1

2
H|P−Ψ|2 ≤

2

H
|D/ (P+ψ)|

2.

Putting this estimate in (24) gives the desired estimate. If equality is
achieved, we have equality in (18) so that Ψ is a (EIC)-spinor with P+Ψ =
P+ψ. Conversely, assume that there exists such a spinor field Ψ ∈ Γ(S/Ω).

Since ∇̃XΨ = 0 for all X ∈ Γ(TΣ) and αN = 0, we have from (17) that
D/Ψ = 1

2HΨ. Formula (21) in Lemma 1 implies that D/ (P±Ψ) = 1
2HP∓Ψ

and since P+Ψ = P+ψ along Σ we have D/ (P+ψ) =
1
2HP−Ψ. This implies

that

0 ≤

∫

Σ

( 1

H
|D/P+ψ|

2 −
H

4
|P+ψ|

2
)
dΣ =

1

4

∫

Σ
H
(
|P−Ψ|2 − |P+ψ|

2
)
dΣ. (25)
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On the other hand, we compute

1

4

∫

Σ
H|P+ψ|

2dΣ =
1

2

∫

Σ
〈D/ (P−Ψ), P+ψ〉dΣ

=
1

2

∫

Σ
〈P−Ψ,D/ (P+ψ)〉dΣ

=
1

4

∫

Σ
H|P−Ψ|2dΣ

which when used in (25) allows us to conclude. q.e.d.

It turns out that inequality (23) also holds for the P−-projection since
there is an obvious symmetry between these two projections, that is

∫

Σ

( 1

H
|D/P−ψ|

2 −
H

4
|P−ψ|

2
)
dΣ ≥ 0 (26)

for all ψ ∈ Γ(S/Σ). Then summing (23) and (26) using the commutation
properties (21) leads to following key inequality

Proposition 7. Let Σn be a spin outer untrapped submanifold of codimension-
two in a spacetime En+1,1 which satisfies the Einstein equations (4) and the
dominant energy condition (DEC). If αN = 0, then for all ψ ∈ Γ(S/Σ), we
have: ∫

Σ

( 1

H
|D/ψ|2 −

H

4
|ψ|2

)
dΣ ≥ 0. (27)

Moreover equality occurs if and only if there exists two (EIC)-spinors Ψ,
Φ ∈ Γ(S/Ω) with P+Ψ = P+ψ and P−Φ = P−ψ.

3.4. A conformal eigenvalue estimate. In this section, following the
work [HM] of the first two authors, we give an interpretation of Proposi-
tion 7 in terms of the first eigenvalue of a Dirac-type operator for a metric
conformally related to the initial one. This interpretation allows us to char-
acterize the equality case in a more precise way. For this, recall that (see
[Hit, BHMM] for example) if 〈 , 〉H = H2〈 , 〉 is a metric conformally related
to 〈 , 〉, there exists a bundle isometry between the two spinor bundles S/Σ
and S/Σ corresponding to the same spin structure and to the two conformal
metrics. This identification will be denoted by

ψ ∈ Γ(S/Σ) 7→ ψ ∈ Γ(S/Σ).

Then the two Dirac operators D/Σ and D/
Σ

acting respectively on S/Σ and
S/Σ are related for any spinor field ψ ∈ Γ(S/Σ) by

D/
Σ(
H−n−1

2 ψ
)
= H−n+1

2 D/Σψ. (28)

Now we define the linear differential operator D/ acting on S/Σ by

D/ ϕ := D/
Σ
ϕ+

1

2
H−1K Iϕ (29)



AN ALEXANDROV THEOREM IN MINKOWSKI SPACETIME 15

where I is the pointwise symmetric endomorphism given by

I : ϕ ∈ Γ(S/Σ) 7→ γ̃(N)γ̃(T )ϕ ∈ Γ(S/Σ).

Since D/ is a zero order modification of the hypersurface Dirac operator D/
Σ
,

it is clear that it defines an elliptic and L2-self-adjoint operator of order
one. Moreover, since Σ is compact, its spectrum is an unbounded sequence
of real numbers whose first eigenvalue is denoted by λ1(D/ ). Note that the

spectrum of D/ is symmetric with respect to zero since the endomorphism

ϕ 7→ γ̃(N)ϕ maps an eigenspinor for D/ associated with λ to an eigenspinor

for D/ associated with −λ. So without loss of generalities, we can assume

that λ1(D/ ) is a non negative real number. On the other hand, using the
conformal covariance relation (28), it is a straightforward computation to
check that

D/ (H−n−1

2 ψ) = H−n+1

2 D/ψ.

With this relation, we observe that inequality (27) now reads
∫

Σ

(
|D/ ψ|2 −

1

4
|ψ|2

)
dΣ ≥ 0

for all ψ = H−n−1

2 ϕ ∈ Γ(S/Σ) and where dΣ = HndΣ represents the Rie-
mannian measure with respect to the metric 〈 , 〉H . In other words, using

the Rayleigh characterization of λ1(D/ )
2, we get

Theorem 8. Let Σn be a spin outer untrapped submanifold of codimension-
two in a spacetime En+1,1 which satisfies the Einstein equations (4) and the
dominant energy condition (DEC). If αN = 0 then

λ1(D/ )
2 ≥

1

4
.

Equality holds if and only if there exists a (EIC)-spinor on Ω. In this case,

the eigenspace corresponding to λ1(D/ ) = 1
2 consists of restrictions to Σ of

(EIC)-spinor fields on Ω multiplied by the function H−n−1

2 .

Proof : We are left to prove the equality case. Assume now that equality
is achieved, then there exists an eigenspinor ψ ∈ Γ(S/Σ) for D/ associated with

eigenvalue 1
2 which from (28) translates to D/ϕ = 1

2Hϕ with ϕ = H
n−1

2 ψ ∈
Γ(S/Σ). Therefore we are in the equality case of Proposition 7 and so there
exists two (EIC)-spinors Ψ, Φ ∈ Γ(S/Σ) with P+Ψ = P+ϕ, P−Φ = P−ϕ. In
particular, from the equation (EIC), the fact that αN = 0 and the relation
(17), we obtain

D/Ψ =
1

2
HΨ and D/Φ =

1

2
HΦ

Now from Lemma 1 and the two previous equations, we easily deduce that

D/ (P±Ψ) =
1

2
HP∓Ψ and D/ (P±Φ) =

1

2
HP∓Φ
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so that

1

2
H P−Ψ = D/ (P+Ψ) = D/ (P+ϕ) = P−(D/ϕ) =

1

2
H P−ϕ =

1

2
H P−Φ.

This implies that there exists a (EIC)-spinor Ψ ∈ Γ(S/Ω) such that Ψ|Σ = ϕ.
The converse is clear. q.e.d.

4. CNNC codimension-two submanifolds

In this section, we will see that the proof of Theorem 2 is a a direct con-
sequence of the conformal eigenvalue estimate proved in Theorem 8. Recall
that a codimension-two submanifold of a Lorentzian manifold has CNNC if
there exists a future null normal vector field L̃ such that Σ is torsion-free
with respect to L̃ and 〈H, L̃〉 is a constant. We can assume that L̃ := L̃− is

an inner vector field since the case where L̃ is an outer one can be treated
in a same way. Then the strategy of the proof is as follows: we start from
Σ which bounds a compact domain Ω of a spacelike hypersurface in R

n+1,1

with T and N the unit timelike future-directed normal to Ω in Rn+1,1 and
the unit inner normal to Σ in Ω. We first deform the domain Ω in a another
domain Ω̃ with Σ as boundary and whose inner null expansion is precisely

given by θ̃− = −〈H, L̃−〉. Then from the torsion-free assumption, we deduce
that α

Ñ
= 0 so that Theorem 8 may apply in a subtle way to this situation.

4.1. Deformations of a spacelike domain spanned by a codimension-

two untrapped submanifold. Suppose that Σn is an orientable codimen-
sion-two spacelike submanifold in a Lorentzian manifold En+1,1 and consider
its mean curvature vector field H, which is a normal field on Σn. If the im-
mersion of Σn into En+1,1 factorizes through a spacelike hypersurfaceMn+1

of the spacetime, we know that this factorization yields corresponding null
expansions (θ+, θ−) of H, where the smooth functions θ± are linked by the
relation |H|2 = −θ+θ− and are respectively (up to a constant) the compo-
nents of H with respect to the pair of null vectors fields (T ±N), with T the
unit timelike future-directed normal field to Mn+1 and N a choice of unit
spacelike normal field of Σn in Mn+1. When Σn bounds a domain Ωn+1 in
Mn+1, that is, Σn = ∂Ωn+1, we choose N as the inner normal.

Assume now that the same codimension-two spacelike submanifold Σn fac-
torizes through another spacelike hypersurface Pn+1 of En+1,1. The new fac-

torization provides us a different Lorentzian orthonormal reference {T̃ , Ñ}
for the normal plane of Σ in E . In fact, it is obvious that there must be a
function f ∈ C∞(Σ), such that

T̃ = (cosh f)T − (sinh f)N, Ñ = −(sinh f)T + (cosh f)N. (30)

The new Lorentzian reference also determines two null normal vectors (T̃ ±

Ñ) and the corresponding new null expansions of H are given by

θ̃+ = efθ+, θ̃− = e−fθ−,
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or equivalently

K̃ + H̃ = ef (K +H), K̃ − H̃ = e−f (K −H). (31)

Conversely, it is important to remark that, provided that Σ spans a compact
spacelike domain Ω of E , any choice of f ∈ C∞(Σ) determines a factoriza-
tion through another spacelike hypersurface which can be obtained from Ω
through a suitable deformation. We refer to [HMR2] for a proof of this
result.

Lemma 2. Let Σ be a compact spacelike codimension-two submanifold em-
bedded in the Lorentzian manifold E and H its mean curvature vector field.
Suppose that Σ spans a compact spacelike domain Ω in E and that (θ+, θ−)
are the outer and inner null expansions of H corresponding to the embed-
ding of Σ in Ω. For any smooth function f ∈ C∞(Σ), there exists a compact
spacelike hypersurface Ωf in E such that ∂Ωf = Σ and the corresponding
null expansions of H are given by

θf+ = efθ+, θf− = e−fθ−.

Remark 3. Suppose that the spacelike hypersurface Ωn+1 spanned by the
codimension-two spacelike submanifold Σ is endowed with a spin structure
(this always occurs when the spacetime itself is spin). Since the new hyper-
surface Ωf built in Lemma 2 above for a given f ∈ C∞(Σ) is obtained by
slightly deforming Ω near its boundary, all these Ωf are homotopic to each
other, and so they induce the same spin structure on Σ. It is obvious that
all their Riemannian metrics, which come from the Lorentzian metric on E ,
determine the same Riemannian metric on Σ.

Now a particular choice of the function f ∈ C∞(Σ) will allow us to factor-

ize this embedding through a spacelike hypersurface Ω̃ of E specially adapted
to obtain the proof of Theorem 2.

Proposition 9. Let Σ be an outer untrapped spacelike codimension-two sub-
manifold embedded in a Lorentzian manifold E. Then, there exists a smooth

function f ∈ C∞(Σ) such that the corresponding Ω̃ := Ωf given by Lemma
2 above has null expansions of H given by

θ̃+ =
|H|2

〈H, L̃−〉
θ̃− = −〈H, L̃−〉

where L̃− is an inner future-directed null normal. Moreover, if Σ is torsion-

free with respect to L̃− and if {T̃ , Ñ} denotes the associated Lorentzian frame
obtained by the transformation (30), we have

α
Ñ
(X) = 〈∇̃XÑ , T̃ 〉 = 0

for all X ∈ Γ(TΣ).

Proof : Let (θ+, θ−) be the outer and inner null expansions of the mean
curvature vector field H of Σ corresponding to the embedding of Σ in Ω and
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to a given orientation of Ω. Since Σ is an outer untrapped submanifold we
have that −θ+θ− = |H|2 > 0 and θ+ − θ− = 2H > 0. So θ+ and −θ− are
positive everywhere on Σ. Then, we can put

f = log
(
−

θ−

〈H, L̃−〉

)

in Lemma 2 and it suffices to define Ω̃ = Ωf for this choice of function f .
On the other hand, it is obvious to observe that in this case, we have

L̃− = T̃ + Ñ

and a straightforward computation proves that

(∇̃X L̃−)
⊥ = B̃(X, Ñ ) L̃−

for all X ∈ Γ(TΣ). Now since Σ is torsion-free with respect to L̃−, we have

(∇̃L̃−)
⊥ = 0 so that B̃(X, Ñ ) = 0 for all X ∈ Γ(TΣ) which, as noticed in

Remark 2, is equivalent to the fact that α
Ñ
(X) = 0 for all X ∈ Γ(TΣ), as

claimed. q.e.d.

4.2. CNNC codimension-two submanifolds in the Minkowski space-

time. In this section, we give the proof of Theorem 2. We first remark that
compact untrapped submanifolds, that is, compact codimension-two space-
like submanifolds of Minkowski spacetime having spacelike mean curvature
vector field, must be mean-convex in any spacelike domain that they might
bound. Indeed we have

Lemma 3. Let Σn be a compact untrapped codimension-two submanifold
in the Minkowski spacetime R

n+1,1. Suppose that Σn is the boundary of a
spacelike domain in R

n+1,1. Then Σn is mean-convex in this domain, that
is, Σ is an outer untrapped submanifold.

Proof : Let Ω be a spacelike hypersurface in R
n+1,1 and spanned by Σ.

Suppose that θ+ = H + K and θ− = K − H are the corresponding null
expansions of the mean curvature vector H, after choosing suitable T and
N . Choose a unit timelike vector a ∈ R

n+1,1 and project Ωn+1 onto the
Euclidean slice R

n+1 ⊂ R
n+1,1 orthogonal to a. Since Ω is spacelike, we

obtain an immersion φ from Ω into R
n+1. It is not so difficult to check that

the mean curvature H ′ of the immersed hypersurface given by φ|Σ : Σ →

R
n+1 with respect to the inner orientation is given by

H ′ = H cosh f +K sinh f = efθ+ − e−fθ−,

where f ∈ C∞(Σ) is the smooth function given by

f = arg cosh
〈T, a〉√

〈T, a〉2 − 〈N, a〉2
.

As a first consequence, H ′2 ≥ |H|2. As we are supposing that Σ has space-
like mean curvature, we conclude that H ′ does not change its sign on each
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component of Σn. A second consequence is that Σ is mean-convex, that is,
H > 0, if and only if H ′ > 0. But this is precisely the case because each
component of Σ is compact and any compact hypersurface in a Euclidean
space has at least an elliptic point. Thus, Σ must be mean-convex and
H ′ ≥ |H| > 0. q.e.d.

Proof of Theorem 2 : Let Σn be an untrapped CNNC submanifold of
codimension-two in R

n+1,1 which bounds a compact spacelike domain Ωn+1

of Rn+1,1. From the previous lemma and the fact that Rn+1,1 is spin, we
deduce immediately that Σ is in fact a spin outer untrapped submanifold.
Since Σ has CNNC, it is a torsion-free submanifold with respect to a future

null normal vector field L̃−. Once again, we will assume that L̃− is inward-
pointing, the outward-pointing case can be treated in a same way. Now

using Proposition 9, there exists a compact spin spacelike domain Ω̃n+1

with smooth boundary Σ such that θ̃− = −〈H, L̃−〉 < 0. Moreover, if Ñ

(resp. H̃) denotes the inner unit vector field normal to (resp. the mean

curvature of) Σ in Ω̃, we have, again applying Proposition 9 (resp. Lemma

3), that α
Ñ

= 0 (resp. H̃ > 0). So if D/ denotes the Dirac-type operator

defined in (29) for the metric 〈 , 〉
H̃

= H̃2〈 , 〉, we can apply Theorem 8 to

deduce that λ1(D/ ) ≥ 1/2. On the other hand, since Rn+1,1 carries parallel

spinor fields it induces (EIC)-spinor fields on Ω̃ and so it is immediate, again

from Theorem 8, that we have in fact λ1(D/ ) = 1/2. Consider now a parallel

spinor field Φ ∈ Γ(SRn+1,1) and define

Ψ := γ̃
( 1
n
θ̃−ξ − L̃−

)
Φ ∈ Γ(S/Σ)

where ξ denotes the position vector field in R
n+1,1. Now since Σ has CNNC

we have that 〈H, L̃−〉 is constant and from our choice of Ω̃, this implies that

θ̃− is a (negative) constant. From this fact, we compute using (17) that

D/Ψ =
1

2
H̃Ψ

and so it induces an eigenspinor for D/ associated with the eigenvalue (1/2).
From the equality case of Theorem 8 we deduce that Ψ is the restriction to

Σ of an (EIC)-spinor on Ω̃. Then, for all X ∈ Γ(TΣ), we have

0 = ∇̃XΨ = γ̃
( 1

n
θ̃−X − ∇̃XL̃−

)
Φ

and since Φ has no zero, we immediately get that the null second fundamen-

tal form with respect to L̃−, defined by (1), satisfies

χ−(X,Y ) =
1

n
θ̃−〈X,Y 〉

for all X, Y ∈ Γ(TΣ), that is Σ lies in a shearfree null hypersurface. q.e.d.
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