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Abstract

This paper presents a new registration algorithm, called Temporal Diffeomorphic Free Form Deformation
(TDFFD), and its application to motion and strain quantification from a sequence of 3D ultrasound (US)
images. The originality of our approach resides in enforcing time consistency by representing the 4D velocity
field as the sum of continuous spatiotemporal B-Spline kernels. The spatiotemporal displacement field is
then recovered through forward Eulerian integration of the non-stationary velocity field. The strain tensor is
computed locally using the spatial derivatives of the reconstructed displacement field. The energy functional
considered in this paper weighs two terms: the image similarity and a regularization term. The image
similarity metric is the sum of squared differences between the intensities of each frame and a reference
one. Any frame in the sequence can be chosen as reference. The regularization term is based on the
incompressibility of myocardial tissue. TDFFD was compared to pairwise 3D FFD and 3D+t FFD, both
on displacement and velocity fields, on a set of synthetic 3D US images with different noise levels. TDFFD
showed increased robustness to noise compared to these two state-of-the-art algorithms. TDFFD also proved
to be more resistant to a reduced temporal resolution when decimating this synthetic sequence. Finally, this
synthetic dataset was used to determine optimal settings of the TDFFD algorithm. Subsequently, TDFFD
was applied to a database of cardiac 3D US images of the left ventricle acquired from 9 healthy volunteers
and 13 patients treated by Cardiac Resynchronization Therapy (CRT). On healthy cases, uniform strain
patterns were observed over all myocardial segments, as physiologically expected. On all CRT patients, the
improvement in synchrony of regional longitudinal strain correlated with CRT clinical outcome as quantified
by the reduction of end-systolic left ventricular volume at follow-up (6 and 12 months), showing the potential
of the proposed algorithm for the assessment of CRT.
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1. Introduction

1.1. Motion and strain quantification from 3D ultrasound
The quantification of cardiac motion and strain provides insight into cardiac function through the assess-

ment of how a given pathology affects global and local deformation of the myocardium. In clinical routine,
ultrasonography (US) is the standard imaging modality for the quantification and the analysis of regional
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motion and strain. 3D US and Magnetic Resonance Imaging (MRI) offer in clinical practice similar volume
rates (about 20-40 frames per heart cycle). Standard 3D US acquisition protocols divide the field of view in
sectors, each sector being acquired separately. Within a sector, 3D US provide real-time images, while MRI
requires gating. Besides, MRI is most often acquired per-slice and not as a complete volume. Even though
MRI has better signal-to-noise ratio (SNR), US remains the most commonly used imaging modality. Indeed,
US allows image analysis of follow-ups with implanted devices, has lower cost and higher availability than
MRI at clinical sites. With respect to 2D US, 3D US enables motion quantification in the entire myocardium
and does not suffer from out-of-plane motion artifacts. Nonetheless, several factors can induce artifacts in
US images, such as signal attenuations, shadows, inhomogeneous resolution etc. Thus, 3D US images have
relatively low SNR, making their processing more challenging.

Several approaches (Duan et al. (2007); Elen et al. (2008); Kawagishi (2008); Abe et al. (2008); Wang
et al. (2010); Andrade et al. (2011)) have been proposed to extend 2D speckle tracking techniques to 3D with
the objective of recovering myocardial motion from a 3D US image sequence. Duan et al. (2007) used an
optical flow technique to quantify myocardial motion but limited their validation to simulated US data. Elen
et al. (2008) applied B-Spline registration technique guided by mutual information to estimate 3D myocardial
strain from 3D US sequences. They obtained absolute errors up to 21% for the radial strain and up to 4% for
the longitudinal and circumferential strains on simulated US images, and recovered strain curves on in vivo
data with physiologically plausible magnitude and dynamics. Kawagishi (2008) described the methods for
applying speckle tracking on CRT candidates using 3D block matching and further computed regional strain
curves from the resulting sparse displacement field. Radial strain curves obtained from a 3D speckle tracking
technique were plotted for a single patient, but the authors did not look at the improvement of the strain
pattern over therapy. No validation nor comparison to other techniques was made in their paper. Earlier
work by the same authors (Abe et al. (2008)) on 3D speckle tracking only reported strain quantification
results on a synthetic left ventricle (LV) model. Andrade et al. (2011) used 3D speckle tracking to quantify
LV twist in 50 patients and highlighted statistical differences between 2D and 3D rotation measurements
without looking at strain. Finally, Wang et al. (2010) recently proposed an unified Bayesian framework
fusing multiple features (speckle patterns, border detection, intensity gradient and motion prediction) to
recover 3D motion and strain. As this framework uses a training set to encode motion priors, an important
issue is to know whether a single training set can handle all possible pathological cases. Such an approach
could also introduce a bias towards deformation patterns that are more predominant among the training
population. This approach is still pairwise since it estimates motion at every frame in a sequential manner
without optimizing a joint objective function on the entire sequence.

1.2. Temporal consistency in image registration
One of the main drawbacks of speckle-tracking techniques based on pairwise registrations is that they

do not make use of the temporal information embedded in the 3D US sequences.
In the literature, several image registration approaches, were proposed to exploit the temporal coherence

of the input image sequence and they are summarized in Table 1. Such approaches can be organized into two
main application fields: inter-subject sequence matching and deformation/motion quantification. Table 1
gives for each approach the application domain, the image modality, and its most distinctive algorithmic
feature. It also specifies the input and output dimensionality of the transformation model (din → dout). The
two last columns of Table 1 specify if the spatiotemporal transformation is represented as a displacement or
a velocity field, and if it ensures temporal continuity.

In the context of inter-subject sequence matching, spatiotemporal matching attempts to map the cardiac
geometry and dynamics of two patients for statistical atlas construction (Perperidis et al. (2005)) or to
compare cardiac function of a patient before and after treatment (Peyrat et al. (2010)). Perperidis et al.
(2005) proposed a Free Form Deformation (FFD) (Rueckert et al. (1999)) separable parameterization of
the spatiotemporal transformation mapping two subjects. Peyrat et al. (2010) proposed to enforce the
spatiotemporal mapping to match a given material point at different time points using trajectory constraints.
Sundar et al. (2009) applied an inter-sequence alignment strategy for motion quantification. They created
a static 3D+t sequence by replicating the first image of the sequence and then aligned the original one with
the static 3D+t sequence.
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In the context of motion quantification, spatiotemporal registration algorithms are based on the simul-
taneous alignment of all input images in the sequence. Ledesma-Carbayo et al. (2005) were pioneers in
introducing a parametric spatiotemporal model, smooth in space and time, to take advantage of the tempo-
ral information contained in 2D US image sequences. Their algorithm was recently extended in two different
directions. First, Metz et al. (2011) extended the output dimension of the transformation model to 3D+t.
They used the sum of intensity variances over time as a groupwise similarity metric. Since uniqueness of the
solution was not guaranteed, the authors constrained the average transformation in time to be the identity
transformation. Second, Yigitsoy et al. (2011) kept the transformation model unchanged but took the mean
squared intensity differences between all possible combinations of warped images as similarity metric. They
referred to this metric as accumulated pairwise estimates. These three algorithms (Ledesma-Carbayo et al.
(2005); Metz et al. (2011); Yigitsoy et al. (2011)) guarantee to recover smooth transformations in time by
representing the displacement as a sum of smooth and continuous kernels. This displacement is expressed
in the space of coordinates of a fixed reference frame. Such a representation is Lagrangian if the reference
space is interpreted as the space of coordinates of material points. The advantage of this representation
is that strain curves can be computed in a Lagrangian way, giving the deformation of one material point
over time. The disadvantage, however, is that the motion field is not constructed as the composition of
small incremental transformations. The displacement is smooth in time but does not functionally depend
on the motion at earlier time instants. As it is expected that the transformation is not only smooth but
also correlated between consecutive time points, this means that plausible transformations are restricted to
a subset of the optimization space. The convergence of the optimization process can therefore be slowed
down because of a suboptimal representation of the motion field.

One way of enforcing the motion to depend on earlier time points is to switch from a representation
based on displacement to a representation based on velocity. Although the transformation model does not
encode directly the trajectories, the Lagrangian displacement can still be reconstructed from the integration
in time of the velocity field. Lagrangian strain or the image-based similarity to any reference frame in
the sequence can then be computed from the Lagrangian displacement field. The benefit of basing the
transformation representation on velocity rather than displacement is that by construction, motion at every
time is obtained as the composition of velocity at all previous times. We refer to this functional dependence
as temporal consistency and give experimental evidence in this paper of the resulting gain in accuracy and
robustness against image noise.

1.3. Temporal diffeomorphic registration
Diffeomorphic registration algorithms (e.g. Beg et al. (2005); Vercauteren et al. (2007); Rueckert et al.

(2006); Hernandez et al. (2009); Ashburner (2007); Avants et al. (2008)) ensure a continuous and dif-
ferentiable correspondence with continuous inverse between the features to register. They are therefore
particularly well suited to handle medical image sequences as they preserve topology and orientation of the
observed anatomical structures over time. By integrating a velocity field over time, they provide an elegant
way of enforcing temporal consistency.

This concept was applied by Khan and Beg (2008) to monitor growth processes by extending the Large
Deformation Diffeomorphic Metric Mapping (LDDMM) image registration algorithm (Beg et al. (2005)).
Velocities were computed using a dense grid, which did not guarantee their spatiotemporal continuity, unlike
registration methods that rely on parametric transformation models. A regularization term was added to
the image similarity metric and involved a smoothing kernel thus enforcing the spatial continuity of the
computed velocities. The temporal continuity of the velocities was then fully conditioned by the implicit
assumption that the observed image features preserved their topology along the image sequence. Such an
assumption does not hold for noisy image sequences, such as those arising from cardiac echocardiography,
as speckle and image artifacts can generate discontinuities from one frame to the next.

The concept of exploiting the diffeomorphic registration framework to enforce temporal consistency was
applied to 2D contours and 3D shapes by Durrleman et al. (2009) and Qiu et al. (2009). However, while
the computational cost of reconstructing dense velocity fields is acceptable for contours, paths or surfaces,
its extension to dense volumetric spatiotemporal data remains critical. Moreover, all previous approaches
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extending diffeomorphic image registration to temporal sequences only output a piecewise geodesic map-
ping (Durrleman et al. (2009)), for which the continuity of velocities at each data time point is not guaran-
teed. Trouvé and Vialard (2010) recently presented a framework for smoothly interpolating the trajectories
of a set of landmarks over time by minimizing the norm of a forcing term in the evolution of the momentum
equation. While this approach is suitable for handling landmark data, its computational cost would become
prohibitive when applied to 3D images.

1.4. Incompressibility of myocardial tissue and application to cardiac motion quantification
Non-rigid image registration algorithms often require the inclusion of some prior information to compen-

sate for the noise in the input data. In the case of cardiac motion quantification, several authors proposed
the use of the incompressibility constraint to regularize the registration result.

The rationale behind incompressibility is that the various constituents of myocardial tissue as well as the
blood perfusing it are incompressible. Experimental evidence of incompressibility was provided by Tsuiki and
Ritman (1980) on a canine LV metabolically supported and monitored using angiography images. Although
the volume quantified over the cardiac cycle was found to be globally constant, they reported variations
about ±5%. One explanation provided by the authors is the possible change in coronary blood volume
between each phase of the cardiac cycle. Since the myocardium is perfused with distinsible vessels, and
because of the direct contact between muscles and vessels, one can expect that local changes in stiffness due
to tissue contraction would modify myocardial volume (Yin et al. (1996)). Westerhof et al. (2006) reported
about mechanical interactions between cardiac muscle and coronary vasculature. In particular, during
systole, thickening of the cardiac muscle can take place at the expense of the vascular volume. Muscle
contraction is augmented when vascular emptying is facilitated. This corroborates with data showing that
vascular volumes decreases with contraction (Spaan et al. (1981)). Yin et al. (1996) experimentally showed
the change of vascular volume to vary from 2 to 4 ml/100 g tissue when modifying the perfusion pressure
from 0 to 120 mmHg.

In regard to these experimental results, myocardial tissue can be considered as quasi-incompressible, with
a slight deviation from the fully incompressible case varying over the cardiac cycle.

In the context of motion/deformation quantification algorithms, incompressibility was first introduced
as a constraint combined with the constraint of mass conservation in an optical flow framework (Song and
Leahy (1991)). It led to the joint minimization of optical-flow, divergence-free and smoothness constraints.
This approach was applied by Song and Leahy (1991) and Gorce et al. (1997) to the estimation of myocardial
velocities from Computed Tomography (CT) images. Bistoquet et al. (2007) proposed the use of divergence-
free radial basis kernels to represent myocardial displacements, implementing a first-order approximation
of incompressibility. The model was validated by comparing the recovered motion obtained from cine MRI
to motion information provided by tagged MRI images for healthy subjects and ventricular dyssynchrony
patients. Haber and Modersitzki (2004) introduced a volume-preserving non-rigid registration algorithm by
constraining locally the determinant of the transformation to equal unity. A specific discretization strategy
was combined with a variant of the Sequential Quadratic Programming algorithm for solving the optimization
problem. The method was applied to regularize motion quantification from contrast-enhanced data, being
robust to contrast uptake registration artifacts. Saddi et al. (2007) also focused on motion quantification
from perfusion sequences, but from CT images of the liver. In their approach, the non-rigid displacement
field was projected onto the space of divergence-free vector fields using a multigrid solver.

Mansi et al. (2010, 2011) extended the diffeomorphic Demons registration method introduced by Ver-
cauteren et al. (2007) by integrating elasticity and incompressibility for soft-tissue tracking. The basic idea
in this method, as well as in Hinkle et al. (2009), is that diffeomorphisms parametrized by divergence-free
velocity fields are incompressible. The proposed algorithm was applied to cine MRI for myocardial strain
quantification. The introduction of the incompressibility constraint improved the strain estimation in cine
MRI, taking the strain values computed from tagged MRI as ground truth.

1.5. Proposed approach
In this paper, we present a novel temporal diffeomorphic registration algorithm that models the velocities

continuously in time and space and can be applied to 3D sequences with a reasonable computational cost.
4
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Reference Applica-
tion
domain

Modal-
ity

Principle Transformation
representation

Tem-
poral
conti-
nuity

Vel.
/
Disp.

din →
dout

Inter-subject sequence matching

Peyrat et al. (2010) Cardiac
inter-
sequence
registra-
tion

CT Trajectory constraints,
multi-channel diffeomorphic
Demons

Disp. 4→
4

Yes

Perperidis et al. (2005) Cardiac
inter-
sequence
registra-
tion

MRI Separable smooth spatiotemporal
matching using FFD

Disp. 4→
4

Yes

Sundar et al. (2009) Cardiac
inter-
sequence
registra-
tion

tagged
MRI

Attribute vector matching Disp. 4→
4

Yes

Quantification of motion or longitudinal anatomical changes

Khan and Beg (2008) Neurologi-
cal
follow-up

synth.
im-
ages
&
MRI

Sequence of dense non-stationary
velocity fields

Vel. 3→
3

No

Durrleman et al. (2009) Skull &
Amygdala
evolution

CT &
MR

Sequence of non-stationary
velocity fields represented by
moments applied to a
current-based shape
representation

Vel. 3→
3

No

Trouvé and Vialard (2010) Shape
interpola-
tion

synth.
im-
ages
& CT

Sequence of non-stationary
coupled velocity and momentum
applied to a current-based shape
representation

Vel. 3→
3

Yes

Ledesma-Carbayo et al. (2005) Cardiac
motion
and defor-
mation

2D
US

Non-stationary disp. field
represented by a FFD model

Disp. 4→
3

Yes

Metz et al. (2011) Lung,
coronary
and
cardiac
motion

CT,
MRI,
and
US

Non-stationary disp. field
represented by a FFD model with
zero average displacement
constraint

Disp. 4→
4

Yes

Yigitsoy et al. (2011) Respira-
tory
motion
compen-
sation

MRI Non-stationary disp. field
represented by a FFD model with
accumulated pairwise registration

Disp. 4→
4

Yes

De Craene et al. (2010) Cardiac
motion
and defor-
mation

3D
US

Non-stationary velocity field
represented by a FFD model

Vel. 4→
3

Yes

Table 1: Proposed approaches introducing temporal consistency. Algorithms are classified according to application domain,
imaging modality and their main algorithmic features. The last three columns indicate if the representation of the transfor-
mation uses a velocity (Vel.) or displacement (Disp.) field; the input, din, and output, dout dimensions of the transformation
model; and if temporal continuity is ensured.
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Preliminary results on this methodology were presented in De Craene et al. (2010). In this work, we
additionally introduce the possibility of using any time point as a reference, as well as the inclusion of
quasi-incompressibility as a soft constraint in the optimization problem, and extend the clinical application
of our algorithm regarding the analysis and the number of patients. We refer to our approach as Temporal
Diffeomorphic Free Form Deformation (TDFFD) algorithm, since we extend the popular parametric FFD
registration technique (Rueckert et al. (2006)) by summing spatiotemporal B-Spline kernels to model the
3D+t velocity field. An important contribution of this paper is the enforcement of the continuity of the
velocity field by using a continuous parametric representation. As a result, the velocity and displacement
fields can be computed at any time within the temporal interval captured by the image sequence. Another
advantage of solving for velocity rather than for displacement is to endow the transformation model with
temporal consistency. Indeed, if the velocity is changed locally at a given spatiotemporal location, the entire
trajectory will be modified at subsequent times. This introduces a coupling between time steps that is
expected to improve the robustness of the image registration algorithm against image noise.

Although the TDFFD algorithm can be applied to any imaging modality, its clinical applicability is
demonstrated here on synthetic and real 3D US sequences. For assessing the robustness of the algorithm with
respect to the presence of noise, we generated ground truth data with a known motion field at several Contrast
to Noise Ratios (CNRs) levels. The underlying clinical objective is to accurately estimate the impact of
Cardiac Resynchronization Therapy (CRT) on 3D myocardial strain. CRT aims to restore synchrony of
motion and strain in the four chambers. When looking specifically at the LV, CRT responders are expected
to show at follow-up a higher peak strain value at the end of systole (Delgado et al. (2009)) and an improved
synchronization of the strain curves in the different LV segments (Delgado et al. (2008); Bertola et al. (2009)).
Our algorithm was applied to a database of 13 CRT patients including both responders and non-responders
before and after CRT, and at 6- and 12-months follow-ups, representing a total of 51 image sequences. For
each of the 51 sequences, longitudinal strain curves were computed in different segments of the LV. The
improvements in amplitude and synchrony were quantified for all patients and related to CRT outcome.

The remainder of this paper proceeds as follows. In Section 2, we describe the algorithmic framework
implemented in this paper. We first detail the computation of a continuous spatiotemporal velocity field
and how it generates trajectories in the 3D+t image domain. We then focus on the computation of the
metric and its derivatives. Subsequently, we describe the computation of strain and briefly detail some
implementation aspects. Section 3 is devoted to experiments on synthetic and clinical 3D US datasets,
the latter including both volunteers and CRT patients. On synthetic images, we compare the TDFFD
algorithm to the state-of-the-art pairwise FFD algorithm and to a 3D+t groupwise algorithm on the 3D+t
displacement field, demonstrating an improvement in robustness in case of low CNRs. We then quantify
the incidence of the main parameters of our algorithm on registration accuracy. On clinical datasets, we
examine for healthy volunteers the uniformity of the strain pattern among different segments of the LV.
On CRT patients, we quantify the correlation between strain curves and therapy outcome, as quantified by
reverse remodeling. Finally Section 4 and 5 discuss the findings of this paper in regard to the literature and
potential improvements for future work.

2. Methods

2.1. Registration framework and notations
In this paper, we denote a sequence of N1+N2+1 images as {In}, with n ∈ N = {n ∈ Z,−N1 ≤ n ≤ N2}.

The image I0 designates the image taken as reference. All images before the reference image are indexed by
n = −N1 . . .− 1 while all images after the reference are indexed by n = 1 . . . N2. Each image, In, is defined
on a spatial domain Ω ⊂ Rd where d stands for the spatial dimension. Each image In is associated to a time
stamp tn ∈ T = [t−N1, tN2], with t−N1, tN2 ⊂ R.

A flowchart of the overall algorithmic registration framework is given in Fig. 1. The purpose of the
registration algorithm is to solve for the diffeomorphic mapping ϕ0 : Ω×T → Rd that transports a material
point x ∈ Ω from t = 0 to a target time t ∈ T . In this paper, a continuous velocity field is parameterized
using a regular 4D grid and smooth spatiotemporal B-Spline kernels, thus ensuring spatial and temporal
continuity.
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Physical constraints
(quasi-incompressibility)

Image similarity
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 λ    + .

Reference
image

time

Figure 1: Overview of the algorithmic framework. Continuous spatiotemporal trajectories are computed from the 3D+t velocity
field, parameterized by a 3D+t grid of control points with B-Spline kernels. Image similarity is computed from image intensities
for the current set of trajectories. Quasi-incompressibility is added as a biophysical constraint for regularizing the velocity field.

Temporal continuity of the velocity field is not guaranteed when working with temporal diffeomorphic
registration algorithms as described in Khan and Beg (2008) and in Durrleman et al. (2009). Recent
extensions (Trouvé and Vialard (2010)) do ensure continuity when interpolating sparse trajectories defined
on a set of landmarks by performing a variational perturbation on the temporal derivative of the momentum
rather than on the velocity. This second-order approach supposes a significant increase in the computational
cost. Since this paper addresses the problem of estimating dense trajectories from sequences of 3D images,
the introduction of a continuous kernel in time was preferred to the introduction of higher orders.

The inclusion of the velocity in the registration framework adds one intermediate step in comparison
with other spatiotemporal registration approaches that directly model the displacement field (Ledesma-
Carbayo et al. (2005) and Chandrashekara et al. (2004)). The velocity field v : Ω × T → Rd transports
a given material point x from its original location at time t = 0 to its mapped location by a continuous
trajectory, ϕ0(x, t), whose tangent vector at any time is given by v(ϕ0(x, t), t). The numerical solution of
this transport equation, described in Section 2.3, is obtained by the discretization of the temporal domain
T using a non-uniform sampling {tk}.

The velocity field, v, is obtained through an optimization procedure guided by a cost function composed of
an image-driven term depending on image intensities and a regularization term representing prior information
about the motion field. For the data-driven term, we used the Mean Squared Error (MSE) between the
intensities of the reference frame and all other frames. For the regularization term, a constraint imposing
incompressibility of the myocardial tissue was chosen. Both of them are described in Section 2.4.

2.2. A continuous velocity field in the spatiotemporal domain.
The temporal dimension is introduced into the diffeomorphic registration problem by relating the map-

ping ϕ0 at any time t to a time-varying velocity field. In this paper, the velocity field is represented as a
sum of spatiotemporal B-Spline kernels. The B-Spline velocity coefficients assigned to all the control points
are concatenated in a vector of parameters p, the velocity being then denoted as v(x, t; p) and computed as

v(x, t; p) =
∑

i,j,k,l

β
(x− qi

∆i

)
β
(y − qj

∆j

)
β
(z − qk

∆k

)
β
( t− ql

∆l

)
pi,j,k,l (1)
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where x = (x, y, z), β(·) is a 1D cubic B-Spline kernel, qi,j,k,l = (qi, qj , qk, ql) is a sparse grid of 3D+t
control points, and ∆ = (∆i,∆j ,∆k,∆l) is the spacing between control points in each dimension. Hence,
the trajectory ϕ0 that maps a material point of coordinates x at time t = 0, being the time associated to
the reference frame, to time tn is obtained by adding to the initial position the integration of the velocity
field from time t = 0 to time t = tn, i.e.,

ϕ0(x, tn; p) = x +
∫ tn

0

v(ϕ0(x, t,p), t; p)dt . (2)

Registration on 2D echocardiographic sequences may require the use of drift correction techniques due to
out-of-plane motion. The clinical modality targeted in this work is 3D US, and taking into account that
images are acquired under breath-hold in real time, no significant drift effect is expected. For this reason,
drift correction was not included in the transformation model.

2.3. Trajectory computation.
The transport equation for computing ϕ0 in Equation (2) is solved numerically using a forward Euler

integration scheme in which the continuous integral is replaced by a discrete summation. The continuous
time interval is now split into a collection of tk ∈ T values where the time increment between consecutive
time-steps ∆tk is adapted to ensure invertibility as further described. By convention, we will use the
subscript index k to refer to the discretization of the temporal dimension for solving the transport equation,
whereas the subscript index n will refer to the temporal instants at which imaging data is available. The
k-sample scheme is assumed to be denser than the temporal sampling of the image grid to ensure accurate
estimation of the mapping ϕ0. For the simplicity of notation, we will assume that the n-sample scheme is
a subset of the k-sample scheme.

Using this discretization, Equation (2) can be approximated by

ϕ0(x, tn; p) = x +
n−1∑
k=0

v(ϕ0(x, tk; p), tk; p)∆tk , (3)

when n takes a positive value. When n takes a negative value, the same expression can be used but the
upper limit of the sum has to be changed to n+ 1.

If we define xk
0(p) = ϕ0(x, tk; p) as the transport of the coordinate x from time t = 0 to tk and

vk(p) = v(xk
0(p), tk; p), we can recursively write xk

0(p) as follows:

xk
0(p) = xk−1

0 (p) + vk−1(p)∆tk−1 . (4)

Equation (4) is still valid for a time tk < 0 giving a negative sign to ∆tk−1. It can also be generalized to
the transport from any frame in the sequence by taking an initial time different from 0. The integration
of Equation (2) using the discrete approximation of Equation (4) requires to select a time-step sufficiently
small for ensuring accurate computation and invertibility of the mapping ϕ0. In our method, we start off
with a uniform sampling of the temporal domain T , arbitrarily chosen as half of the temporal spacing of the
image sequence. To ensure invertibility at any time tn, one needs to consider the Jacobian of the mapping
xn

0 with respect to the set of parameters p, here denoted as Dxn
0 (p) and computed from Equation (4) using

Dxn
0 (p) = ∆ϕn

n−1 . . .∆ϕ
k
k−1 . . .∆ϕ

1
0 with ∆ϕk

k−1 = I + Dvk−1(p)∆tk−1 , (5)

where I stands for the identity matrix. This Jacobian must be positive definite everywhere to ensure
invertibility of the transformation. A necessary condition to accomplish this goal is to have det(Dxn

0 (p)) > 0
for all x ∈ Ω. Computing the product over k of all det(∆ϕk

k−1) gives the determinant of the Jacobian matrix
in Equation (5). When a negative value of det(∆ϕk

k−1) is detected, the value of ∆tk is reduced by a factor
of 2 until enforcing a positive determinant. Note that the zero threshold could easily be substituted by a
small positive value for not hindering the stability of the trajectories computation.
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2.4. Similarity metric and non-linear optimization.
2.4.1. Image similarity

Tissue and blood pool intensities are globally conserved over the cardiac cycle in 3D US images. There-
fore, we use the Mean Squared Error (MSE) metric for capturing the optimal set of B-Spline velocity
coefficients p of Equation (1). More complex similarity measures as described by Cohen and Dinstein
(2002) have been proposed to take into account the statistical properties of the speckle noise. However,
in the case of an independent additive gaussian noise, motion estimation based on a maximum likelihood
approach leads to the minimization of the MSE metric.

The similarity metric is computed between an arbitrarily chosen reference frame I0 in the sequence and
all the consecutive time frames according to

M(p) =
N2∑

n=−N1

∫
Ω

(
In(xn

0 (p))− I0(x)
)2

dx . (6)

The framework presented in this paper can be generalized to other similarity metrics such as information
theoretic measures as long as they are continuous and differentiable. The derivative will be a function of
dxk

0/dp whose computation is given in Section 2.4.3.

2.4.2. Quasi-incompressibility
Quasi-incompressibility is equivalent, in this framework, to imposing a zero divergence of the veloc-

ity field at every spatiotemporal location. Since the divergence is the trace of the Jacobian, the quasi-
incompressibility constraint can be formulated as

C(p) =
N2∑

n=−N1

Cn(p) , (7)

where Cn(p) is given by

Cn(p) =
∫

ΩM

(
tr
(
Dvn(p)

))2

dx . (8)

Here, ΩM stands for the subset of the Ω domain that delineates the myocardial wall in the reference image
I0, i.e., the subdomain defined by all the material points in the myocardium undergoing the deformations
we are interested in analyzing. In this paper, ΩM is obtained by segmenting the LV in the first frame of the
sequence as described in Section 2.5. Since the quasi-incompressibility constraint is computed over a fixed
domain in the reference frame, ΩM can be considered as constant when computing derivatives. The domain
is propagated using the current estimate of the transformation, thus avoiding the definition of a region of
interest at every frame.

2.4.3. Complete metric and derivation
As there is some controversy in the literature (see Section 1.4) on the fully incompressible nature of

the myocardial tissue, we opted in this paper for enforcing quasi-incompressibility as soft constraint. This
differs from previous approaches (see Mansi et al. (2010, 2011) and Hinkle et al. (2009)), which project the
velocity field at every iteration on a divergence-free velocity space.

In this paper, the incompressibility constraint of Equation (7) is added to the image similarity metric
using a Lagrange multiplier λ ∈ R. The complete cost function is therefore

F (p) = M(p) + λ · C(p) . (9)

The choice of an optimal λ is discussed in Section 3.1.4. Since the number of parameters characterizing the
transformation is large, and the metric is explicitly differentiable, gradient-based optimization methods are
well indicated for minimizing Equation (9). In this paper, the L-BFGS-B method of Byrd et al. (1995),
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which searches the optimum based on the gradient and a low-rank approximation of the Hessian of the
metric, was chosen.

The total derivative of the MSE metric in Equation (6) with respect to the parameters p of the velocity
kernels is equal to

dM(p)
dp

=
N2∑

n=−N1

∫
Ω

2
(
In(xn

0 (p))− I0(x)
)
DIn(xn

0 (p))
dxn

0

dp
dx , (10)

where DIn is the spatial gradient of the nth image in the sequence and dxk
0

dp can be obtained by differentiation
of Equation (4):

dxk
0

dp
=

dxk−1
0

dp
+

dvk−1

dp
∆tk−1 with

dvk−1

dp
=
∂vk−1

∂xk−1
0

dxk−1
0

dp
+
∂vk−1

∂p
. (11)

Hence, dxk
0

dp can be obtained from the following recursive equation:

dxk
0

dp
=
(
I + Dvk−1(p)∆tk−1

)dxk−1
0

dp
+
∂vk−1

∂p
∆tk−1 , (12)

where the first term propagates the derivative dxk−1
0

dp computed at the previous time step, weighted by the
volume change the transformation introduces at the previous time step (factor between brackets).

The derivative of Cn(p) in Equation (8) with respect to one element of p is given by

dCn(p)
dpi,j,k,l

=
∫

ΩM

2 tr
(
Dvn(p)

) d
dp

(
tr
(
Dvn(p)

))
dx . (13)

The detailed computation of d
dp

(
tr
(
Dvn(p)

))
is given in A.

2.5. Myocardial strain computation
The myocardial strain tensor is directly estimated using the spatial derivatives of the displacement field

from Equation (5). In this paper, strain is computed in the space of coordinates of the first frame, which
corresponds to the definition of Lagrangian strain. The strain tensor is then computed as

ε(x, tn) =
1
2

(
(Dxn

0 )T Dxn
0 − I

)
. (14)

Note that in the cardiac literature (D’hooge et al. (2000)), it is common to define strain as a linear change in
length, whereas Equation (14) is quadratic with respect to the spatial gradient of the displacement field. Both
expressions are equivalent under the assumption of small displacements, i.e. that both the displacements
and the displacements gradient are small compared to unity. In the case of Lagrangian strain, as strain is
computed with respect to a fixed reference (end of diastole), the assumption of small displacement is invalid.
This justifies why we opted for Equation (14) rather than the linear formulation. However, it is important
to keep in mind that the coexistence of the two strain definitions might be responsible for some discrepancies
in the strain values reported in the literature.

This tensor is projected along a specific direction h using εh(x, tn) = hT · ε(x, tn) · h. The set of h
directions considered here are the three vectors (radial, longitudinal, circumferential) of a local coordinate
system related to the anatomy of the LV (D’hooge et al. (2000)). For computing this set of directions, the LV
is segmented in the first frame of the sequence. According to Section 3.1.3, this corresponded to the optimal
reference choice. This segmentation also defines ΩM in Equation (8) and is obtained from an active shape
and appearance model whose construction and application to image segmentation is described in Butakoff
et al. (2007). This algorithm was initialized by defining the aortic valve, the mitral valve and the apex on
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(a) Radial (b) Longitudinal (c) Circumferential

Figure 2: The first frame in the image is segmented using a triangular surface mesh for defining AHA regions and local
directions: (a) Radial vectors, (b) Longitudinal vectors, (c) Circumferential vectors.

the endocardial side. This provides semi-automated definition of the right ventricle insertion points. The
longitudinal direction, l, is defined uniformly by drawing a line from the apex to the mitral valve. These two
landmarks are directly stored on the mesh, which makes the long axis computation automatic and robust
to any image orientation. The radial direction is obtained from the normal e to the mesh at each node and
the l vector using

r = e− (e · l) l . (15)

The circumferential direction is then obtained by the cross product of longitudinal and radial directions

c = l× r . (16)

The LV was divided using the 17-segment model as proposed by the American Heart Association (AHA,
Cerqueira et al. (2002)). These 17 regions are directly defined on the surface mesh for computing regional
average strain curves. In this paper, strain is computed in a Lagrangian space of coordinates, hence both
local coordinate system and AHA segments need to be defined on the first image only.

2.6. Implementation
The TDFFD registration algorithm was implemented in C++ within the ITK1 toolkit. The B-Spline

velocity field computation was inspired from the B-Spline deformable transformation object and mainly differ
on allowing different dimensions for the input point and the output velocity. The computation of the matrix
product and summation in Equation (12) was implemented through sparse matrices. All experiments were
run on a 24-node double quad-core Intel Xeon (2.66 GHz CPU, 16 GB RAM) Linux cluster for distributing
the load of processing different input image sequences. Regarding the computation times, the FFD algorithm
required 20 minutes to process the whole sequence. The TDFFD algorithm, due to its higher complexity
in the computation of metric derivatives, took 3h40 min. Interestingly, because of a very slow convergence;
the Ledesma-Carbayo et al.’s algorithm took 8h40 min and 10 hours (for the two initialization strategies
described in Section 3.1.2). The convergence of the TDFFD algorithm was regular and the objective function
value uniformly decreased over the iterations, which explains a shorter execution time.

The code is currently not parallelized and uses a single CPU. Conceptually, every sample from the refer-
ence image can be processed independently for computing its contribution to the metric and its derivative.
Dividing the set of image samples among different threads is therefore expected to significantly speed-up
the computation time.

1http://www.itk.org
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Figure 3: 3D rendering of the ground truth displacement field used to generate the synthetic ultrasound images.

3. Experiments

Experiments were performed first on a set of synthetic 3D US sequences to evaluate the accuracy and the
robustness of the TDFFD algorithm with respect to known ground truth displacement. Then, the clinical
applicability of our method was tested for two populations on clinical 3D US sequences: a population of 9
healthy volunteers and a population of 13 CRT patients including responders and non-responders acquired
before and after CRT, as well as 6 and 12 months follow-up.

3.1. Registration accuracy on simulated ultrasound data
The evaluation on synthetic US images consisted first in comparing the accuracy of the TDFFD algorithm

to two state-of-the-art algorithms. The first one is the pairwise FFD (Rueckert et al. (1999)). The second
one is the 3D+t algorithm proposed by Ledesma-Carbayo et al. (2005), guaranteeing a temporally smooth
displacement field. In this figure, as in the sequel of this manuscript, the time was normalized by the duration
of one cardiac period and is referred to as normalized cardiac time. This comparison was performed both
in terms of displacement and strain, considering several imaging noise levels. Then, an optimal set of
parameters for the B-Spline grid resolution and the weighting of the incompressibility term were determined
by optimizing the error between true and recovered displacements.

3.1.1. Experimental setup
Elen et al. (2008) simulated 3D US images of the deforming LV for a normal contraction. This dataset had

an isotropic voxel size of 0.36mm. Concerning the temporal resolution, 20 frames per cycle were generated,
which is slightly higher than the average number of frames per cycle for the set of healthy volunteers used
in Section 3.2.1. In the anatomical model employed to generate the simulated 3D US images, the LV was
represented as a thick-walled ellipsoid with end-diastolic dimensions in the physiological range.

Synthetic US data sets were generated from this mechanical model using a previously described method-
ology mimicking the whole image formation process (Gao et al. (2009)). In addition, a simplified kinematic
model with an ejection fraction of 60 % over a cardiac cycle was developed to generate the ground truth
displacement field. LV mechanics was based on a kinematic model as described in Arts et al. (1992). In this
model, only transformations based on the changes of the cavity volume and the torsion were considered while
the myocardium was assumed to be incompressible. The resulting synthetic displacement field is plotted in
Fig. 3 and has an amplitude reaching 15.5mm in the base at the end of systole.
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w = 0.2, CNR = 1.29 w = 0.5, CNR = 0.60 w = 0.7, CNR = 0.19

Figure 4: Axial (top) and longitudinal (bottom) views of the synthetic datasets with the three different CNR generated for the
evaluation of registration accuracy.

This ground truth data is then used in this paper to evaluate the accuracy of the proposed algorithm
and compare it to a pairwise registration strategy at different noise levels. Various CNRs were generated
by multiplying the blood pool speckle acoustic impedance (i.e. the amplitude of the intensities) by a factor
w. In this paper, three values were considered for w: 0.2, 0.5 and 0.7. An increasing w means an increasing
noise power, thus a reduced CNR. Snapshots of axial and longitudinal slices for the three levels of noise
considered here are plotted in Fig. 4.

This set of values for w can be related to CNR values using the equation given in van Wijk and Thijssen
(2002):

CNR =
µF − µB√

(σ2
B + σ2

F )/2
, (17)

where µF and µB are the average intensity values of the foreground and background, σ2
B and σ2

F designating
the foreground and background intensity variances. Computing µF , µB , σF and σB for the three values of
w listed above returns CNR values of 1.29, 0.60, 0.19, respectively. These values roughly cover the range
used in van Wijk and Thijssen (2002) for nominal echo levels going from -6 to 3 dB.

3.1.2. Comparison between TDFFD and state-of-the-art algorithms
In this Section, we compare our TDFFD algorithm to the FFD (Rueckert et al. (1999)) and Ledesma-

Carbayo et al. (2005) (LC) algorithms in terms of accuracy for both displacement and strain quantification.
All algorithms considered in this section were compared without regularization metric, i.e. without the
incompressibility constraint for the TDFFD. This choice was made to avoid biasing the analysis of the
relative performance of the different methods under evaluation.
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(a )Median displacement error for w=0.2
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(b) Median displacement error for w=0.5
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(c) Median displacement error for w=0.7
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(f) Median displacement error for w=0.7
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(e) Median displacement error for w=0.5
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(d) Median displacement error for w=0.2

 

 

Displacement-based methods:
Comparison between FFD (fixed reference transformations) with LC

Velocity-based methods:
Comparison between FFD (sequential transformations) with TDFFD

LC LC 2 FFD to first

TDFFD FFD seq. FFD seq./first

Figure 5: Robustness of the 3D displacement quantification to several noise levels, as measured by the proposed TDFFD, LC
and FFD algorithms. Vertical bars show the dispersion of the error values over the entire myocardium by plotting second and
third quartiles limits. The horizontal axis is the normalized cardiac time (from 0 to 1). The error is measured in millimeters
over the entire myocardium. Three levels of noise are considered (see Fig. 4): w = 0.2 (left), w = 0.5 (center) and w = 0.7
(right). First row: comparison between 3D FFD and 3D+t FFD on the displacement fields. FFD to first refers to applying FFD
between the first frame and every frame of the sequence, LC refers to Ledesma-Carbayo et al. (2005) with zero initialization,
LC 2 refers the same algorithm initialized by a set of pairwise transformations. Second row: comparison between 3D FFD
and 3D+t FFD on velocities. FFD seq. refers to applying FFD sequentially, both for the metric and the transformation, FFD
seq./first refers to a sequential representation of the transformation but defining the metric to the first frame.

Displacement accuracy versus noise level. Fig. 5 plots the median magnitude of the difference between the
ground truth displacement field for all considered algorithms. Vertical bars show the dispersion on the
entire myocardium of this displacement error values by plotting second and third quartiles limits. For all
algorithms, the B-Spline grid had a resolution of three control points in the longitudinal direction and five
in the two transverse directions. This resolution was the optimal initial resolution of the TDFFD algorithm
for this set of images, as described in Section 3.1.3.

Two configurations of the FFD algorithm were considered: computing the pairwise transformations
between consecutive frames (sequential transformations) and computing them relative to the first frame
(fixed reference transformations).

For sequential transformations, two variants for quantifying the image metric were considered. In the
first, FFD seq. in Fig. 5, the metric was quantified between consecutive frames. In the second, FFD seq./first
in Fig. 5, the metric was quantified with respect to the first frame. We used the mutual information metric
as in the original version of the FFD algorithm (Rueckert et al. (1999)). For each frame, the concatenation
of all previously computed transformations was taken as fixed transformation, and was kept constant during

14

This is a pre-print version 
The final version can be downloaded from http://www.sciencedirect.com/



Algorithm Initialization Sequential
transfor-
mation

Sequential
metric

Vel. /
Disp.

3D
FFD first Previous registration No No Disp.

FFD seq. Zero Yes Yes Vel.

FFD seq./first Zero Yes No Vel.

3D+t

LC Zero No No Disp.

LC2 FFD first No No Disp.

TDFFD Zero Yes No Vel.

Table 2: Summary of the different algorithms under comparison in Section 3.1.2 and Fig. 5. The table specifies for each
algorithm: the initialization strategy, if the transformation representation is sequential, if similarity is measured sequentially
and if the algorithm quantifies a velocity or a displacement field.

the optimization process. Only the last transformation in the chain, between the previous and current
frames, was optimized. This combination of sequential transformations but fixed reference is conceptually
the closest choice to the TDFFD approach proposed in this paper.

In Ledesma-Carbayo et al. (2005), the transformation represents the displacement field to the first image
as a smooth 3D+t B-Spline field. The sum of squared intensity differences between each image and the first
image in the sequence was chosen as similarity measure. Two initialization strategies were compared for the
LC method: initializing the transformations with null parameters (LC in Fig. 5) and initializing the 3D+t
displacement field by a set of pairwise transformations relative to the first frame (LC 2 in Fig. 5).

Results are plotted in two rows for incrementally evaluating the impact of temporal continuity and
temporal consistency as defined in Section 1.2. First, the advantage of using a continuous representation of
the displacement field is evaluated by comparing FFD with fixed reference transformations with Ledesma-
Carbayo et al. (2005). The purpose of this first comparison is to evaluate the advantage of going from a
3D to a 3D+t representation of the displacement field. Second, sequential FFD is compared to TDFFD,
the purpose being to compare a 3D with the respective 3D+t representation of the velocity field. The main
features of the different algorithms tested in this comparison are summarized in Table 2.

The top row in Fig. 5 shows that for the lowest amount of noise (w = 0.2), the LC algorithm and
FFD perform similarly. In this case, there is no interest in initializing the 3D+t transformation by a set
of pairwise transformations (LC 2) as the initialization by the identity transform (LC) provides a better
accuracy. On the contrary, when working at higher noise levels, Ledesma-Carbayo et al.’s approach with
pairwise initialization gave higher accuracy than the two other algorithms. At the intermediate noise level,
the LC algorithm without initialization did not converge and produced higher median error values than FFD
and the LC 2 algorithm .

The bottom row in Fig. 5 compares FFD with sequential transformations with the TDFFD algorithm.
Applying FFD sequentially for the metric and the transformation resulted in the generation of a significant
drift effect and overall divergence. TDFFD and FFD seq./first performed similarly at the lowest noise level.
However, at the intermediate and highest noise levels, the TDFFD algorithm showed increased robustness,
and produced smaller errors. The dispersion was also clearly reduced when using the TDFFD algorithm
for all noise levels, as observable from Fig. 5. For w = 0.7, the upper limit of the third quartile goes from
6.5mm using pairwise FFD and the LC algorithm to 3.23mm using TDFFD.

At all levels of noise, the convergence of the LC algorithm was slower and less regular than TDFFD and
all variants of FFD. One possible explanation is that the transformation model used in the LC approach
does not exploit the high correlation between the displacements at consecutive times. Searching for optimal
directions in the optimization space is therefore more challenging than for the sequential FFD and TDFFD
algorithms that naturally represent the displacement at a time t+∆t as a composition of the transformation
at time t and an incremental contribution over the ∆t time interval. As previously mentioned, we used
mutual information as similarity metric for the FFD algorithm (Rueckert et al. (1999)). While this has the
potential of introducing some bias in the comparison between the different approaches, one can observe in
the top row of Fig. 5 that FFD did not show worse performance than LC, despite of using a more generic
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metric. This suggests that the choice of mutual information does not alter significantly FFD accuracy in
this application.

It can be observed from Fig. 5 that all methods compared in this section produce error curves following
cardiac cycle phases since they increase over systole and reach a peak of maximum error at the end-systolic
phase, being reduced over diastole. This indicates that for the three methods, the error increases when
estimating larger displacements.

Myocardial strain accuracy versus noise level. The impact of imaging noise level on radial, longitudinal
and circumferential strain curves was evaluated using the same synthetic datasets for the three algorithms
(FFD, LC and TDFFD). For each noise level, the configuration of FFD and the LC algorithm giving the
best displacement accuracy was taken for comparing the resulting strain outputs.

Fig. 6 shows on the top row, the ground truth strain curves. Vertical bars show the dispersion on the
entire myocardium of the strain values by plotting second and third quartiles limits. This dispersion models
transmural changes from endocardium to epicardium. It can be neglected for longitudinal strain (inferior to
3 %) but becomes substantial (up to 10 %) for radial and circumferential components. The remainder rows
show the strain curves as recovered by the three algorithms for the settings described in Section 3.1.1.

At a low level of noise (w = 0.2), TDFFD showed the largest accuracy and smallest dispersion for
quantifying longitudinal strain. All three methods underestimated the peak value of radial strain. FFD
slightly shifted in time the peak of radial strain. For circumferential strain, FFD and TDFFD performed
better (lower dispersion) than the LC algorithm. At intermediate and high noise levels, TDFFD qualitatively
preserved better the pattern of the strain curves than the two other algorithms, but at the expense of an
underestimation of the peak values and an increased dispersion of strain values. In all three algorithms,
the longitudinal strain was the most sensitive to the change in CNR. FFD registration failed to recover
meaningful radial and longitudinal strain curves at w = 0.5, and at w = 0.7.

The FFD strain curves at w = 0.5 and w = 0.7 showed a more pronounced drift effect (the curves do
not come back to zero) in comparison with TDFFD and LC algorithm at similar noise levels. This seems to
indicate that spatiotemporal registration techniques are more robust to drift than pairwise algorithms (Elen
et al. (2008)). As incompressibility was not used in this experiment, this drift robustness may come from
temporal consistency.

In order to quantify the statistical agreement between the different registration algorithms and the ground
truth, we performed a set of Wilcoxon rank sum tests for equality of medians at the lowest imaging noise
level (w=0.2). These tests were performed on radial, circumferential and longitudinal strain values averaged
per AHA segment at the end of systole. All obtained p-values are given in Fig. 7 together with a box plot
giving the quartiles of the distributions under comparison. For all algorithms, longitudinal strain returned
the lowest p-values. This mainly stems from the high dispersion of the estimated strain values compared to
the ground truth. Regarding radial strain, LC and TDFFD gave similar performance for quantifying radial
strain at end of systole. FFD in turn underestimated radial strain. Finally for circumferential strain, LC
returned incorrect strain patterns in some regions with positive values. This resulted in a high dispersion
compared to the ground truth and a lower p-value than FDD and TDFFD.

Displacement accuracy versus time decimation. In addition to the deterioration of spatial CNR, examined
in the former experiment, another potential source of image deterioration is the loss of temporal resolution.
To evaluate the robustness of all compared algorithms to time resolution of the input data, the synthetic
sequence at w = 0.2 was undersampled by using one out of every two frames. We then compared the
performance of each algorithm on the undersampled data (red curves in Fig. 8) to two alternative situations:
running the same algorithm on the full dataset using 1) one control point per time frame (blue curves) and
2) using one temporal control point every two time frames (green curves).

Fig. 8 shows error curves in the same format as in Fig. 5 for the three algorithms. In the case of the
TDFFD algorithm, the peak systolic error showed a slight increase (from 1.58 to 1.85mm) while the average
diastolic error went from 0.4 to 0.6mm. In the case of the LC algorithm, peak systolic error increased from
2.29 to 4mm. The diastolic error increased in a much higher proportion than for TDFFD (more than a factor
2). For FFD, systolic error was practically unchanged after decimation but the pairwise algorithm failed
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Fig. 2.

truth data to evaluate the accuracy of the proposed algorithm and compare it to a pairwise registration strategy

at di�erent noise levels. Various signal to noise ratios were generated by adjusting intensities inside and outside

the myocardial wall using a weightw (w = 0 .2, w = 0 .5 and w = 0 .7 in this paper). Fig. 1 shows the median

magnitude and dispersion of the di�erence between the ground truth displacement field and the ones given by

two algorithms: a pairwise FFD (see reference in [8]) and the temporal di�eomorphic FFD registration (TDFFD)

algorithms. This error was computed over the entire myocardial wall. FFD pairwise registration was performed

between each image and the first image in the sequence, taking the chain of previously computed transformations

as bulk transformation. For the two algorithms, the B-Spline grid had an initial resolution of three control points in
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Figure 6: Robustness of the 3D strain quantification to several noise levels, as measured by the proposed TDFFD, LC and FFD
algorithms. Ground truth curves are overlaid in dashed format. Vertical bars show the dispersion of the strain values over the
entire myocardium by plotting second and third quartiles limits. The horizontal axis is the normalized cardiac time (from 0 to
1). Strain is measured in mm over the entire myocardium. Three levels of noise are considered (see Fig. 4): w = 0.2, w = 0.5
and w = 0.7.

to properly recover diastolic motion at the lower temporal resolution. This can be observed in Fig. 8(c),
showing a significant increase of error dispersion in the second half of the heart cycle.

3.1.3. Optimization of TDFFD parameters
In this section, we quantify the influence of several parameters of our algorithm on the displacement

accuracy. Median displacement values and their dispersion are plotted as in Section 3.1.2.
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Figure 8: Robustness of the 3D displacement quantification to temporal decimation of the input sequence, as measured by the
proposed TDFFD, LC and FFD algorithms. Vertical bars show the dispersion of the error values over the entire myocardium
by plotting second and third quartiles limits. The horizontal axis is the normalized cardiac time (from 0 to 1). The error
is measured in millimeters over the entire myocardium. This experiment was performed for w = 0.2. For FFD and LC
algorithms, we retained the configuration that gave the lowest error from Figure 5. The red curves shows the error magnitude
after decimation. The error at full temporal resolution is plotted in blue. For LC and TDFFD algorithms, the error obtained
by running the registration using a grid at half temporal resolution on the full dataset is also shown (green curve).

Influence of initial resolution of control points. The purpose of this experiment was to determine the optimal
setting for the initial resolution of the 3D+t B-Spline grid. For ensuring convergence of the global opti-
mization procedure, it is important to have an optimal setting of the number of control points in the 3D+t
B-Spline grid to avoid solving the optimization problem in an unnecessary low or high dimensional space. In
the synthetic dataset described in Section 3.1.1, X and Y axis define the short axis planes. Because of the
symmetry of the geometry, the motion is expected to have the same magnitude in X and Y . Therefore, the
same number of control points was used in these two directions. Fig. 9(a) shows the displacement accuracy
when spanning from 3 to 5 control points in the short and long axis directions. The number of control points
in the temporal dimension was fixed to the number of frames in the input sequence. From these curves, it
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Figure 9: Sensitivity analysis to some algorithmic parameters: Median error over the entire LV volume for (a) different values
of spatial grid resolution, (b) different temporal grid resolutions and (c) different choices for the reference frame. Vertical bars
show the dispersion of the error values over the entire myocardium by plotting second and third quartiles limits. The horizontal
axis is the normalized cardiac time (from 0 to 1). The error is measured in millimeters over the entire myocardium. All these
plots were computed from the synthetic images with w = 0.2.

can be observed that 5 control points in the short axis direction and 3 control points along the long axis
directions returned the lowest error over the whole myocardium.

To analyze the temporal resolution of the TDFFD grid, we varied the temporal resolution by decreasing
it from the total number of frames (20 in this case) to 18, 16 14, 12, 10 and 5 control points. The resulting
accuracy curves on the displacement errors are plotted in Fig. 9(b). This confirms that an accurate quan-
tification of the motion pattern requires an elevated number of control points. Since taking more control
points than the number of frames would result in oversampling the velocity field with respect to the tempo-
ral resolution of the input data, we kept the number of control points to its maximum, i.e. the number of
frames, in all experiments.

Influence of reference choice. In this experiment, the reference image in the sequence was changed from
the first to the last image to assess its influence on the registration results. This corresponds to adjusting
the position of the image indexed with 0 in the similarity metric computation with Equation (6). Fig. 9(c)
shows the averaged displacement accuracy for every reference choice. Taking the first image in the sequence
as reference image (dashed red curve in Fig. 9) provides the lowest error considering all time frames. By
symmetry, an equivalent accuracy is obtained when taking the last image of the sequence as reference.
Obtaining a similar accuracy when taking the first or the last image as reference suggests that errors
introduced by the backward integration of the velocity in time do not significantly alter the accuracy of the
estimated trajectories.

3.1.4. Evaluation of the quasi-incompressibility constraint
The influence of the incompressibility weight λ (Equation (9)) on the displacement accuracy was quanti-

fied at two resolutions of the B-Spline grid. It is expected that the impact of the incompressibility constraint
should be higher when the grid resolution increases. Indeed, the higher the dimensionality of the optimization
space, the higher the impact of the regularization term.

The value of λ was first modified in a range from 0 to 2000 for a grid of 5×5×3 control points (Resolution
1). This grid size was the optimal grid resolution obtained from the previous experiment. Fig. 10(a) plots
the displacement accuracy for every λ value. Choosing λ = 1250 offers a good compromise between reducing
systolic and diastolic errors. Indeed, the corresponding curve is the lowest during systole and within the low
range of other curves during diastole. The absence of incompressibility constraint gives the worst result in
terms of accuracy. During diastole, λ ∈ [500, 1500] gives 30 % less error than λ = 0.
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The impact of extending the grid resolution by a factor 2 in all dimensions was then studied. At the refined
resolution, it is expected that the impact of the incompressibility would be stronger. We therefore extended
the range of incompressibility weights to allow for higher values than the initial resolution. Fig. 10(b) shows
the displacement accuracy obtained at this second resolution, namely using a grid of 10×10×6 control points
(Resolution 2). If we assume that 10 % of the total volume is occupied by myocardial tissue, as it is the case
in the synthetic dataset used here, then 60 of the 600 cells covered by the control points grid correspond
to the myocardium. Since we aim at quantifying strain in each of the 17 segments, it means that each
AHA segment is divided in more than 3 cells, corresponding to 16 control points. This can be considered a
good trade-off between regularization of the transformation model and required accuracy since for clinical
applications, strain will be locally averaged within each segment. At this second resolution, incompressibility
was found to have more impact in diastole than in systole. Working without the incompressibility constraint
led to worse accuracy at the fine than at the coarse resolution. Giving a weight of 5000 provided a good
promise between the reduction of the diastolic error without significantly compromising the end-systolic
accuracy.

To verify that the incompressibility constraint is satisfied for the synthetic dataset, we plotted the volume
curve (relatively to end of diastole), averaging local volume change on the entire myocardium geometry. The
resulting curves at the two consecutive resolutions are given in Fig. 10(c). Averages over time are given
for each curve in the caption. These numbers fit in the 5 to 10 % range, in accordance to the volume
changes reported by Westerhof et al. (2006); Yin et al. (1996). For further evaluating the effect of the
incompressibility constraint, we measured the local volume change of the LV. Fig. 10(d) shows the local
volume ratio between end-systole and end-diastole for different incompressibility weights λ at Resolution 2.
Light colors indicate small or no volume changes while dark colors correspond to a volume increase (red)
or decrease (blue). For incompressible tissue, this value would be equal to 1 on the entire LV. It can be
observed how dark color regions fade away when giving more weight to the incompressibility constraint. For
instance, dark blue areas (indicating a local compression rate of 50%) are attenuated when introducing the
incompressibility constraint.
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Figure 10: Evaluation of the incompressibility constraint at two spatial resolutions of the B-Spline grid: (a) Resolution 1 is the
first optimal resolution found from Fig. 9(a), (b) Resolution 2 is obtained from Resolution 1 by dividing the spacing of control
points by 2. (c) Average volume change over the entire myocardium domain at Resolutions 1 and 2. (d) Local volume ratio
between end of systole and end of diastole for different λ weights at Resolution 2. Exact volume conservation correspond to a
volume ratio equal to 1.
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3.2. Experiments on clinical data
Experiments were performed on two different sets of clinical 3D US sequences. Myocardial strain was

first quantified for healthy subjects whose strain pattern and amplitude are known from clinical literature.
Then, the TDFFD algorithm was applied to 3D US sequences of CRT candidates and the obtained strain
curves were analyzed in conjunction with the clinical outcome of the therapy.

3.2.1. Data acquisition and database
We acquired 3D US sequences in an apical view for two populations, using a GE Healthcare Vivid 7

(Milwaukee, WI, USA) ultrasound system. The first population was composed of 9 healthy volunteers (31
± 6 years old), and the second population was composed of 13 patients selected as CRT candidates (61 ±
8 years old). All 13 patients underwent CRT at a single tertiary care university Hospital (Hospital Cĺınic
i Provincial de Barcelona (HCPB)), based on current European Society of Cardiology clinical guidelines (a
recent update of these guidelines was recently published in Dickstein et al. (2010)): left ventricular ejection
fraction (LVEF) < 35%, QRS duration > 120ms, and NYHA classification III-IV or NYHA II who covered
less than 500 meters in the 6 minutes walking test.

The average number of images per cardiac cycle was 18 ± 3 for the healthy subjects and 17 ± 3 for
CRT candidates. The pixel size was on average of 0.9 × 0.6 × 0.9mm3 for the healthy volunteers and
1.0× 0.7× 1.0mm3 for the CRT candidates.

Among these patients, there were 7 responders and 6 non-responders according to echocardiographic
response. Echocardiographic response quantifies the amount of reverse remodeling by computing the changes
in LV volume at the end of systole (LVESV) between baseline and follow-up. Using this criterion, a patient
is classified as responder in case of reducing more than 15 % the LVESV, conditioned to patient survival (Yu
et al. (2005)). All 3D echocardiographic data were acquired at three different stages: before CRT (OFF),
24-72 hours after implantation (ON), at 6 months (M6), and at 12 months (M12) follow-up. No data was
available in the hospital record at M12 for Patient # 11. This patient was admitted to intensive care one
week prior to the M6 follow-up and was a non-responder to CRT at M6.

All CRT patients had dilated geometry before implantation, thus the LV did not entirely fit in the field
of view. The image acquisition protocol then gave priority to the full inclusion of the septum at the center
of the 3D US sector. Therefore, for these patients, myocardial strain in the inferior segments was excluded
from the analysis because of their partial inclusion or absence of the field of view.

The exact definition of CRT response is known to be difficult since the application of a single threshold
cannot properly render the different grades of response. The reader is invited to refer to Bleeker et al.
(2006) for the different definitions of CRT response and their discrepancies in a large population of patients.
Because of the complexity of defining CRT response, we distinguished between the following categories:
large responder for a LVESV reduction higher than 30 %; moderate responder for a reduction between 15
and 30 %; moderate non-responder for a reduction between 10 and 15 %; and large non-responder when
either no reduction was observed or the reduction was below 10 %. The LVESV reduction together with the
classification between large/moderate responder/non-responder is given in Table 3. Improvements in both
the magnitude and the synchronicity of myocardial strain among the different LV segments are expected
for CRT responders (Delgado et al. (2008); Bertola et al. (2009)). This is illustrated for one responder
(Patient # 1) in Fig. 11, showing a color map of longitudinal strain at the end of systole before and after
CRT. In this patient, the average longitudinal peak strain goes from −6 to −11 %. Before CRT, areas of
longitudinal stretching in the lateral wall (in red) coincide with shortening areas (in blue) at end of systole.
At follow-up, the spatial distribution of strain becomes uniform over all the LV.

3.2.2. Strain quantification in a population of healthy volunteers
Fig. 12 shows the recovered longitudinal strain curves for the database of 9 healthy subjects at mid and

basal segments of the AHA 12 segments (not counting apical segments). The segments either not totally
included in the field of view of the 3D US images or suffering from image artifacts (low visibility of the
lateral wall, reflections of surrounding anatomical structures, lower spatial resolution on the lateral sides of
the US sector), were excluded from the analysis after visual inspection of the images by clinical experts. On
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Patient LVESV
OFF
(mm3)

LVESV
M6
(mm3)

LVESV
M12
(mm3)

LVESV reduction
(%)

Large responders (LVESV reduction > 30 %)

1 147 83 85 - 42.18
5 164 67 45 - 72.56
7 179 108 113 - 36.87
8 226 60 69 - 69.47

Moderate responders (15 % < LVESV reduction ≤ 30 %)

4 90 75 67 - 25.56
10 118 77 85 - 27.97
12 144 95 113 - 21.53
13 227 190 164 - 16.30

Moderate non-responders (10 % < LVESV reduction ≤ 15 %)

3 266 212 233 - 12.40
9 225 196 200 - 11.11

Large non-responders (LVESV reduction < 15 %)

2 340 307 332 - 02.35
6 165 158 169 +02.42
11 62 140 — —

Table 3: Values of end-systolic left ventricular volume (LVESV) at baseline (OFF) and follow-up in the population of 13 CRT
candidates. The reduction of LV volume defines the echocardiographic response.

Longitudinal
 strain

(a) Before CRT (OFF) (b) After CRT (ON) (c) Follow-up

Figure 11: Longitudinal strain as a color map at end of systole for one CRT responder (Patient # 1) before the therapy (OFF),
immediately after CRT (ON), and at M12 follow-up. See an animated version of this figure on http://mathieu.decraene.

info/4strain/Anim.gif.

average, 78 % of the segments over the 9 volunteers were conserved. TDFFD parameters were set according
to the optimal values found for the synthetic dataset from Section 3.1.3. For incompressibility, the optimal
λ value found for the synthetic dataset was rescaled according to the initial value of the MSE metric. This
ensures that the relative weight of the incompressibility constraint is conserved, despite linear changes of
intensity between real and synthetic images.

The recovered strain curves showed a similar pattern in all volunteers, with values in good agreement
with clinical literature (Edvardsen et al. (2002)). Typical phases of diastole such as the isovolumetric
relaxation and the atrial contraction periods (resulting in an acceleration of myocardial strain at the end

23

This is a pre-print version 
The final version can be downloaded from http://www.sciencedirect.com/



0 0.5 1

0

0.05 Long. strain volunteer 1

0 0.5 1

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05 Long. strain volunteer 2

0 0.5 1

0

0.05 Long. strain volunteer 3

0 0.5 1

0

0.05 Long. strain volunteer 4

0 0.5 1

0

0.05 Long. strain volunteer 5

0 0.5 1

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05 Long. strain volunteer 6

0 0.5 1

0

0.05 Long. strain volunteer 7

0 0.5 1

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05 Long. strain volunteer 8

0 0.5 1

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05 Long. strain volunteer 9

Figure 12: Longitudinal myocardial strain quantified for 9 healthy volunteers in basal and mid segments. The AHA segments
are labelled according to the legend given in C. The horizontal axis is the normalized cardiac time (from 0 to 1). The red
arrows indicate the acceleration of the strain curve due to atrial contraction, visible in some of the volunteers.

of the diastole, see red arrows in Fig. 12) periods can be distinguished in cases with higher image quality
or improved temporal accuracy such as Volunteer #4, #7 and #8. The observed peak systolic longitudinal
strain was, on average, of 16.3 %, with a standard deviation of 4.7 %. Edvardsen et al. (2002) (see Table
1 in that reference) reported an average of −17.5 % and a standard deviation of 4 % from tagged MRI
images, when considering all but apical segments. If we assume that the values reported by Edvardsen et al.
(2002) are the true average and standard deviation, one can compute a normalized Z ∼ N(0, 1) statistic by
subtracting the true mean to the observed average and dividing by the true standard deviation. In this case,
we obtained a pvalue = p(|Z| > |z0|) = 0.76. The average value obtained in this paper is also in agreement
with the study by Saito et al. (2009) reporting a mean longitudinal strain of −17.4 ± 5.0 % (yielding a
pvalue = 0.83) by speckle tracking on 3D US sequences.

The averaged volume change was computed in a similar way as in Section 3.1.4. The average volume
change was computed relatively to end of systole over the whole myocardium and is plotted in Fig. 13. It
clearly appears that the total volume change exceeds the expected 5 to 10 % of volume change as reported
in the literature (Westerhof et al. (2006); Yin et al. (1996)). While volunteers #1, #2, #3 and #5 show an
average volume change close to 10 % range, the other four volunteers exhibit an average volume variation
in the range of 14-18%. This point is further commented in Section 4.
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Figure 13: Evaluation of myocardial volume conservation over the cardiac cycle for all volunteers.

3.2.3. Strain quantification in CRT candidates before and after implantation
Longitudinal strain curves per segment are reported in Fig. 14 for large echocardiographic responders

and in Fig. 15 for large non-responders at OFF, ON, M6 and M12, respectively.
On the patient datasets, TDFFD parameters were set according to the optimal values found for the

synthetic dataset from Section 3.1.3, except for the incompressibility weight that was left to 0. This choice
was made to avoid local convergence problems close to the border of the imaging domain when computing
the incompressibility constraint. This tends to happen more frequently in patients with dilated LV than
in volunteers. Moderate responders and non-responders are plotted in Fig. 16 and Fig. 17, respectively.
For each patient and each time point, the minimum value of the mean strain and the normalized time
corresponding to this minimum are indicated (dashed gray lines). This average value roughly describes the
global contraction in the longitudinal direction over the entire LV. Fig. 14 and 15 shows that this value
increases at follow-up in all large responders while it stays constant in large non-responders.

Fig. 18 plots the same information using a 3D glyph visualization for Patients #8 and #11, using the
same AHA segments as in Figs. 14 and 15. Each ellipsoidal glyph represents the eigen values and eigen
vectors of the Cauchy-Green (CG) tensor defined as D(xn

0 )T Dxn
0 . Physically, the CG tensor gives the

square of the stretching part of the transformation as the rotational component is compensated when being
multiplied by its transposed. A zero deformation corresponds to a CG tensor equal to the identity and a
sphere in the glyph representation. The colormap used in Fig. 18 represents longitudinal strain. Negative
longitudinal strain is plotted in green, indicating compression, while positive longitudinal strain, indicating
expansion, is plotted in red. Patient #8 is a large responder, for which we can observe at follow-up both the
reduction of LVESV and a more uniform distribution of longitudinal strain with negative values, compared
to baseline. Darker green color also indicates higher contraction at follow-up, reflecting improvements in the
cardiac function. Negative and positive values for longitudinal strain coexist at both baseline and follow-up
for Patient #11, who is a large non-responder.

Qualitative agreement is observed between the evolution of myocardial strain curves and clinical out-
come as quantified by echocardiographic response. As a global trend, it can be observed that responders
show an increase between baseline and follow-up both in the amplitude and synchronicity of strain curves
among different LV regions. Quantitative measurement of the synchronicity of strain was computed using a
covariance index (CI) based on the approach proposed in Silva et al. (2009). The CI between two regional
strain curves ε1 and ε2 is computed as

CI =
∫ tN2

t−N1

ε1(t)ε2(t)dt , (18)

where t−N1 and tN2 represent the limits of the time domain of the input sequence as defined in Section 2.1.
A high value of the CI means highly correlated strain curves, while negative or zero value indicates either
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Figure 14: Longitudinal myocardial strain quantified for 4 large CRT responders. The curves are plotted before CRT (OFF),
right after CRT (ON), and at M6 or M12 follow-up. Each curve corresponds to one AHA segment (see definition in C). Dashed
gray lines indicate the minimum value of the average strain and the normalized time corresponding to this minimum. The
horizontal axis is the normalized cardiac time (from 0 to 1).

low strain amplitude or that the two strain curves have opposite signs. The CI is sensitive to an overall
improvement of strain amplitudes in all segments and to the synchronization of the strain curves among
the different segments, which are the two parameters one is interested to quantify after CRT. All possible
combinations of segments were considered to generate a set of CI for each input image sequence. The
median value and dispersion of the CI are descriptors of the average strain amplitude and homogeneity
over all considered segments. The CI was measured at OFF and at M6 and M12. The resulting values are
shown using a box plot next to the corresponding strain curves in Fig. 19. The null hypothesis of equal
median was computed using the Wilcoxon rank sum test. This non-parametric test was chosen because
the assumption of normal distribution was not valid for our population. The test was performed between
OFF and M6 and between OFF and M12. Rejections of the null hypothesis, indicating a shift in CI at the
95 % significance level, are indicated in Fig. 19 by an horizontal line between either OFF and M6, either
OFF and M12. Interestingly, all responders showed a significant change in median CI at M6 or M12. This
corroborates with the fact that all these patients showed reverse remodeling at follow-up, which is a strong
indicator of response. Reverse remodeling was quantified using the volumes given in Table 3. In the group
of non-responders, no significant shift in CI is observed for all large non-responders (namely Patients #2,
#6 and #11). This is in agreement with the fact that these patients did not show any reverse remodeling
(LVESV reduction of approximately 2 % for Patients #2 and #6 and a doubling in LVESV at M6 for Patient
# 11). The only significant change was detected for Patient #9, who is a moderate non-responder. Hence,
CI discriminated in our population large non-responders from responders.
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Figure 15: Longitudinal myocardial strain quantified for 3 large non-responders to CRT. The curves are plotted before CRT
(OFF), right after CRT (ON), and at M6 or M12 follow-up. Each curve corresponds to one AHA segment (see definition in C).
Dashed gray lines indicate the minimum value of the average strain and the normalized time corresponding to this minimum.
The horizontal axis is the normalized cardiac time (from 0 to 1).

4. Discussion

In this paper, we presented a diffeomorphic registration algorithm that enforces temporal consistency in
the recovered displacement field by imposing the temporal continuity of the underlying velocity field. All
speckle tracking or registration-based approaches currently in the literature either do not exploit the temporal
consistency of myocardial motion over time and treat every frame in a sequential manner (Wang et al.
(2010); Kawagishi (2008)), or do not guarantee the transformation to be diffeomorphic (Ledesma-Carbayo
et al. (2005)). By enforcing temporal consistency, our algorithm does not require any drift correction as
usually applied in sequential approaches (Elen et al. (2008)). With respect to other temporal diffeomorphic
registration methods, our approach ensures recovering a velocity field continuous in time, unlike piecewise
geodesic solutions given in Khan and Beg (2008); Durrleman et al. (2009). Temporal continuity of the
velocity is obtained through regularization by a spatiotemporal kernel while current approaches regularized
on the spatial domain only. This avoids solving differential equations at higher orders as proposed in Trouvé
and Vialard (2010), which would result in a prohibitive computational cost when applied to dense 3D images.

The image similarity metric referenced in this work uses a fixed reference. Possible extensions to the
metric in Equation (6) could consider other frame combinations. For example, taking into account the
similarity metric between consecutive frames, or all possible pairwise combinations of frames. The first
option can be highly sensitive to drift but prone to capture the motion of speckle patterns that only remain
constant for a limited number of frames. The second has the advantage of taking the best of sequential and
non-sequential approaches, but is associated to a higher computational cost.

Although it is not the purpose of this paper, we believe that the algorithm we propose has a clear
potential for CRT application, namely for improving patient selection. Its improved robustness and accu-
racy compared to other methods makes it an excellent approach to improve the quantification of mechanical
dyssynchrony, currently more based on myocardial velocity timings or in 2D analysis (Fornwalt et al. (2009)).
The potential of analyzing the real 3D nature of myocardial mechanics provides an excellent tool to un-
derstand and recognize patterns of dyssynchrony that could be eventually corrected with CRT. The link
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Figure 16: Longitudinal myocardial strain quantified for 4 moderate CRT responders. The curves are plotted before CRT
(OFF), right after CRT (ON), and at M6 or M12 follow-up. Each curve corresponds to one AHA segment (see definition in C).
Dashed gray lines indicate the minimum value of the average strain and the normalized time corresponding to this minimum.
The horizontal axis is the normalized cardiac time (from 0 to 1).
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Figure 17: Longitudinal myocardial strain quantified for 2 moderate CRT non-responders. The curves are plotted before CRT
(OFF), right after CRT (ON), and at M6 or M12 follow-up. Each curve corresponds to one AHA segment (see definition in C).
Dashed gray lines indicate the minimum value of the average strain and the normalized time corresponding to this minimum.
The horizontal axis is the normalized cardiac time (from 0 to 1).
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Figure 18: Visualization of the strain tensor using 3D glyphs for Patients #8 and #11 (see text for details). Spherical glyphs
as observed at the beginning of the cycle indicate no deformation. Glyphs are colored according the longitudinal strain values,
for the AHA regions used in Figures 14 and 15.

between mechanical dyssynchrony and response to CRT is still a controversial issue (Delgado and Bax
(2011); Sung and Foster (2011)), particularly limited if a single parameter (measured strain) is considered
in the analysis. Comparing the measured strain to the deformation patterns of specific mechanisms involved
in CRT response may be a more relevant strategy (Parsai et al. (2009)) and this could be achieved with the
use of 3D strain analysis by using such a tool as the one we present.

Experiments were performed on a set of 13 patients with 4 acquisition times each (OFF, ON, M6
and M12), representing a total of 51 sequences. Results showed that strain curves obtained from the
TDFFD algorithm were in accordance with CRT outcome at M6 and M12. This was quantified using the
CI computed from the longitudinal strain curves recovered by the TDFFD algorithm. In all responders,
significant differences between CI at OFF and follow-up were found. In the group of non-responders, the
only patient showing a significant CI difference at follow-up was Patient # 9. This patient was classified as
moderate non-responder. Although this patient does improve strain-wise, its LVESV reduction is insufficient
(11 %) for being classified as responder.

All clinical images used in our experiments were acquired over the last 3 years at HCPB. Data acquisition
was not optimized for 3D motion and strain assessment but was representative of a standard, routinely
available, image quality in terms of spatiotemporal resolution and SNR. As previously commented, all CRT
responders showed an improvement in strain between OFF and follow-up. Improved strain synchronicity
between OFF and ON was qualitatively observable in Patients #4, #5, #10 and #13. However, this
observation could not be generalized to all responders. This probably indicates that such a differentiation is
too challenging for the quality and resolution of datasets currently available in clinical routine. Additionally,
it is well established that time-course response to CRT may vary among patients: some of them are acute
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Figure 19: Ranges of the covariance index for all the patient population. Average differences between OFF and M6 or OFF
and M12 are highlighted when significant at the 5% level.
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responders while others do show a later response (Ypenburg et al. (2009)). Thus, we would expect the
highest amplitude and best synchronicity at M12, as it is the case for Patients #3, #5, #7, #8, #9, #12
and #13. However, image quality at M6 can be higher than the M12 one, and may temper these conclusions.

The incidence of the different registration parameters on the myocardial motion and strain accuracy
were quantified in Section 3.1.3. On the synthetic dataset, incompressibility had a reduced influence on the
registration accuracy in comparison with the choice of the reference frame or the initial resolution of the
control points grid. One possible reason is that, on this dataset, signal to noise ratio was similar in radial,
circumferential and longitudinal directions. As radial thickening is clearly observable from the input images,
radial strain is correctly estimated and myocardial volume is relatively constant over time (see Fig. 13).
On healthy volunteers, volume change was found to exceed 11% in 4 volunteers over 9. The reason for
this is the underestimation of radial strain by our method. This indicates that the soft constraint scheme
used in this paper was insufficient to efficiently impose incompressibility over the myocardium volume.
Nonetheless, imposing incompressibility as a hard constraint raises several questions. First, Yin et al.
(1996) provided experimental evidence that compliance to the incompressibility constraint is changing over
the cardiac cycle. Second, some parts of the myocardial tissue, such as papillary muscles are known to
be highly compressible. Third, incompressibility has many local optima since any constant velocity field is
incompressible. For all these reasons, we made the choice of imposing incompressibility as a weak constraint.
Although a hard constraint would be more accurate, it requires to know at which spatial and temporal
locations incompressibility is fully reliable.

As visible from Fig. 9, the end-systolic frame was the poorest choice of reference. This can be interpreted
in two ways. First, this frame corresponds to the shortest path on average when computing trajectories
over time. It appears from Equation (11) that any control point propagates derivatives with respect to p to
posterior time points using the first term of this equation. The longer the temporal path, the stronger this
propagation mechanism. Accuracy was increased when taking the first frame as a reference, which suggests
that the higher the coupling between time points, the better with respect to the overall accuracy. Second,
the end-systolic frame is the most dissimilar to the other frames and therefore represents a poorest reference
choice for the metric computation. Hence, a reference that is closer to the average of the sequence, as the
end-diastolic frame, gives higher accuracy.

One limitation of using a smooth temporal kernel is to introduce temporal smoothing in the recovered
myocardial motion and strain curves. Our current implementation uses a fixed size kernel that introduces
the same amount of smoothing in the entire cardiac cycle. One improvement of the proposed method would
consist in tuning the width of the temporal kernel when faster changes in myocardial velocity are expected to
occur (e.g. end of systole). Another limitation of this study is to focus the clinical observations only on the
longitudinal component of strain. This choice was made because all clinical 3D image datasets used in this
study were acquired from an apical 4 chambers view. In such a setting, CNR is better in the longitudinal
direction, and longitudinal deformation can be more accurately estimated than radial deformation.

5. Conclusion

We have described a new temporal diffeomorphic registration method called TDFFD and applied it to
recover motion and strain from 3D echocardiography images. By introducing in the velocity computation
a continuous kernel over time, we enforce temporal consistency in the recovered displacements. This can
be particularly useful in image sequences with substantial amount of noise and artifacts. The TDFFD
algorithm was applied to the quantification of strain in 3D US using synthetic datasets, and clinical images
from healthy subjects and patients undergoing CRT.

Experiments on synthetic 3D US datasets showed an improved robustness and accuracy in the quantifi-
cation of motion and strain for low values of CNR compared to a classical pairwise approach and one of its
extension to recover 3D+t displacement fields. On healthy volunteers, the method provided physiologically
meaningful longitudinal strain curves with small dispersion among LV segments. On CRT patients, the
quantification performed before and after CRT, including follow-ups at 6 and 12 months showed agreement
between the quantified myocardial strain curves and clinical outcome. This agreement was quantified using
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covariance indexes of average and segmental strain curves. Future extension of the TDFFD algorithm will fo-
cus on incorporating similarity metrics adapted to statistical characteristics of US speckle noise (Myronenko
et al. (2009)) and its extension to incorporate compounding strategies to improve the limited field-of-view
in 3D US sequences of heart failure patients with dilated LV similar to Piella et al. (2011).
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A. Derivation of the incompressibility constraint

In this appendix, we detail the computation of d
dpi,j,k,l

(
tr
(
Dvn(p)

))
required to compute the derivative

of the incompressibility constraint from Equation (13).
If xn

0 (p) = (x, y, z) and x̃i = x−qi

∆i
, ỹj = y−qj

∆j
, z̃k = z−qj

∆k
, and t̃l = t−ql
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, the trace of the Jacobian in

Equation (13) can be written as
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(19)

where β′ designates the derivative of the 1D kernel defined in Equation (1). The derivative of Equation (19)
to compute the derivative of Equation (13) is

d
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The first term in Equation (20) can be easily obtained from Equation (19):
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(β′(x̃i) · β(ỹj) · β(z̃k) · β(t̃l)

∆i
,
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(21)
The second term in Equation (20) is more complex and involves second-order terms. It can be expanded as
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where the factor dxn
0

dp of Equation (22) can be obtained from Equation (12) and β′′ stands for the second
order derivative of the 1D kernel β defined in Equation (1).
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B. Notations and acronyms

Symbol Meaning

n Index of an image in the sequence
N = {n ∈ Z,−N1 ≤ n ≤ N2} Set of possible values of n. Index 0 designates the reference

In Intensity function of the nth image in the sequence

Ω ⊂ Rd Spatial domain for each image in the sequence

ΩM ⊂ Rd Spatial domain with incompressibility constraint
T = [t−N1, tN2] ⊂ R Temporal domain
tn Time associated to image In

{tk} Sampling of the temporal domain used for computing trajectories

vk(p) = v(x, tk,p) Velocity field at spatiotemporal location x, t parameterized by p

xk
0(p) := ϕ0(x, tk,p) Trajectory of a point x from time t = 0 to time tk

qi,j,k,l := (qi, qj , qk, ql) Grid of control points
D Jacobian operator on spatial dimensions

ε =

0@ εrr εrc εrl

εcr εcc εcl

εlr εlc εll

1A Strain tensor (r=radial, c=circumferential, l=longitudinal)

Acronym Meaning

AHA American Heart Association
CI Covariance Index
CNR Contrast to Noise Ratio
CRT Cardiac Resynchronization Therapy
ES End of Systole
ED End of Diastole
FFD Free Form Deformation
LV Left Ventricle
LVESV Left Ventricular End of Systole Volume
MRI Magnetic Resonance Imaging
MSE Mean Squared Error Metric
TDFFD Temporal Diffeomorphic Free Form Deformation
US Ultrasound

C. AHA segments symbols in strain plots

Symbol AHA segment Name

· 1 Basal anterior
◦ 2 Basal anteroseptal
× 3 Basal inferoseptal
+ 4 Basal inferior
∗ 5 Basal inferolateral
� 6 Basal anterolateral
� 7 Mid anterior
O 8 Mid anteroseptal
4 9 Mid inferoseptal
/ 10 Mid inferior
. 11 Mid inferolateral
? 12 Mid anterolateral
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