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Abstract 

Background – Current diagnosis of heart failure with preserved ejection fraction (HFPEF) is 

suboptimal. We tested the hypothesis that comprehensive machine learning (ML) of left 

ventricular (LV) function at rest and exercise objectively captures differences between 

HFPEF and healthy subjects. 

Methods and results – 156 subjects aged>60 years (72 HFPEF+33 healthy for the initial 

analyses; 24 hypertensive+27 breathless for independent evaluation) underwent stress 

echocardiography, in the MEDIA-study.  LV long-axis myocardial velocity patterns were 

analyzed using an unsupervised ML algorithm that orders subjects according to their 

similarity, allowing exploration of the main trends in velocity patterns. ML identified a 

continuum from health to disease, including a transition zone associated to an uncertain 

diagnosis. Clinical validation was performed: (i) to characterize the main trends in the 

patterns for each zone, which corresponded to known characteristics and new features of 

HFPEF; the ML-diagnostic zones differed for age, body mass index, 6-minute walk distance, 

B-type natriuretic peptide, and LV mass index (p<0.05). (ii) to evaluate the consistency of the 

proposed groupings against diagnosis by current clinical criteria; correlation with diagnosis 

was good (Kappa, 72.6%; 95% confidence interval, 58.1–87.0); ML identified 6% of healthy 

controls as HFPEF. Blinded reinterpretation of imaging from subjects with discordant clinical 

and ML diagnoses revealed abnormalities not included in diagnostic criteria. The algorithm 

was applied independently to another 51 subjects, classifying 33% of hypertensive and 67% 

of breathless controls as mild-HFPEF. 

Conclusions – The analysis of LV long-axis function on exercise by interpretable ML may 

improve the diagnosis and understanding of HFPEF. 

Key words: exercise echocardiography; heart failure with preserved ejection fraction; 
myocardial velocity; machine learning; non-invasive diagnostics heart failure.  
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Introduction 

Heart failure with preserved ejection fraction (HFPEF) results from multiple 

pathophysiologic processes but diagnostic criteria remain general, including dyspnea and fluid 

overload, normal left ventricular (LV) ejection fraction (EF), elevated natriuretic peptides, and 

evidence of heart failure or diastolic dysfunction1.  

EF may not reveal LV long-axis systolic dysfunction2 and resting diastolic function can 

be normal3. Diagnosis relies on echocardiography at rest while abnormalities may appear only 

during exercise4. In case of uncertainty, the diagnosis may be confirmed by a stress test or 

elevated LV filling pressure. 

Negative results of trials investigating HFPEF therapies may be due to the limitations of 

current diagnostic criteria5.  Alternative approaches combining clinical and imaging indexes6,7 

may not incorporate enough measurements to capture the complexity of HFPEF.  Clinical studies 

tend to measure what we know and recognize, using scalar indexes, while interrogating patterns 

of cardiac function may be more informative.  In that context machine learning (ML), which 

allows all the data to be considered, may be insightful. Supervised ML, a configuration that is 

trained using labels (e.g., clinical diagnosis), is becoming successful for classification8,9. In 

patients with suspected heart failure ML should be unsupervised – meaning that it is performed 

independently of diagnostic labels – so that it is not biased by possibly erroneous diagnoses. 

Invasive measurements in subjects with HFPEF have shown increased filling pressures, 

exercise-induced pulmonary hypertension and blunted functional reserve10, but their use is 

limited in clinical practice, giving echocardiography a central role in the diagnosis of HFPEF. 

Exercise echocardiography has been advocated for the early diagnosis of HFPEF3,11,12, to stratify 

risk13 and to estimate prognosis14. It can differentiate between causes of decreased functional 

reserve, such as inability to enhance myocardial relaxation, increased chamber stiffness with 

elevated LV filling pressure, and exercise-induced pulmonary hypertension2.   
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Previous studies confirmed that quantifying long-axis responses to stress can detect 

myocardial ischemia and diagnose coronary artery disease15 and that analysis of regional long-

axis function is informative about myocardial mechanics16. 

We hypothesized that unsupervised ML using basal myocardial long-axis velocity 

patterns at rest and exercise would discriminate between healthy and HFPEF subjects with 

impaired functional reserve, and would identify new descriptors that better characterize the 

HFPEF syndrome. 

Methods 

Study population 

We collected data from four centers of the MEDIA-study (MEtabolic Road to DIAstolic 

Heart Failure): University Hospital of Wales (UK), Scuola di Medicina of Eastern Piedmont 

University (Italy), Università degli Studi di Perugia (Italy), and Oslo University Hospital 

(Norway). These data will not yet be available to other researchers for reproducibility purposes 

until the publication plan of the MEDIA-study has concluded. 

156 subjects aged ≥60 years were recruited into 4 subgroups: (i) patients with HFPEF; 

(ii) breathless patients without HFPEF; (iii) asymptomatic hypertensive subjects; and (iv) healthy 

controls.  HFPEF was diagnosed according to the 2007 recommendations from the European 

Society of Cardiology (ESC), namely symptoms or signs of heart failure, LVEF >50%, and a 

non-dilated LV (end-diastolic volume index <97 mL/m2) with evidence of abnormal LV 

relaxation, filling, diastolic distensibility, or diastolic stiffness, and/or an elevated N-terminal 

pro-brain natriuretic peptide (NTpro-BNP) concentration, and/or left atrial enlargement, and/or 

atrial fibrillation17.  Patients with dyspnea on exertion not meeting the previous criteria were 

recruited as “breathless” controls.  Asymptomatic volunteers aged >60 years without diabetes or 

any cardiovascular disease, were recruited as healthy controls.  If their blood pressure (BP) was 

mildly elevated (systolic BP>140 mmHg and/or diastolic BP>90 mmHg) they were categorized 
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as hypertensive controls.  Exclusion criteria for all groups included any severe respiratory cause 

of dyspnea such as asthma or chronic obstructive pulmonary disease; acute or previous 

myocardial infarction or known coronary artery disease awaiting revascularization; and 

cerebrovascular disease or stroke within the previous 3 months. 

Ethical approval was given by the Ethics Committee of each institution, and each subject 

gave written informed consent.  

Echocardiography 

All subjects underwent echocardiographic studies at rest and during exercise using a 

semi-supine bicycle with a ramped protocol11.  If the subject developed symptoms or once she/he 

reached a heart rate of 100/min, the workload was held constant for 3 minutes while imaging was 

performed during submaximal exercise.  All centers used a Vivid E9 echocardiographic system 

with an M4S transducer (GE Healthcare, Milwaukee, WI). 

Three-beat loops of apical 4-chamber tissue Doppler images were acquired at a sampling 

rate of 180±34 Hz and analyzed using commercial software (EchoPAC, v.113, GE Healthcare).  

Velocity traces were extracted from LV basal septal and lateral segments, using a sample size of 

1×10 mm placed 10 mm above the mitral annulus in systole, to avoid capturing ring motion.  

Manual or automatic (speckle-) tracking of the sampling points introduced additional variability 

without significant changes on the traces ; therefore we avoided tracking not to compromise 

reproducibility18.  One beat was analyzed for every subject in the study. 

Temporal normalization 

To allow quantitative comparisons between traces with different heart rates and timing of 

cardiac phases, they were temporally aligned, using the timeline of the most typical subject 

(closest to the average among controls) as reference.  Events were defined from valve flows for 

each subject and during each stage of exercise:  mitral valve closure, aortic valve opening, aortic 

valve closure, mitral valve opening, and onset of atrial contraction.  A two-step process was 
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used: (1) phase-wise warping, to ensure temporal coincidence of cardiac events; and (2) 

resampling to the reference, to ensure equal numbers of sampling points for the analyses19. 

Machine learning 

 The main steps of our algorithm are shown in Figure 1.  The input consisted of 22 

descriptors (Figure 2). Twenty corresponded to the 5 phases of 4 velocity traces (septal and 

lateral at rest and submaximal exercise) – isovolumic contraction, systolic ejection, isovolumic 

relaxation, early diastole including diastasis, and late diastole (atrial contraction). We reported 

previously that diagnostic information is captured not only by the amplitude of velocity, but also 

by the relative changes in duration of the cardiac phases18. Thus, we added 2 extra descriptors 

that consist of the timings of each subject’s physiologic events as compared to the reference, one 

for the normalization at rest and the other at exercise.  

The population analyzed during learning consisted of 105 subjects: 33 healthy volunteers, 

and 72 HFPEF patients17. The ML model was then evaluated independently in two additional 

cohorts: 27 breathless and 24 hypertensive subjects. 

Dimensionality reduction: The dimensionality of velocity patterns equals the number of 

instantaneous acquisitions that they have. Our input was high-dimensional – for example, 22 

descriptors reaching up to 300 dimensions in the case of the early diastolic phase.  

The learning process computed a dimensionality-reduced space that preserved the 

similarities between each pair of subjects calculated for each descriptor (Figure 1, step #1 and 

step #218,20). Our dimensionality reduction formulation was unsupervised, i.e., blinded to 

diagnostic labels since they might be inaccurate. Specifically, we used unsupervised multiple 

kernel learning, a previously validated ML algorithm18, which handles heterogeneous descriptors 

and reduces their complexity into a low-dimensional space. The number of dimensions of the 

achieved space equals the number of evaluated subjects minus 1; 104 in this study.  Nonetheless, 
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we only considered the first few dimensions, which generally capture the most salient 

characteristics of the data18 (step #3), and facilitate interpretation of the trends in the population. 

Clustering: The low-dimensional space preserves similarities between subjects without 

attributing (diagnostic) labels.  We harnessed its potential to agnostically group subjects in two 

classes using agglomerative hierarchical clustering21 (step #4), targeted to capture the healthy 

and diseased characteristic patterns (of cardiac motion) within the population.  In practice, 

clustering was performed assessing dissimilarity and linkage via the Euclidean distance and 

Ward's criterion (to minimize the intra-cluster variance), respectively.  

Clinical validation 

Variability analysis: After the learning process, we assessed the clinical relevance of the clusters 

by comparing diagnostic parameters among them (step #5) and by studying their trends	in 

velocity patterns	(step #6).  These trends were described among clusters using principal 

component analysis (PCA), to find their main modes of variation, coupled with regression 

techniques18, which computed the variability of velocity patterns explained by these modes. Note 

that the PCA was not intended to further reduce the dimensionality of the data, but just as a tool 

to describe clusters. 

Clusters versus clinical labels – uncertainty in the diagnosis: Based on the prevalence of clinical 

labels within the two clusters we identified which represented the “healthy” and which the 

“HFPEF” characterizations.  Next, we quantified membership probabilities for each subject 

based on their Mahalanobis distance to the barycenter of each cluster.  Thus, we defined regions 

in the low-dimensional space corresponding to “healthy” and “HFPEF”, as well as an 

intermediate “transition zone”, whose cut-points were selected to maximize the discordant cases 

(whose probability by ML differed from clinical diagnosis) while minimizing the concordant 

cases (step #7; Supplementary Figure S1).  We did not expect full agreement between ML and 

clinical diagnosis, as our objective was to find new (data-driven) groupings that could be more 

Preprint version accepted to appear in Circulation Cardiovascular Imaging.
Final version of this paper available at https://www.ahajournals.org/journal/circimaging



CIRCCVIM/2017/007138 R2 

	 8 

instructive than the possibly suboptimal consensus recommendations. Blinded re-analysis of the 

discordant diagnosis cases was performed. The details are provided in the Data Supplement.  

Independent testing on separate patient groups 

 After learning from the 105 healthy and HFPEF subjects, the diagnostic algorithm was 

evaluated independently in two additional cohorts: 27 breathless and 24 hypertensive patients, 

which were mapped to the healthy, HFPEF or transition regions (Figure 1, step #8). 

Statistical analysis  

 Categorical variables are expressed as counts and percentages, and group differences 

were assessed using the chi-square test.  Continuous variables that were found to be non-

normally distributed are presented as median with 25th to 75th percentiles; inter-class differences 

were calculated by the non-parametric Kruskal-Wallis test. A p-value of less than 0.05 was 

considered statistically significant. Agreement between ML and clinical labels was expressed by 

the Kappa statistic. The ML algorithm and the statistical analyses were implemented using 

MATLAB (R2016b, The MathWorks Inc., Natick, MA, 2016). 

Results 

By definition, HFPEF subjects had higher NT pro-BNP, E/e’ ratio, LV mass index 

(LVMI), and left atrial volume index (LAVI), than the healthy controls (table 1).  On average, 

they were 5.1 years older, had higher body mass index (BMI) and shorter 6-minute walk test 

(6MWT) distance.  The median heart rates during submaximal exercise were 102 (100–106) min-

1 in healthy subjects compared with 100 (90–107) min-1 in HFPEF (p=0.042).  There were no 

major differences between subjects from different participating centers (Supplementary table 1). 

Machine learning 

 The first 10 dimensions of the low-dimensional space were considered for clustering, as 

they encode the highest variability in the pattern data. 
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 Subjects in cluster 2 were 6% older, had higher BMI (by 13%), NTpro-BNP (by 85%), 

and LVMI (by 28%), and their 6MWT distance was 31% shorter than subjects in cluster 1 (table 

1; all p<0.05).  The E/e' ratio was higher in cluster 2 at rest (+9%, p=0.028) but similar during 

submaximal exercise (+11%, p=0.446). 

Based on these comparisons and the prevalence of diagnostic labels within the clusters, 

we considered clusters 1 and 2 as healthy and diseased clusters, respectively.  There were no 

significant differences between the diseased cluster identified by ML (n=79) and the HFPEF 

group defined by applying clinical criteria (n=72) in any of the standard variables (table 1). The 

healthy cluster (n=26) and the clinically-defined healthy group (n=33) differed only in E/e' 

during exercise (14% higher in the healthy cluster, p=0.048). 

Clinical validation 

Variability of the clusters: The variability corresponding to the first two cluster modes is shown 

in Figure 3. The diseased cluster showed lower velocities, more fusion of early and late diastolic 

curves during exercise, higher variability in the onset of atrial contraction, and smaller increase 

in myocardial velocity corresponding to atrial contraction during exercise. 

 Figure 4 summarizes differences between clusters in clinically interpretable features up to 

the tenth cluster mode. This confirms that amplitudes of velocity were higher in the healthy 

cluster. Diastolic fusion was more pronounced in the diseased cluster, particularly in the septum 

during exercise − perhaps because of delay in the onset of diastolic filling (also shown by timing 

bars in Figure 3). The diseased cluster also showed more variability in systolic and diastolic 

duration (1st mode) and more frequent inter-atrial contraction delay (2nd and 5th modes). 

Diagnostic relevance of the clusters: Moderate agreement was observed between the learned 

clusters and the diagnostic labels (Kappa, 72.6%; 95% confidence interval, 58.1–87.0); 22 out of 

105 subjects were classified differently by ML (Figure 5, table 2).  The Mahalanobis distance 

from each subject to the center of each cluster is depicted in Figure 6A; the greater the distance 
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to the opposite cluster, the higher the probability of correct diagnosis. For intermediate 

probabilities, we defined a transition zone between the clusters, denoting a high uncertainty in 

binary diagnosis (more details in Supplementary Figure S1). A blinded re-analysis of the 

discordant diagnosis cases is provided in the Data Supplement.  

 

Independent evaluation in breathless and hypertensive subjects 

 Hypertensive and breathless controls were mapped to the low-dimensional space and 

their distances to the learned clusters were calculated (Figure 6B-6C). 

 All hypertensive subjects mapped to the transition zone (n=16; 67%) or the milder part of 

the HFPEF region (n= 8; 33%) (table 2), with their distance from the healthy cluster being 

moderately related to their resting systolic BP (Pearson coefficient r=0.51, p=0.07).  Most 

breathless subjects mapped to the transition zone (n=8; 30%) or the milder part of the HFPEF 

region (n=18; 67%).  

Discussion 

 Our study is the first to apply machine learning to analyze myocardial long-axis motion 

throughout the cardiac cycle and during exercise.  We confirmed the hypothesis that this method 

can identify groups of subjects with different cardiac functional reserve, measured by 

echocardiography. We demonstrated that the diagnosis of HFPEF based on consensus 

recommendations may fail to identify some patients with a cardiac cause for their symptoms 

while also designating others as diseased when their response to exercise is healthy (see Data 

Supplement). 

 We used unsupervised learning because of doubts that diagnostic criteria, limited to 

resting cardiac assessment, can identify all subjects with the HFPEF syndrome.  Dimensionality 

reduction and clustering blindly identified clinically distinct groups that share similarities with 

diagnostic recommendations17, objectively quantified the difference from a control group, and 
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described a "transition zone" where standard criteria would have a lower diagnostic accuracy.  

This suggests that ML can offer an objective method for diagnosing heart failure. 

 We studied LV long-axis function because it is reduced in HFPEF patients22 and because 

tissue Doppler imaging provides high temporal resolution and reproducible signals that can be 

easily extracted and post-processed.  We selected patients with HFPEF and healthy controls, 

using consensus definitions, but studied them in a blinded fashion to develop the model.  We 

enrolled two intermediate diseased groups − asymptomatic hypertensive subjects, and breathless 

patients who did not fulfil HFPEF diagnosis− to re-assess the learned model in independent 

populations. We did not use speckle tracking to quantify longitudinal strain, because strain is 

preload-dependent23, and thus less appropriate than myocardial velocity or strain rate as an index 

of contractile function and reserve. 

Advantages of machine learning 

 Pathophysiologic processes associated with HFPEF – such as systemic inflammation, LV 

hypertrophy, LV diastolic stiffness, and left atrial remodeling – may progress continuously from 

health to disease.  Clinical measurements may be normally distributed, such that the definition of 

diagnostic cut-points becomes difficult or even arbitrary.  Our unsupervised ML model is 

advantageous as it eschews categorical diagnoses, which might be biased, in favor of providing 

membership probabilities to diseased or healthy groups or a quantitative estimate of divergence 

from normality.  It is therefore appropriate to discriminate between heterogeneous phenotypes 

that are currently lumped together within the HFPEF syndrome6.  We used it to separate the 

subjects into two main groups (healthy and diseased) but larger numbers would allow clustering 

into more specific HFPEF phenotypes. Setting more clusters would allow machine learning to 

capture finer patterns, but at the risk of (over)fitting. 

 Two previous studies sought to classify patients with HFPEF, but their analyses were 

limited to sets of 11 and 67 scalar variables, without functional data during exercise6,7.  We 
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analyzed patterns rather than scalar indexes and extracted their most salient characteristics by 

keeping the first 10 dimensions of the dimensionality-reduced space, discarding the rest to 

prevent overfitting. 

 Diagnostic recommendations rely heavily on LVEF and E/e’ ratio but both are 

controversial11,7,24.  We have demonstrated that characterizing subjects based on their complex 

patterns of myocardial motion at rest and during exercise would be more informative. Indeed, 

our analysis revealed undiscovered diagnostic features on the motion patterns.  It could be 

argued that our variability analysis is equivalent to performing comparisons on instantaneous 

velocities independently, but that approach did not reveal clear differences between healthy, 

hypertensive and breathless subjects (Supplementary Figure S2).  

 Among ML techniques, deep-learning has captured most attention since it performs well 

in challenging tasks such as segmentation.  It is now a mature method for extracting features that 

can be analyzed within a supervised model25, but its "black box" nature hinders interpretation of 

the results.  In contrast, our method remains clinically interpretable, since it gives insights into 

the meaning of the clusters through the variability analysis.  

 

Pathophysiologic interpretation 

The identified clusters were clinically relevant – most diagnostic parameters17 differed 

between them.  We complemented the learning with a physiologic interpretation of the pattern 

trends associated to the clusters.  The diseased cluster showed lower systolic and diastolic 

amplitudes, indicating impairment of functional reserve; more fusion of early and late diastolic 

curves during exercise (at similar heart rates), which may come from increased late systolic wave 

reflections delaying early diastolic lengthening, or from an interaction between relaxation and 

compliance (or early and late diastolic filling); increased variability in the onset of atrial 

contraction (a’ wave), which might be the result of diastolic and inter-atrial dyssynchrony, as 
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recently reported in HFPEF26; and a blunted response in atrial velocities (a’ wave peak), failing 

to increase during exercise, suggestive of increased filling pressure.  Some of these are not yet 

considered as diagnostic features of HFPEF, and so they merit further investigation. 

 Direct use of the learned clusters to allocate breathless patients into two distinct groups − 

with or without HFPEF − would be unrealistic due to the continuous transition from health to 

disease that we confirmed across the four studied groups27.  This supports the view that current 

diagnostic criteria for HFPEF are suboptimal.  We propose instead that automated diagnosis 

could be supported by reporting membership probabilities to given subgroups and distances from 

normality or disease; those criteria could then be used to plan treatment or quantify changes after 

therapy.  

 The ML algorithm gave “healthy” control subjects a mean probability of 0.44 for 

membership of cluster 2 (“diseased”) (see table 2). This could be interpreted as failure of the 

method to adequately identify healthy subjects, but in our opinion a more likely explanation is 

that our asymptomatic control population, who had a median age of 67 years, already had some 

subclinical abnormalities; for example, although not statistically significant, the median NTpro-

BNP value was slightly higher in cluster 1. None of the healthy subjects was identified by ML to 

have severe disease; they were mostly classified in the transition zone or as very mild HFPEF 

subjects. This interpretation would also imply that current diagnostic consensus criteria have 

limitations. To resolve such questions, much larger longitudinal studies with outcome data will 

be required. 

 

Strengths and limitations 

 Our learning algorithm, from feature extraction to interpretation of results, was guided by 

pathophysiologic considerations.  Analysis was focused on the LV basal regions as they capture 

the global longitudinal changes usually present in HFPEF subjects28.  Secondly, we exploited all 
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the explanatory power of multiple high-dimensional descriptors using a previously validated 

unsupervised algorithm18. Thirdly, the multicentric data and the standardized stress protocol11 

increase the generalizability of our results. 

 We performed robust statistical tests to analyze our data, giving concordant results, but 

apart from assessing the influence of age (Data Supplement) we did not study the effect of 

possible confounders (gender or weight).  Analysis of regional patterns, or of myocardial strain 

rate (relatively load-independent16), could also be informative.  In our initial cohort of 105 

healthy and HFPEF subjects, ML appeared to outperform the clinical labels.  Although two 

observers endorsed our results by blinded reinterpretation of the echocardiographic studies (Data 

Supplement), no external reference is available to validate this.  Invasive hemodynamic testing 

would have provided objective measurements of filling pressures. Our findings should be 

considered with caution. Larger numbers of subjects will be needed to derive more robust 

conclusions that could be translated into diagnostic criteria for regular clinical use. 

 We studied a few patients with atrial fibrillation, since it was not an exclusion criterion 

for the study, but with larger numbers we could independently analyze subjects in sinus rhythm 

and those in atrial fibrillation. 

 

Clinical perspective 

Assessing cardiac function during exercise helps to characterize the HFPEF syndrome, 

suggesting that diagnostic recommendations should include routine measurements of functional 

reserve. Diagnosis of the HFPEF syndrome needs to be refined; machine learning could help to 

identify subgroups with distinct phenotypes that might benefit from specific treatments, and it 

may offer a more reliable alternative than current diagnostic criteria.  
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Legends to figures 

Figure 1 (central illustration): Overview of the methods 

 Learning: (step#1) for each feature, definition of the pair-wise similarity between 

subjects; (step#2) dimensionality reduction through unsupervised learning; (step#3) 

output representation; (step#4) unsupervised clustering. Interpretation: (step#5) 

comparison of clinical indexes between clusters; (step#6) reconstruction of the 

variability associated with each cluster; (step#7) computation of distances and region 

discovery. 

 Extension: (step#8) New cases analysis. 

Figure 2: Inputs for the machine learning 

 A: Velocity traces were divided into five cardiac phases, and temporally aligned to a 

reference. The convergent arrows indicate downsampling, and the divergent arrows 

indicate upsampling, to match the reference number of data points. The temporal 

normalization was captured by two descriptors, corresponding to the normalization 

of traces at rest and exercise.  

 B: Aligned septal and lateral velocity traces, at rest and submaximal exercise, during 

isovolumic contraction (IVC), systole, isovolumic relaxation (IVR), early filling, and 

late (atrial) filling (20 descriptors). 

 AC = atrial contraction; AVC = aortic valve closure; AVO = aortic valve opening; 

MVC = mitral valve closure; MVO = mitral valve opening.  

Figure 3: Variability of learned characteristics of the clusters 

 Hypothetical velocity curves corresponding to the 1st and 2nd modes of the clusters 

identified by ML, at rest and during exercise (submax) in the basal septum and the 

basal lateral wall of the LV.  Five curves are illustrated in each panel, representing -2 

and -1 standard deviations (solid lines), the mean trace, and +1 and +2 standard 
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deviations (dotted lines) along each mode.  The bars below each plot indicate the 

temporal variability in the occurrence of mitral valve closure (MVC), aortic valve 

opening (AVO), aortic valve closure (AVC), mitral valve opening (MVO), and onset 

of atrial contraction (AC); for each, the two vertical lines and the shaded area in the 

same color display the range from -2 to +2 standard deviations as a percentage 

during the cardiac cycle. 

Figure 4:  Variations in discriminant power between features and by clusters 

 The variability of 7 features identified by ML are displayed, normalized by the 

magnitude of each feature, with dark blue representing minimum and bright red 

maximum values.  For each feature, 80 items are reported (2 clusters × 4 traces × 

first 10 modes). 

 Overall amplitude of the velocity profile calculated as the average of the integral of 

the 5 reconstructed traces per mode (mean, ±1 and ±2 standard deviations). 

 Diastolic fusion calculated as the average of the sum of the difference of each 

diastolic (early and late) negative peak to the diastasis plateau value (between the 

peaks). 

 Systolic and diastolic delays calculated as the standard deviation of the timing of 

systolic and early diastolic peak velocities among the 5 traces per mode. 

 Systolic and diastolic durations calculated as the time difference between the shortest 

and longest systolic and early diastolic durations calculated for the 5 traces per mode. 

 Atrial delay calculated as the standard deviation of the timing of the late diastolic 

peak (from atrial contraction) calculated for the 5 traces per mode. 

Figure 5: Comparison of learned and clinically assigned diagnostic labels 

 Clusters distribution in the first two dimensions of the low-dimensional space 

identified by ML.  Discordant cases are highlighted in green. 
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Figure 6: Distances from each subject to the center of each cluster 

 (A) All healthy and HFPEF subjects (according to clinical labels) displayed by their 

distances from clusters 1 and 2 (healthy and diseased clusters identified by ML).  

Cases with discordant clinical and ML labels are highlighted in green, and the 

probabilities of membership to each cluster are indicated by dashed lines; the blue, 

red and green areas correspond to healthy, transition, and HFPEF zones. (B) and (C) 

display hypertensive and breathless controls, mapped using the algorithm learned 

from the analysis of the groups shown in (A). 
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Table 1:  Comparisons between groups 

 

Categorical variables expressed as counts and percentages. Continuous variables expressed as median (25th–75th 

percentile). A-a = duration of mitral valve flow during atrial contraction minus duration of pulmonary vein 

retrograde flow; E/A = ratio of the early and late transmitral flow velocities; E/e’ = ratio of the early transmitral flow 

velocity and the early diastolic mitral annular velocity; LV = left ventricular; NS = non-significant.  

 
Healthy Cluster 1 

p-value 
HFPEF Cluster 2 

p-value 
Cluster 1 

vs. 2 
p-value (n=33) (n=26) (n=72) (n=79) 

Age  (y) 66.9(64–69.1) 67.02(63–70.6) 0.81 72(68.0–78.0) 71(67–77) 0.39 0.005 

Female, n (%) 20(60.6) 18(69.2) 0.68 51(70.8) 53(67.1) 0.78 0.84 

Caucasian race, n (%) 32(97.0) 26(100) 0.06 71(98.6) 77(97.5) 0.30 0.09 

Body mass index (kg/m2) 25.3(23.2–28.8) 24.8(23.2–29.0) 0.99 28.8(25.8–32.8) 28.1(25.4–31.6) 0.58 0.004 

6-minute walk test (m) 501(476–560) 555(465–565) 0.64 357(305–395) 385(330–470) 0.09 0.001 

N-terminal B-type 
natriuretic peptide 

(ng/mL) 
70(31–119) 75(48–154) 0.20 220(87–330) 139(64–325) 0.20 0.049 

E/e’ ratio – Rest 6.9(5.9–8.6) 8.5(6.7–11.1) 0.13 10.8(8.6–13.7) 9.3(7.8–13.3) 0.13 0.03 

E/e’ ratio – Submax 8.1(6.1–9.3) 9.2(7.8–10.2) 0.048 10.8(8.7–13.8) 10.2(7.7–11.8) 0.07 0.45 

E/A ratio – Rest 1.00(0.84–1.21) 0.93(0.79–1.20) 0.58 0.88(0.77–1.05) 0.90(0.79–1.07) 0.47 0.45 

E/A ratio – Submax 1.04(0.90–1.23) 1.05(0.90–1.26) 0.64 1.06(0.86–1.20) 1.04(0.87–1.19) 0.81 0.43 

LV ejection fraction (%) 62.6(60.4–64.7) 62.1(60.6–64.2) 0.78 60.6(57.0–63.9) 60.8(57.1–64.8) 0.77 0.09 

LV mass index (g/m2) 72.7(60.8–84.9) 81.5(64.0–90.8) 0.24 108.5(93.0–132.2) 104.6(88.3–127.7) 0.34 0.00002 

Deceleration time – rest 
(ms) 230(201–261) 237(219–265) 0.43 236(188–272) 233(192–272) 0.75 0.39 

Deceleration time –
 submax (ms) 152(135–166) 153(135–180) 0.95 156(136–190) 157(137–182) 0.78 0.69 

LV end-diastolic volume 
index (mL/ m2) 44.6(37.1–54.0) 52.6(38.8–59.8) 0.27 46.9(38.0–59.5) 44.9(37.3–56.3) 0.54 0.25 

Ard-Ad (ms) -7(-20–2) –8(-21–2) 0.99 -9(-20–6) –10(-20–6) 0.97 0.83 

Left atrial volume index 
(mL/m2) 24.7(21.0–34.4) 34.1(23.2–39.0) 0.06 37.4(33.5–44.6) 35.7(27.6–42.6) 0.12 0.15 
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Table 2: Comparison of clinical and learned classifications of subjects 1 

 2 

 3 

 4 

The left quadrant contains the confusion matrix for the clinical labels compared to the classification by ML. The 5 

right quadrant summarizes the mean probabilities of each of the clinical groups of belonging to the clusters 6 

identified by ML.  7 

  

Classification by machine learning 

  

Definite  
healthy 
(n=15) 

Transition  
zone: possibly  

normal 
(n=21) 

Transition 
 zone: possibly  

HFPEF  
(n=41) 

Definite 
HFPEF 
(n=79) 

Membership of 
cluster 1 

Membership of 
cluster 2  

Clinical 
labels 

Healthy  
(n=33) 

13(39.4%) 
True Negatives 5(15.1%) 13(39.4%) 2(6.1%) 0.56 0.44 

Hypertensive  
(n=24) 0(0%) 6(25.0%) 10(41.7%) 8(33.3%) 0.38 0.62 

Breathless  
(n=27) 1(3.7%) 4(14.8%) 4(14.8%) 18(66.7%) 0.30 0.70 

HFPEF  
(n=72) 1(1.4%) 6(8.3%) 14(19.4%) 51(70.8%) 

True Positives 0.25 0.75 
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	 1 

SUPPLEMENTAL MATERIAL 

 

Re-analysis of diagnostic images 

Methods:  

 All discordant cases out of the 105 subjects analyzed were reinvestigated by detailed 

study of their stored echocardiographic images.  Two experienced observers reviewed 36 studies 

independently, including also 3 healthy ("true negatives") and 3 HFPEF subjects with concordant 

diagnoses ("true positives"), and 8 breathless subjects lying within the transition zone or the 

HFPEF region.  The observers were blinded for this exercise since all studies were presented 

anonymized and in random order. 

Results:  

 Blinded re-interpretation of the echocardiographic data of discordant diagnosis cases 

revealed possible explanations in most cases.  Nine out of fifteen "healthy" subjects who did not 

map to the healthy zone on ML, had focal hypertrophy of the outlet ventricular septum or 

borderline LV hypertrophy.  Other findings in this group included possible apical hypertrophic 

cardiomyopathy (1 subject), silent myocardial ischemia during exercise (1 subject), and right 

ventricular diastolic dysfunction (1 subject).   

 Findings in subjects diagnosed as HFPEF but allocated to other zones by ML included 

hypertensive heart disease with preserved functional reserve (3 subjects), and left bundle branch 

block with dyssynchrony (1 subject).  

 On review, the breathless subjects located in the transition zone had either no definite 

abnormality or mild hypertensive heart disease, while those in the HFPEF region showed 

hypertensive heart disease, inducible ischemia, or impaired right ventricular function. 

Discussion: 

 Re-analysis of the discordant cases with segmental interrogation of strain and strain rate 
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was particularly informative.  For example, some subjects who were identified as abnormal by 

ML, had been recruited as healthy controls − implying normal blood pressure.  Nonetheless they 

had septal hypertrophy; recognized as an early sign of hypertensive heart disease 1.  These 

individuals might have occult hypertension 2, or increased late systolic loading from wave 

reflections related to central arterial stiffness 3. In either case, while their LV long-axis motion 

might be affected, they would not be diagnosed using routine clinical tests but they could be 

unmasked by ML that detected impaired LV long-axis functional reserve. 
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Influence of age 

 Since subjects who were recruited as HFPEF were slightly older than the healthy 

volunteers, the unsupervised ML algorithm was repeated with age as an additional input.  This 

had a negligible impact on the final characterization; the correlation between the two 

distributions was 0.97.  Only 3 of the 22 subjects with discordant clinical and ML diagnoses 

were reclassified, and they were close to the frontier between clusters, which highlights their 

uncertain diagnosis. 
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Supplementary table S1:  Comparison among clinical centers 

The table shows the distribution of subjects between the four groups, across the four 

participating centers.  Mean ages for all groups were about 70 years, and all subjects apart 

from 2 were Caucasian.  The female/male ratio was similar between centers, except that 

subjects studied in Oslo were predominantly female.  On average, all groups were 

overweight. 

 

 Cardiff (n=76) Novara (n=31) Perugia (n=20) Oslo (n=29) 

Class H HT B HF H HT B HF H HT B HF H HT B HF 

Number of 
subjects 23 15 15 23 - 4 12 15 - 5 - 15 10 - - 19 

Age, y 69.6 ± 6.6 66.1 ± 7.4 71.4 ± 5.6 71.4 ± 5.5 

Female 
n (%) 

43 (56.6) 18 (58.1) 12 (60) 24 (82.8) 

Caucasian 
n (%) 

74 (97.4) 31(100) 20 (100) 29 (100) 

BMI (kg/m2) 29.1 ± 5.4 27.3 ± 3.7 28.4 ± 3.6 26.4 ± 4.6 

 

Categorical variables are expressed as counts and percentages and continuous variables are 

expressed as mean ± SD. H, HT, B and HF = healthy, hypertensive, breathless and HFPEF, 

respectively. 
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Supplementary figure S1:  Definition of the cut-points between diagnostic zones 

 To define the cut-points between the healthy/HFPEF regions and the intermediate 

transition zone, we gradually incremented the area of the transition zone with steps of 0.5%, 

ranging from 50% (red line in Fig.6) to 100% (X axis = extreme healthy; Y axis = extreme 

HFPEF). We calculated the ratio of “discordant” and “concordant” cases within the transition 

zone for each of the tested configurations, and chose the one that maximized the ratio 

difference. 
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Supplementary figure S2:  Comparisons between groups 

 The traces correspond to the median basal septal and lateral myocardial velocity 

profiles measured throughout the cardiac cycle during rest and submaximal exercise.  Results 

are shown for each of the groups analyzed. 
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Supplementary video:  Clusters 1 and 2 separated by the first 3 dimensions  

 3D rotating figure of the clusters plotted in the first 3 output space dimensions. 

Subjects belonging to cluster 1 (≈ healthy) are indicated by a blue square. Subjects belonging 

to cluster 2 (≈ HFPEF) are indicated by a red triangle. Discordant diagnoses cases are 

highlighted with a green circle.  
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