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Abstract

In this paper, we present a new method for the automatic comparison of myocardial motion patterns and the
characterization of their degree of abnormality, based on a statistical atlas of motion built from a reference
healthy population. Our main contribution is the computation of atlas-based indexes that quantify the
abnormality in the motion of a given subject against a reference population, at every location in time and
space. The critical computational cost inherent to the construction of an atlas is highly reduced by the
definition of myocardial velocities under a small displacements hypothesis. The indexes we propose are of
notable interest for the assessment of anomalies in cardiac mobility and synchronicity when applied, for
instance, to candidate selection for cardiac resynchronization therapy (CRT). We built an atlas of normality
using 2D ultrasound cardiac sequences from 21 healthy volunteers, to which we compared 14 CRT patients
with left ventricular dyssynchrony (LVDYS). We illustrate the potential of our approach in characterizing
septal flash, a specific motion pattern related to LVDYS and recently introduced as a very good predictor
of response to CRT.
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1. Introduction

1.1. Patient selection for CRT
Cardiac resynchronization therapy (CRT) has

proved its benefits over the last few years for the
treatment of patients with heart failure and ev-
idence of ventricular conduction delays (Cleland
et al., 2005). The objective of CRT is to restore
the coordination in the motion of the cardiac cham-
bers, leading to notable improvements in cardiac
function and reverse remodeling (St John Sutton
et al., 2003). However, with current selection crite-
ria, the therapy fails to improve patient condition
for approximately 30% of the subjects (Stellbrink
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et al., 2004). The main current clinical challenge
behind CRT is therefore the understanding of the
physiological mechanisms conditioning positive or
negative response.
In recent years, a large number of studies focused on
the computation of quantitative indexes for cardiac
dyssynchrony, with the underlying objective of pre-
dicting CRT response (Hawkins et al., 2006). The
indexes proposed in the literature are mostly based
on direct comparisons of temporal measurements
(QRS duration and “time-to-peak” measures) (Bax
et al., 2004), but they remain suboptimal as dis-
cussed in Voigt (2009) and Fornwalt et al. (2009)
(poor reproducibility and simplification of the com-
plex explication of CRT response to single obser-
vations of dyssychrony). The lack of consensus
about indexes able to accurately predict CRT re-
sponse proves that generic indexes that try to cap-
ture dyssynchrony with limited reference to patho-
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physiology fail in the CRT context (Fornwalt et al.,
2009). In order to fundamentally improve the prog-
nostic value of novel indexes it is crucial that they
are inspired in a deep understanding of the patho-
physiological mechanisms involved in electrical and
mechanical dyssynchrony. Recently, Parsai et al.
(2009b) proposed a classification of patients into
specific etiologies of heart failure, and evaluated the
response of each of these groups. Using this classi-
fication, one group showing a specific left ventricle
(LV) dyssynchrony pattern called septal flash (SF)
(Parsai et al., 2009a) demonstrated a very high re-
sponse rate to CRT (Parsai et al., 2009b).

1.2. Quantifying abnormality in cardiac motion
The SF pattern has been characterized in Par-

sai et al. (2009a,b), using M-mode echocardiogra-
phy. The protocol presented allows quantitative
assessment of the SF (presence, timing and max-
imal excursion). More automatic methods focusing
on abnormal patterns associated with dyssynchrony
have also been proposed, using speckle tracking
strain analysis from 2D ultrasound (2D US) (Del-
gado et al., 2008), volume curves analysis from
3D US (Sonne et al., 2009), and circumferential
shortening indexes from tagged magnetic resonance
(t-MRI) images (Rutz et al., 2009). However, for
such methods, the analysis is only performed in
a limited set of points that are observer-defined
or only representative of specific heart segments.
The definition of these points is still highly subjec-
tive and patient-dependent. Thus, the variability
in their localization limits the relevance of defin-
ing statistical indexes at such locations. In meth-
ods derived from recent advances in computational
anatomy (Grenander and Miller, 1998), and par-
ticularly when using statistical atlases (Young and
Frangi, 2009), patient data is normalized to a com-
mon anatomical reference, so that there is no need
to define specific comparison points between pa-
tients. Such methods represent a promising alter-
native to compute relevant statistical indexes for
the whole cardiac anatomy.

In our study, we aim at characterizing one aspect
of the cardiac function, namely, motion through-
out the heart cycle. Hence we rely on dynamic at-
lases, taking advantage of previous works on sta-
tistical atlases of motion and deformation initiated
in Rao et al. (2004), Chandrashekara et al. (2005)
and Rougon et al. (2004). We can distinguish three
steps in the process of building such a statistical
atlas:

Extracting motion from cardiac sequences.
(Ledesma-Carbayo et al., 2005; Chandrashekara
et al., 2004; Petitjean et al., 2004). In Khan and
Beg (2008) and De Craene et al. (2009, 2010) the
tracking along longitudinal datasets is combined
with the diffeomorphic framework (Trouvé, 1998),
particularly suitable when handling cardiac se-
quences, since it preserves the topology and the
orientation of anatomical structures.

Normalizing the different sequences to a reference
anatomy. A pipeline adapted to cardiac studies
was used in Perperidis et al. (2005) and Peyrat et al.
(2009). In Qiu et al. (2009) and Durrleman et al.
(2009), the synchronization of longitudinal datasets
is combined with the use of diffeomorphic paths to
compare the evolution of shapes along different se-
quences. These approaches still need to prove their
feasibility (robustness, computational cost) when
applied to real data, especially when the topology
of the structure of interest is not preserved along
the sequence, due to the presence of noise.

Computing statistics on motion fields. To preserve
the diffeomorphic properties of the computed vec-
tor fields, the use of log-Euclidean metrics is rec-
ommended when computing statistics, as summa-
rized in Pennec and Fillard (2010). Abnormality
assessment at every desired point of the anatomy
requires the use of voxel-based morphometry tools
(VBM) (Ashburner and Friston, 2000), for which an
overview of some applications in brain morphome-
try can be found in Ashburner et al. (2003). Ex-
tending VBM tools to multivariate statistics (Wors-
ley et al., 2004) allows to handle statistics on vector
fields, similarly to the works that have been pro-
posed for tensor fields (Leporé et al., 2008; Com-
mowick et al., 2008).

1.3. Proposed approach

In this paper, we propose a complete and flexible
pipeline for the construction of an atlas of motion
based on these three construction steps, which were
kept as simple as possible to avoid computational
burden. Thus, each of these steps can further be
improved using a more elaborated technique, pro-
vided this guarantees a noticeable improvement in
the identification of abnormal motion patterns.

Cardiac anatomy is tracked using the chaining
of diffeomorphic paths between pairs of consecutive
frames. We take advantage of the high temporal
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resolution of 2D US to work under a small displace-
ments hypothesis. The use of small displacements
reduces the computational complexity of estimat-
ing velocities over the whole continuous timescale,
and allows direct computation of classical statistics
on the velocity fields without the need of the log-
Euclidean framework.

The atlas is then used for the comparison of in-
dividuals to a healthy population, both represented
by myocardial velocities, using abnormality indexes
available at any location (x, t). One interesting fea-
ture of such indexes is that they intrinsically per-
form a comparison to normality. This contrasts
with the indexes generally used for CRT, which
usually measure one clinical parameter, and sub-
sequently compare the ranges obtained for popula-
tions of healthy and diseased subjects to define an
optimal separation threshold.

The method is applied to the analysis of a popula-
tion of CRT patients with left ventricular dyssyn-
chrony, looking for the presence of SF. A first
preliminary version of this work was presented in
Duchateau et al. (2009), in which we illustrated the
feasibility of such an approach for assessing abnor-
mality on a reduced number of patients.

2. Computation of myocardial velocities

2.1. Intra-series registration
In the following sections we will denote S =

{S(t0), ...,S(ti), ...,S(tN−1)} the temporal series of
2D images for one given patient, which contains
N images taken at time-points ti. To track the
anatomy along cardiac cycles, pairwise registration
between consecutive frames provides a sequence of
transformations ϕti,ti+1 : x �→ x� for each series,
which map any point x of image S(ti) to its cor-
responding point x� in the following frame S(ti+1).
Our non-rigid registration uses the diffeomorphic
free-form deformation (FFD) method (Rueckert
et al., 2006), which is made multi-resolution to im-
prove its robustness to the position and spacing of
control points. We used spacings of 64, 32 and
16 mm, and mutual information as matching term.
The L-BFGS-B algorithm (Byrd et al., 1995) was
chosen as optimizer for the registration procedure.

2.2. Small displacement hypothesis and definition
of velocities

As explained in Arsigny et al. (2006), a diffeomor-
phism can be represented as the flow of a stationary

velocity field uniquely defined by its logarithm. In
compliance with the registration scheme we use, ve-
locities can be written as piecewise stationary, us-
ing:

v(ϕti,t(x), t) = v(x, ti), (1)

where ti is the closest time-point that precedes t
at which the series S is defined, and ϕti,t(x) is the
estimated position at time t of the anatomical point
that was at x at time ti.

If the displacements are small, the logarithm of a
transformation log

�
ϕti,ti+1

�
can be approximated

at the first order by its corresponding displacement
field ϕti,ti+1−I (where I is the identity). Velocities
are directly obtained at the discrete time-points ti
where the data is defined using:

(ti+1 − ti) · v(., ti) = log
�
ϕti,ti+1

�
(2)

≈ ϕti,ti+1 − I. (3)

These equations are coherent with the classical def-
inition of velocities in mechanics, that is to say a
displacement normalized by time.

The use of small displacements allows some addi-
tional simplifications in the computation of veloci-
ties at every time t, initially based on Eq. 1. First,
ϕti,t can be estimated from ϕti,ti+1 using:

ϕti,t − I ≈
t− ti

ti+1 − ti
·
�
ϕti,ti+1 − I

�
. (4)

In a similar way, its inverse can be written as:

ϕ−1
ti,t = ϕt,ti ≈ −ϕti,t. (5)

This leads to the following simplified expressions
for the velocities:

v(., t) ≈

��
ϕti,ti+1 − I

�
/(ti+1 − ti) if t = ti,

v
�
−ϕti,t(.), ti

�
otherwise.

(6)
With this formulation, orientation and invertibil-

ity are preserved at any point (x, t), i.e. trajectories
are guaranteed to be diffeomorphic at any time t, as
the log-exponential does with large displacements.

2.3. Verifying the small displacements hypothesis
on 2D US sequences

We can reasonably assume that the displace-
ments between consecutive frames are small. Such
a choice is justified by the good temporal resolution
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Figure 1: Distribution of the dissimilarity measure dsmall

for all the mappings between consecutive frames of seven
volunteers and seven CRT candidates with SF (blue and red
dots). The same distance was computed for the mapping
between the initial frame in the cycle and the frame at aortic
valve closure (AVC), which produces larger displacements
(crosses).

of 2D US imaging (around 60 frames/s [fps] for the
healthy subjects and 30 fps for the CRT ones, de-
tails are in Sec. 4.1). We demonstrated the validity
of this assumption by comparing the computed dis-
placement fields to the logarithm of their relative
transformations. We used

dsmall(ϕ1,ϕ2) =
1

card(Ω)
·

�

x∈Ω

|ϕ2 ◦ϕ−1
1 − I|

|ϕ1 − I|
(x)

as normalized dissimilarity measure between two
transformations ϕ1 and ϕ2, where Ω is the im-
age domain. Details about the computation of the
logarithm and the inverse of the transformations
ϕti,ti+1 are given in Arsigny et al. (2006).

This comparison is illustrated in Fig. 1 for seven
healthy volunteers and seven CRT candidates with
SF. The computation involved all the frames con-
tained into one cardiac cycle. The distance is
computed for the mappings between consecutive
frames (dots), showing there is on average less than
5% difference between the computed displacement
fields and the logarithm of their relative trans-
formations. This confirms that the displacements
can be considered as small, and that the veloci-
ties can therefore be computed using the simpli-
fied expression of Eq. 6. For comparison purposes,
this computation was also done for the transforma-
tion mapping the initial frame in the cycle and the
frame at end-systole (aortic valve closure event, de-
fined in Sec. 3.1), resulting in larger displacements
(crosses), and a distance dsmall between 20 and 40%
difference.

2.3.1. Small displacements and gain in computa-
tional time

The use of the small displacements hypothesis
and the simplifications from Eq. 3, 4, and 5 allow
much faster computations, which are particularly
recommended in the context of building an atlas in-
volving a large amount of data. Without the use of
small displacements, computing velocities at times
ti (Eq. 2) and t (Eq. 1) requires 50 and 15 seconds
respectively, using a Intel Core i7 920 (2.66 GHz
CPU, 6 GB RAM) computer. In comparison, the
computational time is negligible when using the
simplified expressions summarized in Eq. 6, since
no logarithm nor inverse computation is required.

3. Construction of the Atlas

The registration steps previously explained pro-
vide velocity fields defined in the anatomy of each
patient. Building an atlas requires bringing these
fields to a common spatiotemporal coordinate sys-
tem, so that a statistical representation of the data
can be provided at every desired location (x, t).

In the following, we use k to refer to the k-th
sample patient, and we index variable names ac-
cordingly.

3.1. Temporal synchronization

The heart rate variability between patients
changes the length of their respective cardiac cycles,
as well as the synchronization of the different phases
composing each cycle. Sequences may also differ in
terms of trigger time and frame rate. Temporal
synchronization will therefore consist in establish-
ing correspondences between the cardiac events of
the considered sequences and in bringing them to a
normalized timescale.

Landmark-based piecewise linear warping is
applied to the electrocardiogram (ECG) signals
in order to map the sequences to a normalized
timescale, as illustrated in Fig. 2. We use the
following three landmarks:

• The onset of the QRS complex, which is lo-
cated on the ECG using tools from the EchoPac
software (GE Vingmed Ultrasound A.S., Horten,
Norway).

• The aortic valve opening (AVO) and closure
(AVC), which are determined using continuous
wave Doppler imaging on the aortic valve. AVO
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Figure 2: Temporal synchronization of two patients with
different heart rates (71 bpm and 80 bpm, respectively),
and different dynamics within their cardiac cycles (A: on-
set of QRS, B: aortic valve opening, C: aortic valve closure).
Left : non-synchronized ECG, in seconds. Right : synchro-
nized ECG, normalized timescale.

serves as a marker for the identification of the
end of the isovolumic contraction (IVC) period,
where SF is expected to be over. We used the
absolute timing of ECG events proposed in the
EchoPac software to locate these two events on
the ECG associated to the studied sequence. This
is done under the assumption that the timing
between these events does not change between the
sequences. This assumption is valid because the
sequences have close heart rates, as they belong to
the same session of acquisitions. In addition, in
case of changes in heart rates, the diastolic period
is mainly affected, while the timing of the events
we chose is preserved as they belong to the systolic
period. Manual corrections were performed in case
of inaccurate timing proposed by the software.

Similar synchronization methods (Perperidis
et al., 2005) identified a set of control points over
sequences from MRI, but used image similarity.
We preferred to rely on physiological information,
as for US images the identification of these points
using image data can be biased by respiratory or
probe motion. In addition, the use of physiological
events as temporal landmarks is believed to be
more robust to pathology, as commented in Peyrat
et al. (2009).

3.2. Spatial normalization
Spatial normalization consists in reorienting the

computed velocity fields vk(x, t), initially defined
according to the anatomy of patient k, to a refer-
ence anatomy used for local statistical comparison.
We chose a simple strategy for spatial reorientation,
which is illustrated in Fig. 3. It consists of four con-
secutive stages: defining a reference anatomy for
the atlas, estimating mappings between every pa-
tient and the atlas at time t = 0 (by convention,

time t = 0 was defined as the onset of the QRS
complex), chaining paths to compute these map-
pings at time t, and reorienting the velocity fields
vk to the atlas anatomy at every time t using these
inter-series mappings.

Definition of a reference anatomy. The importance
of using an average anatomy as reference in or-
der to limit statistical bias has been commented in
some publications about atlas construction (Gui-
mond et al., 2000; Commowick and Warfield, 2009;
Rueckert et al., 2003). In the case of atlases of
shape, the distance between the compared shapes
is defined from the mappings between the patients
and the atlas. In our case, these mappings only
serve for reorientation purposes, and do not directly
intervene in the computation of a distance between
patients. We therefore preferred to choose one se-
ries as reference for the sake of simplicity, under
the assumption that the statistical bias on the p-
value indexes used to quantify motion abnormality
remains small.
The choice of a reference among the set of healthy
volunteers was addressed using the group-wise nor-
malized mutual information metric (GWNMI) pro-
posed in Hoogendoorn et al. (2010), and criteria
based on image quality (LV fully visible along the
whole sequence, and low heart rate to achieve a
higher temporal resolution of the atlas). The in-
fluence of such a reference choice is discussed in
Sec. 4.4.5.

Mapping patients to the atlas at t = 0. For ev-
ery patient k, we compute the transformation
ϕk→ref (0), which maps the initial frame of this pa-
tient to the reference at time t = 0. This mapping is
estimated using diffeomorphic FFDs as in Sec. 2.1.

Aside from speckle noise, the visible anatomy dif-
fers in each sequence because of intrinsic character-

Figure 3: Illustration of the spatial reorientation at time t.
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Figure 4: Illustration of the drift correction on one cycle.
Black : tracking along the longitudinal direction without
drift correction. Red : idem with drift correction.

istics of each patient (heart size and shape) and ex-
trinsic parameters due to the US acquisition (probe
orientation and US window size adapted to see the
whole LV). As a consequence, we made the FFD
registration start from a bulk affine transform. This
step models rough differences common to the whole
sequence, namely the ones due to US acquisition
parameters and heart size.

Tracking the anatomy along sequences. Chaining
the pairwise transformations defined in Sec. 2.1 al-
lows to track the anatomy of each patient along
the sequence. We obtain the transformations ϕk

0,t,
which map the anatomy between times t = 0 and t.

When chaining transformations resulting from
registrations of consecutive frames, small errors ac-
cumulate, manifesting themselves as net drifts ob-
served in the final myocardial point positions when
computing full trajectories. These artifacts can be
removed by applying to each point of the trajectory
a correction ensuring that:

�
tS≤ti<tE

ϕti,ti+1 = �ϕtS ,tE .

Here, � denotes the composition operator, tS and
tE are the time-points starting two consecutive car-
diac cycles, and �ϕtS ,tE is the estimated transforma-
tion mapping frames at these time-points.

This correction is illustrated in Fig. 4. The trans-
formation �ϕtS ,tE is estimated using diffeomorphic
FFDs as in Sec. 2.1, preceded by an affine regis-
tration step. It aims at taking into account probe
motion during the acquisition, and adds robust-
ness toward out-of-plane motion and filling varia-
tions between the different cardiac cycles, as the as-
sumption �ϕtS ,tE = I generally made in other works
(Ledesma-Carbayo et al., 2005) does not hold true
in our database of 2D US sequences.

Mapping patients to the atlas at every time t. We
estimate the transformations ϕk→ref at time t us-
ing the following chaining of transformations, which
is illustrated in Fig. 3:

ϕk→ref (t) = ϕref
0,t ◦ϕk→ref (0) ◦ϕk

t,0. (7)

This strategy could later on be improved using
the tools presented in Peyrat et al. (2009), in terms
of robustness in the estimation of ϕk→ref at every
time t.

Reorientation to the reference. Reorientation of the
velocity fields vk is achieved at every point (x, t)
using a push-forward action on vector fields (Tu,
2007):

Pφ(v) =
�
Dφ ◦ φ−1

�
·
�
v ◦ φ−1

�
, (8)

where v = vk, φ = ϕk→ref and D is the Jacobian
operator. In Eq. 8, Dφ ◦ φ−1 represents the reori-
enting action on the vector fields moved to the new
anatomical location by v ◦ φ−1.

Reorientation of vector fields is illustrated in
Fig. 5 and Fig. 6, which display the velocity field
of one healthy subject before reorientation, i.e. di-
rectly over the anatomy of this subject, and after
reorientation to the reference anatomy.

P (v)v

   (x,t) (x,t)

Subject k Reference subject

-1

Figure 5: Illustration of the push-forward action on velocity
fields at each location (x, t)

3.3. Statistics on velocities

Velocities as defined in Sec. 2.2 belong to the
tangent space of the group of diffeomorphisms. It
means that because of the algebraic structure of the
tangent space, classical statistics can be computed
directly on the spatiotemporally normalized veloc-
ity fields, without the need of the log-Euclidean
metrics described in Pennec and Fillard (2010).

We first compute their average and covariance to
characterize the atlas population. Given K differ-
ent sample series

�
Sk| k = 1...K} , we obtain at
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Figure 6: Velocity field v
k over the anatomy of subject k (a)

and after reorientation to the anatomy of subject ref (b).
Images correspond to the LV region during systole. Arrows
have been scaled for optimal visibility.

any desired point (x, t) the average v and the co-
variance matrix Σv from the set of velocities vk,
defined as:

v =
1
K

K�

k=1

vk and Σv =
1

K − 1
Vt

·V

Here Vt =
�
(v1−v)|...|(vK−v)

�
is the M×K ma-

trix whose columns are the centered velocity sam-
ples at (x, t) and M is the dimensionality of the
data. In our case, M = 2 (2D US).

Then, we use the atlas for the comparison of the
velocities of a given patient to the population used
for its construction. We chose Hotelling’s T -square
statistic (Hotelling, 1931) to perform abnormality
tests on multivariate data, which is equivalent to
the Mahalanobis distance in the particular case
where a single sample is compared to a population:

τ2 = α (v − v)t
·Σ−1

v · (v − v), (9)

where α = K/(K + 1), v is the velocity to com-
pare to the atlas, and v and Σv are the previously
described average and covariance matrix computed
for the population atlas.

We use the p-value obtained from the Hotelling’s
T -test as quantitative index assessing abnormality.
The p-value is computed from the cumulative func-
tion associated to the studied statistical distribu-
tion. This computation is performed under the as-
sumption that the local distribution of myocardial
velocities within the atlas population is gaussian.
This assumption is justified in Sec. 4.3.
Leave-one-out cross-validation is used to compute
the p-values within the atlas population.

In the following sections, we apply the previously
described framework to build a statistical atlas of
motion from a population of healthy subjects. We
then use the atlas for the individual comparison of
CRT patients to the atlas population chosen as ref-
erence, using the tools described in Sec. 3.3.

4. Validation on 2D US image sequences

In this section, the atlas construction steps are
validated in terms of registration accuracy and
reproducibility of the spatiotemporal alignment
scheme. Special attention is paid to the quality of
the atlas population (number of subjects, statistical
distribution, chosen reference, and temporal resolu-
tion compared to the population of CRT patientss).

4.1. Patient population and data acquisition
Two-dimensional echocardiographic image se-

quences were acquired in an apical 4-chamber view
for two populations of subjects, using a GE Vivid
7 echographic system (GE Vingmed Ultrasound
A.S., Horten, Norway). The choice of the apical
4-chamber view is led by the fact that it is the
one used in clinical routine for the assessment of
the fast SF pattern. The atlas of normal velocities
was constructed from 21 healthy volunteers (age
30 ± 5 years, 14 male). The patient population
studied included 14 patients (age 67 ± 8 years, 8
male) that were candidates for CRT based on cur-
rent clinical guidelines (symptomatic heart failure
with long QRS length and low ejection fraction)
and that visually had abnormal septal motion on a
transthoracic echocardiographic examination. The
study protocol was approved by the Hospital Cĺınic
(Barcelona, Spain) ethics committee and written
informed consent was obtained from all patients.

Physiological differences between patients constrain
the acquisition parameters, which will differ in
terms of temporal resolution and image quality.
Images were acquired during breath-hold to min-
imize the influence of respiratory motion. Res-
olution was optimized during the acquisition of
healthy subjects’ sequences, and corresponds to an
average frame rate of 60 fps and a pixel size of
0.24×0.24 mm2. The CRT patients involved in this
study have dilated hearts compared to the healthy
population. Thus, they require the use of a broader
US sector so that the whole LV is still covered by
the US beam. The temporal resolution of the se-
quences is thus lower for these patients due to this
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constraint (around half the frame rate). Their av-
erage pixel size is 0.29× 0.29 mm2.

4.2. Tools for visualizing spatiotemporal abnormal-
ities

The statistical tools described in Sec. 3.3 return
a p-value index at every location (x, t), which can
be visualized with the following tools, depending
on the type of application targeted. Decoupling
the spatial and temporal dimensions is particularly
adapted for a precise localization of any motion
abnormality (Sec. 5.1). In the following sections,
another convenient mode of representation is used
to visualize abnormalities in both spatiotemporal
dimensions at the same time. In such maps, the
horizontal axis represents time and the position in
the septum (basal inferoseptal [BI], mid inferosep-
tal [MI], and apical septal [AS]) is used as verti-
cal axis (right part of Fig. 7). The representation
of the p-value in this space is similar to anatom-
ical M-mode echocardiographic images, classically
used to visualize wall motion over time. In order
to highlight the inward and outward events of SF,
in comparison with other patterns of abnormal mo-
tion of the septum (Sec. 5.3), the color-code used
in these maps encodes the p-value in a logarithmic
scale, multiplied by the sign of the radial velocity.
Blue color represents highly abnormal inward mo-
tion of the septum, red color representing highly
abnormal outward motion. The definition of local
longitudinal and radial directions is illustrated in
the left part of Fig.7.
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Figure 7: Left : Local representation of radial and longitudi-
nal, defined as orthogonal and tangential to the septum me-
dial line (dashed line), respectively. Right : Representation of
the septal segments visible in the 4-chamber view (basal in-
feroseptal [BI], mid inferoseptal [MI], and apical septal [AS])
and used as vertical axis in the spatiotemporal maps of ab-
normality.
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Segment IVC∗ Systole\IVC† Diastole
BI 17.0 ± 1.6 16.8 ± 1.2 17.9 ± 1.3
MI 16.7 ± 1.0 17.1 ± 1.5 18.0 ± 1.1
AS 17.9 ± 1.5 19.3 ± 1.5 19.4 ± 1.6

∗ Isovolumic contraction
† Systole excluding the IVC period

Figure 8: Top: Normalized evolution of the motion abnor-
mality indexes of one CRT candidate, versus the size of the
atlas population. Average over the cardiac cycle and the sep-
tal segments (basal inferoseptal [BI], mid inferoseptal [MI],
and apical septal [AS]). Error bars represent the standard
deviation over 100 random combinations of Ks < K sub-
jects. Bottom: values above which this evolution stabilizes
to its final value ±5% (dashed line), per cardiac segment and
temporal window of the cardiac cycle. Average ± standard
deviation values over the set of 14 CRT candidates.

4.3. Relevance of the atlas population

The computation of a distance to normality as-
sumes that the atlas population is representative of
normality. In this study, the atlas population has
non-dilated hearts, no cardiac dysfunction, and its
baseline characteristics (QRS width, LV volumes
and ejection fraction) match with the values found
in the literature for a population of patients with
normal cardiac function (Feigenbaum, 1994).

Number of subjects. To justify that the statistics
are not biased due to the number of subjects in the
atlas population (K = 21), we computed the evolu-
tion of the motion abnormality index (p-value) for
an atlas population made of Ks < K subjects. This
experiment is summarized in Fig. 8, in which the in-
dexes were computed for a reduced set of 14 CRT
candidates at each spatiotemporal location (x, t).
These values were normalized towards the value
obtained for the largest atlas population, so that
the evolution is represented in the same magnitude
scale (%). The plot on the top represents this evolu-
tion for the three septal segments of one CRT can-
didate. For each value of Ks < K, the experiment
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(%) Segment SW LF

v1

BI 93.5± 4.2 14.4± 4.0
MI 92.8± 4.7 15.0± 3.8
AS 92.9± 4.9 14.7± 4.0

v2

BI 88.7± 8.3 17.7± 5.0
MI 89.6± 7.7 17.1± 5.4
AS 86.9± 10.1 18.6± 6.0

randn(21, 10000) 95.2± 0.3 13.1± 3.1

Table 2: Shapiro-Wilk (SW) and Lilliefors (LF) tests for the
distribution of myocardial velocities from 21 healthy volun-
teers, at each septal segment. The components of velocities
along each eigendirection (v1 and v2) were treated indepen-
dently. Bottom line: generation of 21 normally distributed
random numbers, repeated 10000 times.

was repeated for 100 random combinations of Ks

subjects (vertical error bars). In each spatiotem-
poral region, the number of subjects above which
this evolution stabilizes to its final value ±5% is
summarized in the table of Fig. 8 (average ± stan-
dard deviation over the set of 14 CRT candidates).
Based on these values, we can reasonably trust an
atlas built with all the available healthy volunteers
(21 subjects).

Statistical distribution assumptions. We computed
the Shapiro-Wilk and the Lilliefors tests (Shapiro
and Wilk, 1965; Lilliefors, 1967) at each location
(x, t) to check the gaussianity of the local distri-
bution of the atlas velocities, as assumed for the
computation of local p-values. The results are sum-
marized in Tab. 2, which shows the average values
and standard deviation of these tests over the three
septal segments, along each eigendirection of the
velocity distribution, independently. The last line
presents the values of these tests for the genera-
tion of 21 normally distributed random numbers,
repeated 10000 times. Based on these values, we
can reasonably consider that the distribution of ve-
locities is gaussian at each point (x, t).

4.4. Validation of the atlas construction steps
4.4.1. Intra-sequence registration accuracy

We first evaluated the quality of our intra-
sequence registration by comparing it to manual
landmarking. Three observers manually segmented
the endocardium border of the septal wall for the
whole set of subjects (volunteers and CRT candi-
dates), at four temporal instants: onset of QRS,
AVO, AVC and onset of QRS for the subsequent cy-
cle. For each observer, the shape delineated at the
first of these instants was then propagated along
the whole cycle using the displacement fields com-
puted by our registration algorithm. Finally, its
position at the three remaining instants was com-
pared to the delineation made by the observer at
these instants. Intra- and inter-operator variabil-
ity (δintra and δinter) were computed at each of the
four instants listed above. For the intra-operator
variability, each observer repeated the manual de-
lineation ten times for one healthy volunteer, while
inter-operator variability was obtained by compar-
ing the delineations made by the three observers, for
the whole set of subjects. We used a point-to-line
distance for the comparison of the delineated curves
and the propagated ones (average over the points of
each septal segment). Table 1 presents the distance
between the automatically propagated shapes and
the delineation made by the observers, and com-
pares it to the intra- and inter-observer variabil-
ity. The intra-sequence tracking showed a precision
comparable to the observers variability for all the
instants. Lower accuracy is observed near the apex,
due to the lower quality of the US images in this
region, as commented in the discussion section of
this paper.

4.4.2. Inter-sequence registration accuracy
The accuracy of the inter-sequence registration

was evaluated in a similar fashion than described in

Units Intra-sequence Inter-sequence

(pixels) VOL CRT VOL CRT

AVO AVC Q AVO AVC Q δintra δinter

BI 5.7± 1.8 10.9± 5.4 5.0± 3.5 5.1± 1.9 7.2± 3.6 5.6± 2.8 5.6± 2.8 7.5± 2.8 2.7∗ 6.9± 3.0
MI 4.3± 1.4 8.3± 3.4 4.3± 3.0 5.6± 2.9 4.9± 2.4 4.5± 1.6 5.6± 3.1 7.6± 3.9 2.2∗ 5.5± 2.2
AS 6.7± 3.6 9.1± 3.9 5.4± 2.8 7.0± 3.1 7.4± 3.2 6.6± 3.1 8.5± 2.7 11.1± 3.1 2.9∗ 8.5± 4.2

∗ Done on one subject only

Table 1: Comparison of intra- and inter-sequence registration accuracy to the variability in manual delineation of the endocardial
border. Intra-sequence: distance between shapes manually delineated at three instants of the cardiac cycle, and the shape
delineated at the beginning of the cycle, propagated using the registration-based tracking along the sequence. Inter-sequence:
distance between the shapes delineated at the onset of QRS of the studied cycle in each subject’s anatomy, which were mapped
to the reference, and the shape delineated in the reference anatomy. Results indicate the average ± standard deviation over
the whole set of volunteers and the whole set of CRT candidates, respectively.
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Figure 9: Left : Effect of a lower frame rate (volunteer to compare) on the p-value maps. Top: original frame rate (atlas ≈ 60
fps, volunteer to compare ≈ 60 fps). Bottom: volunteer frame rate twice lower (≈ 30 fps). Right : Effect of a lower frame rate
(atlas population) on the p-value maps. First column: original frame rate (atlas ≈ 60 fps, CRT candidates ≈ 30 fps). Second
column: atlas frame rate twice lower (atlas and CRT candidates ≈ 30 fps). Vertical line indicates the end of the IVC period.

Sec. 4.4.1 for the intra-sequence registration. For
each subject, the shape delineated in the initial
frame of the cycle was mapped to the reference
anatomy using the transformation estimated by the
inter-sequence registration. Then, the distance be-
tween the mapped shape and the shape delineated
in the reference anatomy was used as an estima-
tor of the inter-sequence registration accuracy. The
experiment showed that inter-sequence registration
precision is comparable to the observers variability.

4.4.3. Influence of the temporal resolution
In principle, differences in the temporal resolu-

tion of the atlas population and the set of CRT
candidates could introduce bias on the abnormality
measured. The two following experiments illustrate
the influence of different frame rates on the compu-
tation of the p-value maps.

In the first experiment (left part of Fig. 9), a
volunteer was compared to the atlas (using leave-
one-out cross-correlation) at its original frame rate
(around 60 fps) and at a reduced frame rate, ob-
tained by using one frame out of every two in
the volunteer’s sequence. As can be inferred from
Fig. 9, the two abnormality maps are very consis-
tent with each other in spite of their large frame-
rate differences: the pattern in both maps indicates

low statistical support for abnormal motion. This
confirms that the spots of motion abnormality ob-
served on the p-value maps of the CRT candidates
cannot just originate from the lower frame rate of
these patients, compared to the atlas frame rate.

The second experiment illustrates the effect of a
lower temporal resolution for the whole atlas pop-
ulation on the p-value maps. In the right part of
Fig. 9, a CRT candidate with SF is compared to
the atlas build with its original temporal resolu-
tion (around 60 fps, left column) and at a frame
rate twice lower (right column). The figure shows
that the localization of motion abnormalities is still
feasible with an atlas built at a lower frame rate,
but with seemingly less contrast and less resolution
along the timescale.

4.4.4. Overall synchronization

In order to evaluate the quality of the spatiotem-
poral synchronization described in Sec. 3, we ac-
quired four sequences for the same subject and
checked that the estimated velocities overlapped af-
ter the synchronization to the reference spatiotem-
poral system of coordinates. A bad overlap would
directly reflect artifacts introduced by the spa-
tiotemporal synchronization. These sequences dif-
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Figure 11: Repeatability in the normalization of velocities
from four different acquisitions of the same subject, at four
levels of the septum. Left : longitudinal velocities after reori-
entation; average ± 1 standard deviation in the longitudinal
direction. Right : idem with radial velocities. We only dis-
play one bar plot out of every three temporal instants for
the sake of clarity.

fer in terms of probe orientation and zoom of the
US window, which were changed intentionally be-
tween the different acquisitions. They also differ
in terms of heart rate, and have therefore different
numbers of frames (56, 59, 62 and 64 frames for one
cardiac cycle, respectively). In that way, the vari-
ability in the acquisition parameters is comparable
to the one reached for the acquisition of different
patients. Figure 11 illustrates the overlap between
the velocities at four levels of the septum. The dis-
persion of the reoriented velocities (vertical bars) is
measured in each direction from the corresponding
diagonal coefficient of the covariance matrixΣ v, de-
fined in Sec. 3.3. This dispersion reflects the accu-
racy of the spatiotemporal synchronization scheme,
but may also result from differences in the myocar-
dial velocities and the speckle patterns of the four
acquisitions made, which could not be quantified
with the imaging tools available for this study.

4.4.5. Influence of the reference choice

In order to understand the effects of the reference
choice on the p-value maps, we repeated the atlas
construction using different subjects as reference.
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Figure 12: Comparison of two CRT patients with SF with respect to the atlas. Left : Temporal localization of the SF
phenomenon, at the location where maximum excursion is observed (mid-inferoseptal level for both patients). From top to
bottom: Radial velocities (gray: atlas average ± 1 standard deviation in the radial direction, black : patient with SF), same
plot with longitudinal velocities, and p-value plot along one cycle. Vertical line indicates the end of the IVC period. Arrows
point out the inward and outward events. Right : Spatial localization of abnormality along the septum, at inward and outward
events. In contrast, the LV of healthy subjects would mainly contract in the longitudinal direction. For each block: velocity
field in the anatomy of patient k, and corresponding p-value map, defined in the reference anatomy. Arrows have been scaled
by a global factor for optimal visibility. Warmer colors on the p-value maps indicate regions of higher abnormality.

We chose the subjects with the three best GWNMI
scores (VOL #15, which is the one used in the rest
of the paper, #6 and #1), and the two worst ones
(VOL #13 and #21). Few influence is observed
on the p-value maps, as shown in Fig. 10 for CRT
candidate #6. This confirms the assumption intro-
duced in Sec. 3.2, namely that the bias introduced
by the use of another reference anatomy remains
small.

5. Application to the analysis of the CRT
population

The experiments described in this section demon-
strate the performance of the proposed method for
the accurate characterization of septal motion ab-
normalities, with particular attention paid to the
SF mechanism. This characterization comprises a
two-stage analysis: first, the localization of abnor-
mal motion patterns in time and space (Sec. 5.1),

then the interpretation of the observed patterns,
which is done regionally focusing on the magnitude
of the observed abnormalities (Sec. 5.2), and locally
on p-value maps coupling the temporal and spatial
dimensions (Sec. 5.3). The underlying objective of
this section is to check whether the abnormality in-
formation obtained by our method is in agreement
with the observations made by clinicians.

5.1. Localization of motion abnormalities

Temporal localization of septal flash. The left part
of Fig. 12 illustrates the temporal analysis on two
CRT patients presenting SF, at the location of the
septum where maximal excursion is observed, in-
cluding both velocity and p-value curves along one
cardiac cycle. Low p-value means high degree of ab-
normality. Both plots exhibit a large abnormal in-
ward velocity when the septum is activated, which
is almost immediately followed by a fast outward
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motion at the time when the infero-lateral wall con-
tracts. This specific fast pattern, when occurring
during the IVC period, determines the presence of
SF, as described in Camara et al. (2009).

Spatial localization of septal flash. The p-value in-
dexes obtained from our method directly allow a
quantitative diagnosis at every point in space, as
illustrated in the right part of Fig. 12. We dis-
play p-value maps at inward and outward events
in order to analyze the way SF abnormality is dis-
tributed along the septum. For each block, we rep-
resent the initial velocity field in the anatomy of
the studied patient, together with the correspond-
ing p-value map, defined in the reference anatomy.
This mode of representation illustrates the agree-
ment in the location of SF between our abnormal-
ity maps (warmer colors) and the existing velocity
fields (septum moves inward/outward, faster than
the normal [higher magnitude of the velocities]. In
contrast, healthy hearts would contract along the
longitudinal direction).

5.2. Accuracy in the quantification of abnormalities
Three experts characterized the whole set of CRT

candidates involved in the study, using analysis
tools similar to those proposed in Parsai et al.
(2009b). As a precise and objective localization us-
ing echographic tools is hard to reproduce, we asked
the observers to make their diagnosis for three re-
gions along the septum (basal inferoseptal, mid in-
feroseptal and apical septal). For each zone, they
associated a score to the patient, among four possi-
ble values related to the degree of observed abnor-
mality: 1 (no SF), 2 (uncertain), 3 (small SF), and
4 (large SF). For each zone of comparison, an agree-
ment value between the observations from the dif-
ferent experts was obtained from the median value
of their respective scores. The observed zone was
marked as uncertain if the standard deviation be-
tween the different scores exceeded 1.

For each zone, we compared the previous ob-
servations to the motion abnormality indexes ob-
tained from our analysis, as summarized in Fig. 13.
For the patients with SF, the comparison was per-
formed within the temporal window in which the in-
ward and outward events occur, which were defined
specifically for each patient, using the information
on radial velocity vρ as follows:

IN =
�
t ∈ IV C

�� vρ(t) < 0 , t < OUT }

OUT =
�
t ∈ IV C

�� vρ(t) > 0 , t > IN}
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Figure 13: Local comparison between regional p-values and
clinical diagnosis. Arrows on the right represent the value
of 0.05 below which abnormality is considered significant.
Dashed line indicates the median value of the atlas popula-
tion.

The analysis was carried out on the whole IVC in-
terval for the subjects with normal motion (atlas
population) and for the patients without SF.

The diagnosis from the experts is only available
regionally in time (within the temporal windows
previously described) and space (the three regions
along the septum). Thus, the comparison of their
observations to the atlas-based quantification of ab-
normality was also done regionally. As the atlas-
based p-values locally define a distance to normal-
ity, a representative p-value was computed for each
region from their median over the spatiotemporal
comparison zone.

A range for normality was obtained by including
the atlas subjects in the analysis, for which p-values
were obtained using leave-one-out cross-validation
on the atlas population.

Figure 13 presents the comparison between the
atlas-based diagnosis and the experts classification.
In this figure, we observe the agreement between
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Figure 14: Motion abnormality maps and radial velocity profiles at the level of the septum with highest abnormality, during
systole, for the whole set of CRT candidates. Black arrows point out the inward and outward motion during SF events, when
present.

the comparison methods at the basal inferoseptal
and mid inferoseptal levels. Indeed, significant ab-
normality (regional p-value < median for the atlas)
is observed in each group of patients, with notice-
able differences depending on the grade of SF. This
is mainly visible at the mid inferoseptal level, for
which the septum has the highest amplitude of mo-
tion on the tested patients. In contrast, the whole
atlas population lays in the normality range (p-
value < 0.05). The different populations remain
harder to distinguish at the apical septal level. The
quality of the analysis in this region is commented
in Sec. 6, together with the interpretation of the
results for the zones for which the diagnosis was
uncertain.

5.3. How to differentiate between patterns: added-
value of spatiotemporal maps of motion abnor-
malities

Combining both spatial and temporal quantifi-
cation of motion abnormalities into a single map,
as described in Sec. 4.2, facilitates the interpreta-
tion of the observed patterns and their comparison
across patients. Figure 14 represents these abnor-
mality maps for all the 14 CRT candidates, during
the systole period. These maps are accompanied
with a plot of the radial component of the velocity
at the level of the septum with the highest motion
abnormality for a better understanding of the ob-
served abnormality patterns. The grade of SF ob-
tained from experienced observers (Sec. 5.2) is in-
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−10

−5

0

5

10

log(p)    sign(v ).

#8 #9 #10 #11 #12 #13 #14

#15 #16 #17 #18 #19 #20 #21

Figure 15: Motion abnormality maps during systole, for the set of volunteers.
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dicated on the top. In this figure, a clear succession
of inward (blue) and outward (red) abnormal mo-
tion starting during the IVC is visible on patients
#1, #2, #6, #8, #9 and #10, which were all di-
agnosed as “large SF” by the observers. Patients
#3 and #4 were also diagnosed as “large SF,” but
the degree of motion abnormality is lower for both
events. The inward motion pattern is almost absent
for patient #7, while both events are less visible for
patient #14. These two patients were diagnosed as
“small SF.” The SF pattern is absent in the re-
maining patients (#5, #11, #12 and #13), which
were all categorized as “ambiguous SF” or “no SF.”
Patients #5, #11 and #12 only show inward mo-
tion abnormalities. These patterns are interpreted
in Sec. 6.

As a comparison, Fig. 15 represents these abnor-
mality maps for the whole set of volunteers. Almost
no abnormality is observed for most of these sub-
jects. Volunteers for which abnormality is visible on
these maps generally have higher velocities during
the whole sequence, which is particularly noticeable
on the radial velocity of #12 and #19. However, all
these subjects belong to the atlas population, which
means that these deviations from the average ve-
locity profile are part of the atlas variance, and are
therefore taken into account in the quantification of
abnormalities for the set of CRT candidates.

6. Discussion

We have described a complete framework for the
computation of a statistical atlas of motion, from its
construction steps to the comparison of the atlas-
based diagnosis to the observations made by ex-
perts. Our experiments demonstrate the feasibility
of the proposed method on 2D US sequences. We
first evaluated the quality of the atlas construction
steps, and then demonstrated its applicability for
an accurate localization of abnormal motion pat-
terns, focusing on a specific pattern of the septum,
namely SF.

The comparison tools illustrated in Fig. 12, 13,
14 and 15 shed light on the added value of the pro-
posed indexes for the quantification of cardiac mo-
tion, in comparison with the tools currently used in
clinical practice. By comparing patients within an
atlas framework, we propose a local analysis of mo-
tion abnormalities, at every point in time and space
(Fig. 12, 15 and 14) of a standardized anatomy. The
use of our atlas-based indexes, which intrinsically
embed a notion of normality, allows an accurate

quantification of abnormality at every desired loca-
tion. As illustrated in Fig. 13, our method agrees
with the regional diagnosis performed by experts
along the septum. In addition, it refines the in-
formation on the degree of abnormality observed
and proposes some elements of interpretation for
the zones where the diagnosis remained ambiguous.

In the case the subendocardium of the concerned re-
gion is infarcted, passive motion of the septal wall
is observed when the lateral wall starts contracting
and pushes the septum. Septal motion is there-
fore in the outward direction, but lasts longer than
the IVC and is not a flash anymore. These pa-
tients are likely to belong to the left-right interac-
tion class pointed out in Parsai et al. (2009b). In
both cases, the observed zone will show lower ab-
normality (higher p-value) for the outward event,
which is visible in particular in the plot of Fig. 13
representing the mid inferoseptal level, and in the
maps of Fig. 14 for patients #5, #11 and #12. A
complementary analysis based on strain may help
in discarding the ambiguities between true SF and
infarcted zones with passive motion.

For clarity reasons, we preferred to set the focus of
this paper on the construction of an atlas based on
velocities, and the demonstration of the atlas per-
formance in localizing and quantifying abnormali-
ties in motion. Extension of the present method
to strain measurements will be included in further
work for a more complete characterization of the
cardiac function, as recommended in Bijnens et al.
(2009), and the assessment of other cardiac abnor-
malities.

Limitations. We chose to work with 2D US as it
is the only modality used in clinical practice with
sufficient temporal resolution to accurately identify
fast motion patterns such as SF. However, the con-
cepts developed in this paper could readily be ap-
plied to 3D US and other imaging modalities once
the required temporal resolution is available in stan-
dard clinical acquisition protocols. The use of real-
time 3D echocardiography (Soliman et al., 2009;
De Craene et al., 2010) is particularly of interest
to capture out-of-plane motion, which may increase
the accuracy of the proposed analysis, and extend
it to specific 3D motion patterns currently not cap-
tured by our method, such as torsion.

The quality of US images is however determinant
for the relevance of the observations made in this
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study. Depending on the tissue properties of each
patient, the structure of the LV can be masked on
some frames, especially at the apical level. Both
the tracking accuracy and the clinical observations
are affected, making the separation between the dif-
ferent populations less evident in this zone of the
septum, as observed in Fig. 13.

7. Conclusion

In this paper, we proposed a new framework for
the construction of an atlas that represents mo-
tion in a standard spatiotemporal coordinate sys-
tem, and allows the comparison of patients against
the atlas using quantitative indexes of abnormal-
ity. We evaluated the quality of the atlas con-
struction steps, and illustrated the accuracy of the
proposed indexes by applying the methodology to
a population of healthy volunteers and CRT pa-
tients with left ventricular dyssynchrony. Our ex-
perimental results demonstrated the ability of the
proposed method to quantify motion abnormalities
at every location in time and space. The underly-
ing objective was the characterization of the septal
flash mechanism, which proved its interest for un-
derstanding response to CRT. Our pipeline could
easily be extended to the quantification of abnor-
malities in strain for a more advanced characteriza-
tion of the mechanisms influencing the response to
CRT.
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