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OPTIMAL LIPSCHITZ MAPS ON ONE-HOLED TORI AND THE

THURSTON METRIC THEORY OF TEICHMÜLLER SPACE

YI HUANG AND ATHANASE PAPADOPOULOS

Abstract. We study Thurston’s Lipschitz and curve metrics, as well as the

arc metric on the Teichmüller space of one-hold tori equipped with complete

hyperbolic metrics with boundary holonomy of fixed length. We construct
natural Lipschitz maps between two surfaces equipped with such hyperbolic

metrics that generalize Thurston’s stretch maps and prove the following: (1)

On the Teichmüller space of the torus with one boundary component, the
Lipschitz and the curve metrics coincide and define a geodesic metric on this

space. (2) On the same space, the arc and the curve metrics coincide when
the length of the boundary component is ≤ 4 arcsinh(1), but differ when the

boundary length is large. We further apply our stretch map generalization to

construct novel Thurston geodesics on the Teichmüller spaces of closed hyper-
bolic surfaces, and use these geodesics to show that the sum-symmetrization

of the Thurston metric fails to exhibit Gromov hyperbolicity.

The final version of this paper will appear in Geometriae Dedicata.
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1. Introduction

This paper is concerned with Thurston’s theory of Lipschitz maps and minimal
stretch maps between hyperbolic surfaces and their applications to Teichmüller
spaces.

1.1. Background and context. In his 1986 preprint Minimal stretch maps be-
tween hyperbolic surfaces [22], Thurston introduced on Teichmüller space an asym-
metric metric (that is, a distance function which satisfies all the axioms of a metric
except the symmetry axiom), which we henceforth refer to as Thurston’s metric.
Thurston’s motivation was to develop a metric theory of Teichmüller space which
is completely based on the rigid geometry of hyperbolic surfaces, in contrast to
the Teichmüller metric, whose development is much more analytical in nature. To
supplant the role of quasiconformal mappings in the analytical classical approach
to Teichmüller theory, Thurston described a class of maps between hyperbolic sur-
faces which he dubbed stretch maps, based on a certain family of geometrically
defined Lipschitz maps between hyperbolic ideal triangles. Using stretch maps, he
constructed a class of geodesics for Thurston’s metric, which he called stretch lines.
In particular, Thurston showed that two arbitrary points in Teichmüller space are
joined by a geodesic realized as a concatenation of stretch lines, thereby show-
ing that Thurston’s metric is geodesic. He further showed that Thurston’s metric
is Finsler and initiated a systematic study of the structure of tangent spaces of
Teichmüller space equipped with the norm induced by this Finsler structure.
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There are strong analogies between Thurston’s results in [22] and well-known
results regarding the Teichmüller metric, and much of this owes to similarities be-
tween Thurston’s stretch maps and Teichmüller mappings. Thurston’s stretch maps
constitute special examples of optimal Lipschitz maps between hyperbolic surfaces
(S, h1) and (S, h2), stretching the leaves of a geodesic lamination and contracting
the leaves of a partially defined measured foliation which orthogonally intersects
the leaves of the lamination, whereas Teichmüller mappings yield optimal Lips-

chitz maps between collections {(S, ĥ1)} and {(S, ĥ2)} of special singular Euclidean
metrics, stretching the leaves of a measured foliation, which are geodesics for the
underlying Euclidean structure, and contracting the leaves of a transverse measured
foliation which intersects it orthogonally, which are also geodesics. The (a priori)
flexibility in the domain and codomain for the singular Euclidean metric Lipschitz
optimization problem contrasts with the uniqueness of its solution map: there is a
unique Teichmüller mapping which optimizes the Lipschitz constant between cer-

tain (unique) domain and codomain metrics among the {(S, ĥi)}. On the other
hand, for the hyperbolic metric Lipschitz optimization problem, the domain and
codomain metrics are uniquely specified, but there is flexibility in the optimal map.

Thurston’s theory allows for hyperbolic surfaces (of finite type) with cusps, but
not for surfaces with non-empty geodesic boundary. Recall that in Thurston’s
setting, there are two equivalent ways of describing Thurston’s metric:

• one approach uses the best Lipschitz constant among homeomorphisms
between marked hyperbolic surfaces as a way of defining a distance between
those surfaces. We call the asymmetric metric defined in this manner the
Lipschitz metric (see Definition 2.1);

• the other approach uses a ratio comparison between lengths of simple closed
geodesics, and we refer to the asymmetric metric defined in this manner
the curve metric (see Definition 2.2).

The equality between the Lipschitz metric and the curve metric [22, Theorem 8.5]
is a crowning achievement of Thurston’s work on compact and cusped surfaces, but
fails to be true in the setting of surfaces with boundary. Specifically, the distance
between two points in the Teichmüller space between surfaces with boundary with
respect to the Lipschitz metric is always positive, but may take negative values
for the curve metric [16] (when boundary length is variable). One method [14] of
remedying the potential negativity of the curve metric for surfaces with boundary,
is to add the set of arcs joining boundary components to the set of curves (see
Definition 2.4). Another approach is to constrain boundary lengths of the surfaces
considered [10, Theorem 7.9].

In the present paper, we introduce new maps between hyperbolic surfaces which
we call partial stretch maps, which generalize Thurston’s stretch maps to the setting
of surfaces with boundary and allow us to study the Lipschitz metric geometry of
the Teichmüller space of surfaces with boundary.

1.2. Notation. Before stating our main, results, we introduce some notation that
will be used in the rest of this paper.

In this paper S = Sg,n is an oriented topological surface of finite type and of
negative Euler characteristic, with genus g ≥ 0 and n ≥ 0 (open) borders labeled
from 1 to n. We shall consider the following variants of the Teichmüller space of S:

• T(S) is the space of homotopy classes of complete hyperbolic structures on
S, where both cuspidal and hyperbolic boundary holonomy are admitted;

• T(S,~b = b1, . . . , bn) is the subset of T(S) where for k = 1, . . . , n, the geodesic
representative of each k-th boundary has length bk ∈ [0,∞) and where
bk = 0 signifies a cusp;
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• T := T(S,~0) is the subset of T(S) consisting of homotopy classes of com-
plete finite-area hyperbolic structures on S (cusps are admitted, but not
boundary components).

We will, at times, need to consider the convex core of a complete hyperbolic
surface (S, h) of infinite area (with funnels) and we denote this convex core by
(S̄, h̄). In other words, S̄ is a compact subsurface, with boundary, of S, obtained
by cutting (S, h) along the unique closed geodesic in the homotopy class of each
boundary and removing all of the non-compact components (i.e.: the funnels), and
h̄ is obtained from h by restricting to S̄ a homotopy representative of h which is
geodesic on the boundary of S̄ ⊂ S. In this context, we adopt the notation T(S̄)

and T(S̄,~b) to refer to Teichmüller spaces of (finite-area) hyperbolic surfaces with
geodesic boundary. Note that there is a natural identification between T(S) and

T(S̄) and between T(S,~b) and T(S̄,~b) via the map that takes a complete marked
hyperbolic surface to its convex core.

1.3. Paper outline and main results. This paper is organized as follows: in
§2, we briefly review Thurston’s metric for surfaces without boundary, and the rest
of the paper paper falls into two parts. The first part (§3 and §4) is centered on
the case of the one-holed torus, whereas the second part (§5) applies to surfaces of
greater topological generality.

In §3, we construct partial stretch maps, which are natural generalizations of
Thurston’s stretch maps, for one-holed tori S1,1. Specifically, we construct piecewise
smooth homeomorphisms between complete hyperbolic metrics on S1,1 with optimal
Lipschitz constant. Using partial stretch maps, we establish the following:

Theorem 4.1. The Lipschitz metric and the curve metric on the Teichmüller space
T(S1,1, b) coincide. Furthermore, this space, equipped with one of these metrics, is
a geodesic space.

Theorem 4.7. The curve metric and the arc metric on T(S1,1, b) coincide if the
boundary length b satisfies b ≤ 4 arcsinh(1).

In contrast, we have the following:

Theorem 4.8. The arc metric on T(S1,1, b) is strictly greater than the curve metric
for all sufficiently large b.

We use our construction of partial stretch maps on one-holed tori to obtain
new classes of geodesics for the Thurston metric on Teichmüller spaces of surfaces
without boundary and on Teichmüller spaces of surfaces with boundary and with
fixed boundary lengths. In particular, we give a construction of two-way Thurston
geodesics (that is, segments which are geodesics when they are traversed in both
senses) between triples of points in the Teichmüller space T(Sg) of a closed surface
Sg of any genus ≥ 2 which produce arbitrarily “fat” metric triangles Teichmüller
space. This leads us to address the question of the Gromov-hyperbolicity of the
sum symmetrization of the Thurston metric, given by

dsum(h0, h1) := K(h0, h1) +K(h1, h0),

where K denotes Thurston’s curve metric on T(Sg).

Theorem 5.3. The metric dsum T(Sg) is not Gromov hyperbolic.

We develop many of these ideas further in an upcoming paper [9] for surfaces of
general (finite) topological type.
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2. A review of Thurston’s metric and the arc metric

2.1. Thurston’s asymmetric metric. Thurston defined in [22] two asymmetric

metrics on the Teichmüller space T = T(S,~0) of S. We recall these definitions:

Definition 2.1 (Thurston’s Lipschitz metric). Let h0 and h1 be two hyperbolic
structures on S and let ϕ : (S, h0) → (S, h1) be a homeomorphism homotopic to
the identity map on S. The Lipschitz constant Lip(ϕ) of ϕ is the quantity

Lip(ϕ) := sup
x 6=y∈S

dh1

(
ϕ(x), ϕ(y)

)
dh0

(
x, y
) .

We denote by L(h0, h1) the infimum of the Lipschitz constant over all homeomor-
phisms ϕ : (S, h0)→ (S, h1) which are homotopic to the identity:

L(h0, h1) := inf
ϕ∼idS

log Lip(ϕ).(1)

The quantity L(h0, h1) depends only on the homotopy classes of h0 and h1, and
therefore descends to a function on T × T. Thurston showed in [22, §2] that L
satisfies all (distance) metric axioms except for symmetry. In fact, he showed
the symmetry axiom fails: there exist hyperbolic structures h0 and h1 on S such
that L(h0, h1) 6= L(h1, h0). For simplicity, we refer to such asymmetric metrics as
metrics and we refer to L(·, ·) as the Lipschitz metric.

We denote by S the set of homotopy classes of essential simple closed curves
on S, i.e. curves which are neither null-homotopic nor homotopic to a puncture.
Note that with our definition, for surfaces with boundary, an essential curve may
be homotopic to a boundary component. Likewise, on a hyperbolic surface with
funnels, an essential curve may be homotopic to the core curve of a funnel.

Definition 2.2 (Thurston’s curve metric). Consider the quantity

K(h0, h1) := sup
γ∈S

log
lh1(γ)

lh0
(γ)

.(2)

Thurston showed [22, §2] that K also defines an asymmetric metric on T. We refer
to K(·, ·) as the curve metric.

For any hyperbolic structure h on S, the length function lh : S → R defined
on simple closed curves extends continuously to a function on the space ML of
compactly supported measured laminations on S. (An early definition of this ex-
tension is contained in [11, p. 24].) We denote this extension with the same
notation lh : ML→ R. This function is positively homogeneous, that is, it satisfies
lh(rµ) = rlh(µ) for any µ in ML and for any r > 0. By density of R+ ·S in ML, the
supremum in (2) can be taken over the elements of the space PML of projective
compactly supported laminations on S:

K(h0, h1) := sup
[µ]∈PML

log
lh1

([µ])

lh0
([µ])

(3)

where we denote by [µ] the projective equivalence class of an element µ in ML, cf.
[22, p. 4]. The main advantage of (3) over (2) is that since PML is compact (this
is a result of Thurston, cf. [23] where the result is expressed in the equivalent form
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that uses measured foliations instead of measured laminations), the supremum in
(3) is attained.

In the same paper, Thurston proved that K ≡ L [22, Theorem 8.5] and that this
gives a geodesic metric on the Teichmüller space T of complete finite-area metrics
on S.

2.2. k-Lipschitz maps and Thurston geodesics. Thurston constructed a class
of distinguished geodesics for the metric L (or, equivalently, for the metric K). His
construction is based on certain Lipschitz maps between ideal hyperbolic triangles
that we now recall.

Consider the most symmetric foliation by horocycles of the ideal triangle. This
is a foliation of the three cusps of the triangle by horocyclic segments perpendicu-
larly interpolating between boundary components, with a central unfoliated region
bounded by three horocyclic segments which meet tangentially at their ends (see
Figure 1). We refer to the three boundary points where two distinct horocycle
leaves meet as anchor points.

Definition 2.3 (k-expansion map). For any given k ≥ 1, the k-expansion map be-
tween two ideal triangles is defined to be the identity on the central unfoliated region
and to send each horocycle at distance d ≥ 0 from this central region onto the horo-
cycle centered at the same point at infinity and at distance kd from this unfoliated
region, each horocycle being mapped linearly with respect to its parametrization
by arclength.

Figure 1. The k-expansion map of an ideal hyperbolic triangle.

Consider a geodesic lamination λ which is maximal in the sense that it is not
contained in any strictly larger geodesic lamination. In such a setting, maximality
is equivalent to the fact that S \ λ is a union of ideal triangles. Thurston utilized
k-expansion maps to construct rays (that is, one-parameter families parametrized
by [0,∞)) of complete finite-area hyperbolic metrics on S

ht := stretch(h0, λ, t), for t ≥ 0,

where an initial hyperbolic metric h0 is stretched along λ by a factor of et, and
replaces the metric on the complementary triangles with the pullback (hyperbolic)
metric with respect to et-expansion maps on ideal triangles. Consequentially, the
identity map

idS : (S, h0)→ (S, ht)

is an et-Lipschitz map for every t ≥ 0. We refer to these maps as stretch maps.

Thurston’s stretch map construction is clearly well-defined when λ consists of
finitely many leaves, but careful analysis is required when λ has (uncountably)
infinitely many leaves — Thurston did this in [22, §4]. Stretch maps varied over t
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yield geodesic rays (S, ht) for the Thurston metric. We refer to geodesic segments
of (S, ht) as stretch paths; they are central to the results developed in [22].

2.3. Thurston metric for bordered surfaces. Neither the Lipschitz metric nor
the curve metric, as respectively expressed by (1) and (2), form (asymmetric) met-
rics on T(S) because they assume nonpositive values on particular ordered pairs
of metrics, see [8, Theorem 1.8], [19] and [16, Theorem 2.4]; in the last reference,
it is shown that they assume negative values. However, (1) and (2) do give posi-

tive (asymmetric) metrics when restricted to Teichmüller spaces T(S,~b) of marked
hyperbolic surfaces with fixed boundary holonomy [10, Theorem 7.9].

In [8], Guéritaud and Kassel study an alternative form L′ of Thurston’s Lips-
chitz metric whereby the infimum is taken over all Lipschitz maps homotopic to the
identity, rather than just homeomorphisms. In the setting of working with surfaces
without boundary, this alternative form of the Lipschitz metric is, in fact, equiva-
lent. However, to the best of our knowledge, this is still open for bordered surfaces
(see, for example, [1, Conjecture 1.6 and §2.2]). For this weakened Lipschitz metric,
however, Guéritaud and Kassel [8, Corollary 1.12] showed that L′ and K are equal
whenever either is positive. Combined with out previous remarks, we see that the

metrics K and L′ agree on T(S,~b) and naturally generalize the Thurston metric. As
a small technicality, Guéritaud and Kassel did not investigate the positivity of the

curve ratio metric (or Lipschitz metric) on T(S,~b), and instead achieve positivity
by adjusting the Thurston metric with critical exponent renormalization factors [8,
Equation (1.6)]. The benefit of their approach is that they obtained a metric for
a very general class of representations (or rather, characters) which in turn encode
very different geometric objects. Guéritaud has privately communicated to us a
succinct alternative argument (to that used in [10, Theorem 7.9]) for how to see

the positivity of the näıve generalization of Thurston’s metric on T(S,~b) via his
work with Kassel and Danciger [5].

In order to prove that L′ ≡ K, Guéritaud and Kassel established an equivariant
form of the Kirszbraun–Valentine theorem as a machine for producing Lipschitz
maps. It is unknown whether the maps so-produced are homeomorphic (or even
injective), and it is tempting, therefore, to wonder if one might be able to reuse
Thurston’s stretch map construction to build optimal Lipschitz homeomorphisms
and hence strengthen the result to L ≡ K. Unfortunately, stretch maps with
respect to maximal geodesic laminations (i.e. those whose complementary regions
are ideal triangles) generally distort boundary holonomy and hence do not lie in

T(S,~b). There are, however, special cases where one is able to recast Thurston’s
construction in a clever manner (e.g. Lenzhen, Rafi and Tao’s paper [12, §6]).

2.4. The arc metric. In this subsection, S is a surface with geodesic boundary
equipped with a finite-area hyperbolic metric h. An arc in S is the homeomorphic
image of a closed interval of R in S such that the image of the interior (respectively
the boundary) of this interval is in the interior (respectively the boundary) of S. An
arc in S is said to be essential if there is no disc in this surface whose image is the
union of this arc with a segment contained in the boundary ∂S. An orthogeodesic
in S is a geodesic arc which makes a right angle at each extremity, that is, at each
intersection point with ∂S.

Each boundary-relative homotopy class of arcs in S contains a unique ortho-
geodesic; this is an analogue for the case of a surface with boundary of the result
stating that each homotopy class of essential simple closed curve in S contains
a unique closed geodesic. (The former claim may be deduced from the latter by
doubling the surface.)

We introduce the following notation:
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• A is the set of boundary-relative homotopy classes of arcs in S;
• B is the set of homotopy classes of simple closed curves in S that are

homotopic to a boundary component.

The arc metric on T(S), first defined in [14], based on lengths of simple ortho-
geodesics and boundary components, is an asymmetric metric on T(S) which is an
analogue of the Thurston metric defined in [22] on the Teichmüller space of surfaces
without boundary. We recall its definition:

Definition 2.4 (The arc metric). Given two hyperbolic metrics h0 and h1 on S,
consider the quantity

A(h0, h1) := sup
α∈A∪B

log
lh1(α)

lh0
(α)

,(4)

where for each α in A, lh(α) denotes the length of the unique orthogeodesic repre-
sentative of α in its boundary-relative homotopy class.

From the definition, we see that the quantity A(h0, h1) does not depend on the
homotopy classes of the metrics h0 and h1, therefore the same formula induces a
function A : T(S) × T(S) → R. Like the Thurston metric for surfaces without
boundary, A is an asymmetric metric on the Teichmüller space of S (see [14]), and
we refer to it as the arc metric on this space.

It follows from the definitions that the set B is contained in the set S of homotopy
classes of simple closed curves in S. Later in this paper, we shall use equation (4)
to define a metric on the Teichmüller space of a one-holed torus on which the
hyperbolic structures have fixed boundary length. In this case, the supremum on
the right hand side in (4) may be taken on A instead of A ∪B.

The definition of the arc metric makes it formally an analogue to the Thurston
metric for surface with boundary. But there are deeper relations between the arc
metric and the Thurston metric. For example, the arc metric is equal to the pull-
back of the Thurston metric with respect to the doubling embedding T(S) ↪→ T(Sd),
where Sd is the surface without boundary obtained by doubling S along its bound-
ary [14, Corollary 2.9]. Furthermore, there is a precise sense in which the Thurston
metric on the Teichmüller space of a surface with cusps is a limit of arc metrics
on Teichmüller spaces of surfaces with boundary, as the lengths of the boundary
components tend to zero, see [15].

The following theorem gives an alternative (and in some sense, the original [14,
Definition 2.1]) definition of the arc metric:

Theorem 2.5. For any two elements h0 and h1 in the Teichmüller space T(S), we
have

A(h0, h1) = sup
α∈A∪S

log
lh1(α)

lh0
(α)

.

This theorem is proved in [14, Proposition 2.13]. The equality A ≥ K follows
immediately from the definition. The reverse inequality is based on the fact that
any sequence of arcs in S which are Dehn-twisted a high number of times about a
simple closed curve γ roughly detects the length ratio for γ.

The study of geodesics for the arc metric has hitherto been based on explicit
constructions of Lipschitz maps between right angled hexagons (see [17] and its
generalization in [18]). Recently, other constructions were obtained by Alessandrini
and Disarlo, see [1].
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3. Partial stretch maps on ideal Saccheri quadrilaterals and
one-holed tori

3.1. Saccheri quadrilaterals. Classically, a Saccheri quadrilateral in the hyper-
bolic plane is a geodesic convex quadrilateral with two opposite sides of equal length
perpendicular to a common third side. Saccheri quadrilateral admit two real di-
mensions worth of moduli, and hence play a hyperbolic geometric role somewhat
akin to that of rectangles in Euclidean geometry. See the quadrilateral ABCD in
the left-hand side of Figure 2, where the two equal sides AD and BC are perpen-
dicular to AB. The angles at C and D are then necessarily equal and acute. On the
right-hand side of this figure, we have represented an ideal Saccheri quadrilateral,
by which we mean that the vertices C and D are ideal points (that is, points at
infinity of the hyperbolic plane) and (hence) the sides AD and BC have infinite
length. In this case, the angles at C and D are 0.

The isometry type of the ideal Saccheri quadrilateral ABCD is determined by
the length of AB. Note that an ideal triangle may be regarded as a limit of a family
of such ideal Saccheri quadrilaterals in which the length of the side AB tends to 0.

Figure 2. A Saccheri quadrilateral (left) and an ideal Saccheri quadri-
lateral (right)

We shall also work with extended ideal Saccheri quadrilaterals. These are the
infinite-area quadrilaterals obtained by extending an ideal Saccheri quadrilateral
ABCD of Figure 2 (regarded as being embedded in the hyperbolic plane H2) to
the complete infinite-area convex domain bordered by CD and the two bi-infinite
geodesics respectively containing AD and BC.

3.2. Partial horocyclic foliations. An extended ideal Saccheri quadrilateral has
two ideal vertices. We foliate the neighborhood of each such vertex with horocycles
centered at that vertex. We extend this foliation in a reflection-symmetrical manner
until the two foliations meet tangentially at a point of the bi-infinite edge (see Figure
3). We refer to this intersection point as an anchor point. This reflection-symmetric
partial foliation of the quadrilateral is uniquely determined, and in the special case
where the length of AB is 0, it corresponds to “two out of three sectors” of the
horocyclic foliation of the ideal triangle employed by Thurston (Figure 1).

Any ideal Saccheri quadrilateral is equipped with a horocyclic foliation induced
by the one of the extended ideal Saccheri quadrilateral which contain it, see Figure 3.
Cases (a), (b) and (c) in this figure illustrate each of the three (mutually exclusive)
situations that may arise with regards to the partial horocyclic foliation:

• (a) occurs when the length of AB is smaller than 2 arcsinh(1);
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• (b) occurs when this length is equal to 2 arcsinh(1), and
• (c) occurs when this length is greater than 2 arcsinh(1).

Figure 3. Partial horocyclic foliations of various ideal Saccheri quadri-
laterals and their extensions (dotted lines).

3.3. k-expansion maps. For any k ≥ 1, we define the k-expansion maps of any
extended ideal Saccheri quadrilateral in much the same way as Thurston did for
ideal triangles (see Definition 2.3). Specifically, for a given k ≥ 1, this map is equal
to the identity map on the unfoliated region and sends any leaf of the horocyclic
foliation situated at distance d ≥ 0 from the unfoliated region to the one at distance
kd from that region, mapping linearly with respect to arclength on each horocyclic
leaf (see Figure 4).

Figure 4. The k-expansion map of an ideal Saccheri quadrilateral

Proposition 3.1. Consider an ideal Saccheri quadrilateral and the extended quadri-
lateral which contains it. We have the following:

(1) The k-expansion map of the extended ideal Saccheri quadrilateral has Lips-
chitz constant precisely equal to k.

(2) In the cases (a) and (b) of Figure 3, this k-expansion map of the extended
ideal Saccheri quadrilateral induces a homeomorphism of the original ideal Saccheri
quadrilateral. This induced homeomorphism has Lipschitz constant k.

Proof. The same techniques that are used to show that ideal triangle stretch maps
are k-Lipschitz apply here as well. They are based on the existence of orthogonal
preserved partial foliations, apply in this case as well. Proof details are omitted by
Thurston in [22, Proposition 2.2] but are easily recovered from (for example) the
computation made in [17, §2]. We may, in essence, ignore the unfoliated region.
On the horocyclically foliated regions, the k-expansion map expands the orthogonal
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geodesic foliation by k and contracts the horocyclic foliation. The orthogonality of
the two invariant foliations ensures k-Lipschitz-ness.

�

3.4. Partial stretch maps on one-holed tori. In the rest of this section, we set
S = S1,1 in notation such as T(S, b) to denote the Teichmüller space of one-holed
hyperbolic tori with prescribed boundary holonomy.

We now construct k-Lipschitz maps between hyperbolic one-holed tori using k-
expansion maps between ideal Saccheri quadrilaterals.

In Lemma 3.2, we shall make use of Thurston’s theory of train tracks and train
track approximation of measured geodesic laminations as it is presented in §8.9
of his Princeton lecture notes [21]. A measured geodesic lamination is said to be
rational if its support is the union of simple closed geodesics. Otherwise it is said to
be irrational. In the train track coordinates charts, this distinction corresponds to
the usual distinction between rational and irrational coordinates of the lamination,
up to a multiplicative constant.

A compactly supported geodesic lamination on a hyperbolic surface is said to
be chain recurrent if it is the limit of simple closed geodesics in the Hausdorff
topology of the set of compact subsets of the surface. The support of a chain
recurrent geodesic lamination, as a Hausdorff limit of compact subsets, is necessarily
compact. We refer the reader to [22] p. 25 for the basic properties of chain recurrent
laminations.

Lemma 3.2 (Chain recurrence characterization). A one-holed torus admits in the
interior of its convex core three types of geodesic laminations which are chain re-
current; see Figure 5:

(1) a simple closed geodesic γ;
(2) the union of a simple closed geodesic γ and a bi-infinite geodesic ` which

spirals to γ from one side of γ and to γ−1 from the other side;
(3) a geodesic lamination µ with uncountably many leaves corresponding to the

support of some irrational measured geodesic lamination [µ].

Proof. We first note that all three of these types of geodesic laminations are in
fact chain recurrent: case (1) is definitional, case (2) follows from the fact that the
spiraling bi-infinite leaf can be written as the Hausdorff limit of a sequence ob-
tained from performing arbitrarily many Dehn twists to any simple closed geodesic
transverse to γ, and case (3) follows from the well-known theorem asserting that
homotopy classes of weighted simple closed geodesics are dense in the space of mea-
sured geodesic laminations for the measure topology of this space. In particular,
[µ] is the limit of some sequence of weighted curves with support {γn}. Quoting
Thurston’s proof of [21, Proposition 8.10.3], “[for] any point x in the support of a
measure [µ] and any neighborhood U of x, the support of a measure close enough
to [µ] must intersect U”, we see that µ must be a subset of the Hausdorff limit
ν of (a subsequence of) the γn. The collar lemma tells us that ν is supported on
the interior of the convex core of S. However, µ is a maximal lamination on the
interior of the aforementioned convex core, and hence µ is precisely equal to ν and
is therefore chain recurrent.

Conversely, Let λ be any chain recurrent geodesic lamination. We know that
every compactly supported lamination contains a sublamination which supports a
transverse measure (Proposition 8.10.6 of [21]). Any such sublamination of λ falls
either into cases (1) or (3), which respectively correspond to the support of rational
and irrational measured laminations on S. Taking a train track approximating this
lamination, one can see that the complement of an irrational measured lamination
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on a one-holed torus is an annulus homotopy equivalent to the boundary of the
convex core of S. This implies that case (3) is already maximal among chain
recurrent laminations. On the other hand, simple closed geodesics can be extended
while preserving the property of being chain recurrent in precisely two ways, both
of which fall into case (2). This covers all possibilities for λ. �

Figure 5. The three types of chain recurrent laminations classified
in Lemma 3.2, the rightmost figure depicts a train-track carrying an
irrational lamination.

Theorem 3.3 (Partial stretch maps). For any complete hyperbolic metric h0 on S
representing an element of T(S, b) and for any chain recurrent lamination λ on S,
there is a ray

ht := pstretch(h0, λ, t), for t ≥ 0,(5)

of complete hyperbolic metrics in T(S, b) such that

• for 0 ≤ t, the identity map idS : (S, h0)→ (S, ht) is an et-Lipschitz home-
omorphism which is an isometry outside of a compact set contained in the
convex core of S;
• the geodesic representative of λ for h0 is also geodesic for ht, and the iden-

tity map preserves this set and expands arclength along λ by a factor of
et.

In addition, the path of equivalence classes in T(S, b) of metrics (S, ht), for t ≥ 0, is
a geodesic ray for both the Lipschitz metric L and the curve metric K, with L ≡ K
along (S, ht). We refer to (equivalence classes of) subsegments of (S, ht) as partial
stretch paths.

Remark 3.4. Note that in this paper we do not define partial stretch maps for
arbitrary maximal (compactly supported) laminations. In particular, we require
the stretched lamination to be invariant under the hyperelliptic involution ι on S.
Fortunately, this property is satisfied by all chain recurrent laminations as they are
Hausdorff limits of simple closed geodesics, and the latter are all invariant under ι.

In the proof below, we shall talk about crowned hyperbolic surfaces. Such a sur-
face is, by definition, homeomorphic to a compact annulus with a certain number
of deleted points on one of its boundary components, equipped with a hyperbolic
structure so that the boundary component with no points deleted is a closed geo-
desic, and the other boundary component consists of a union of bi-infinite geodesics
converging from each side to a deleted point. See Figure 6.
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Proof of Theorem 3.3. Lemma 3.2 lets us deal with this construction on a case-by-
case basis.

When λ is irrational. This corresponds to case (3) of Lemma 3.2. The irrational
lamination λ is fixed under the hyperelliptic involution ι on S since it is the limit of
simple closed geodesics — which are fixed under ι (Remark 3.4). There are precisely
two (simple) orthogeodesic rays σ1, σ2 on the convex core of S which launch from
the boundary of the convex core of S and spiral toward λ, and the set σ1 ∪ σ2 is
therefore also fixed by ι. Since ι acts non-trivially on the boundary of the convex
core of S, the end-points of σ1 and σ2 must be permuted under ι and hence ι
permutes σ1 and σ2. Cutting the convex core of S along λ, σ1 and σ2 produces
two ideal Saccheri quadrilaterals Q1, Q2. In particular, due to the ι-invariance
of σ1 ∪ σ2, the involution ι defines an isometry between these two ideal Saccheri
quadrilaterals. This in turn means that the extended ideal Saccheri quadrilaterals

Q̂i, obtained by cutting S − λ along the bi-infinite geodesics extending σ1 and σ2,
are isometric via ι. We consider the partial horocyclic foliation on the crowned
hyperbolic surface S − λ gotten by gluing the horocyclic partial foliations of the
two completed Saccheri ideal quadrilaterals (see Figure 3). The k-expansion map
of these quadrilaterals that use these partial foliations as in Figure 4 can be glued
together to give a k-expansion map on S − λ with Lipschitz constant k.

Figure 6. The partial horocylic foliation on S − λ, viewed from two
different perspectives.

We appeal now to Thurston’s construction in [22, Proposition 4.1]. To begin
with, given any hyperbolic structure in the neighborhood of a geodesic lamination
µ on a general hyperbolic surface, we obtain a measured foliation transverse to µ
as well as additional data in a horocyclic neighborhood of each cusp of the surface.
Thurston presents this data in the form of a function that he dubbed a sharpness
function. His [22, Proposition 4.1] then reverses this procedure to recover a hy-
perbolic structure. We now make use of this reverse procedure, but first note that
there are no cusps on S, and hence we need not touch upon the notion of sharpness
functions.

We now produce the family ht of complete hyperbolic metrics on S. First, we
observe that we can employ [22, Proposition 4.1] essentially without alteration by
doubling the convex core of S, noting that any sufficiently small neighborhood
Nε(λ) of λ is also doubled as λ is compact and supported on the interior of the
convex core. We use the previously constructed k-expansion map on S − λ, with
k = et, to redefine the metric outside of λ. Doing this for each et produces a
family ht of hyperbolic metrics on S. Since the et-expansion map is equal to the
identity outside of a compact set, the metrics ht are all isometric outside of a
compact set. The developing map then tells us that the boundary holonomy is
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independent of t. Note however that if the foliated region on which the partial
stretch of the infinite-area surface is made (represented in Figure 6) trespasses
beyond the geodesic representative of the boundary of the convex core of that
surface, then the restriction to the (initial) convex core of the partial stretch path
of metrics produces a path of hyperbolic metrics whose boundary components are
no longer geodesic. (In particular, the part of the boundary of the initial convex
core which cuts across the foliated region is metrically deformed so that it is no
longer geodesic.) Thus, this construction does not give a path in the Teichmüller
space of the compact surface with boundary and with constant boundary length.

When λ is a simple closed geodesic. This corresponds to case (1) of Lemma 3.2.
In this scenario, we extend λ to a chain recurrent lamination comprised of λ and
a bi-infinite simple geodesic spiraling to it from one side and λ−1 from the other.
Thus, we have reduced this case to:

Remaining case. This corresponds to case (2) of Lemma 3.2, where λ is the
union γ ∪ ` of a simple closed geodesic γ and a bi-infinite geodesic ` spiraling to γ
on one side of γ and to γ−1 on the other side, for some chosen orientation on γ.
Equivalently, considering that the spiraling of an infinite ray toward γ induces an
orientation on this closed curve, we are assuming that the two disjoint rays spiraling
toward γ from each side induce on it different orientations. We first observe that
both γ and ` are preserved under the hyperelliptic involution ι on S. And just as
with the case when λ is irrational, the crowned hyperbolic surface C := S − (γ ∪ `)
is obtained by gluing together two isometric extended ideal Saccheri quadrilaterals
(see again Figure 6) whose partial horocyclic foliations perfectly align, since they
both meet λ perpendicularly. Again, the upshot is that we obtain a k-expansion
map on C which expands along its boundary components by a factor of k. As
with the last step of the proof for the irrational λ case, we define ht on C by
pullback with respect to the et-expansion map, and extend ht over λ = γ ∪ ` either
by invoking [22, Proposition 4.1] or more näıvely by observing that the pullback
metric on C glues continuously on the tangent spaces over γ and `. Note that this
näıve argument fails to be rigorous if λ is irrational as λ contains more than just
the boundary geodesics on S − λ.1

Geodesic ray (S, ht). To complete the proof, we show that the family of equiv-
alence classes of metrics (S, ht) for t ≥ 0 is a geodesic ray in T(S, b) for both L
and K. By construction, the stretch map idS : (S, h0) → (S, ht), for t ≥ 0, is an
et-Lipschitz map which stretches λ by a factor of et. This means that the mea-
sured lamination support in λ realizes the maximum curve ratio between (S, h0)
and (S, ht) for all time and K(h0, ht) = t. Moreover, observe that the composition
of the es-expansion map and the et-expansion map on the ideal Saccheri quadri-
lateral is precisely the es+t-expansion map. This tells us that the stretch map
idS : (S, h0) → (S, hs) composed with the stretch map idS : (S, hs) → (S, hs+t) is
precisely equal to the stretch map idS : (S, h0)→ (S, hs+t). Therefore, we see that
the equivalence class of

K(hs, hs+t) = t for all s, t ≥ 0,(6)

and hence the equivalence classes of (S, ht), for t ≥ 0, form a geodesic ray for the
curve metric K. Finally, the Lipschitz metric is at least the curve metric. Thus,
we have

t ≥ L(hs, hs+t) ≥ K(hs, hs+t) = t,(7)

1There are, in fact, uncountably many leaves in λ, and only finitely many lie on the boundary.
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where the first inequality follows from the stretch map idS : (S, hs) → (S, hs+t)
being et-Lipschitz. This in turn tells us that the equivalence class of (S, ht) is a
geodesic ray for L. �

The partial measured foliations on the two ideal Saccheri quadrilaterals, when
they are glued together, define a measured foliation class F on the torus with one
boundary component. When the Teichmüller space of this surface with boundary
is equipped with its Thurston boundary, we have the following:

Theorem 3.5. The geodesic ray (S, ht) defined in Theorem 3.3 converges, as t→
∞, to the projective class [F ] of F , considered as an element of Thurston’s boundary
of the Teichmüller space of the torus with one boundary component.

Sketch of proof. The same argument used in the proof of [13, Theorem 3.7] which
established the analogous property for a surface without boundary applies here. It is
ultimately hinged on a double inequality [13, Proposition 3.1] comparing hyperbolic
length and intersection number for all curves in (S, ht). �

4. The Lipschitz, arc and curve metrics on the Teichmüller space of
the one-holed torus

4.1. The Lipschitz metric versus the curve metric on T(S = S1,1, b). In this
subsection we establish a generalization of Thurston’s [22, Corollary 8.5].

Theorem 4.1. The Lipschitz metric and the curve metric on the Teichmüller space
T(S1,1, b), defined respectively by (1) and (2), coincide. Furthermore, this space,
equipped with such a metric, is a geodesic space.

As previously discussed in section 2.3, [8, Corollary 1.12] show that L′ ≡ K
for a version L′ of the Lipschitz metric that infimizes Lipschitz constants over a
greater class of maps than homeomorphisms. This, combined with Thurston’s result
that L ≡ K for finite-area complete hyperbolic surfaces (without borders) raises
the hypothesis that perhaps L ≡ K still holds true over the Teichmüller space of
bordered hyperbolic surfaces. We resolve this in the affirmative for T(S1,1, b) by
adapting Thurston’s proof in the case of surfaces without boundary, which relies
fundamentally upon [22, Theorem 8.2] and [22, Theorem 8.4]. We start with the
following definition, which is a correction of the definition taken from [22, paragraph
before Theorem 8.2]:

Definition 4.2 (Ratio-maximizing laminations). Given a pair of marked hyper-
bolic metrics h0, h1 in T(S, b), we say that a (non-necessarily measured) geodesic
lamination λ is ratio-maximizing if there exists a Lipschitz homeomorphism with
optimal (i.e. minimal) Lipschitz constant k = eK(h0,h1), mapping from a neigh-
borhood of λ in (S, h0) to a neighborhood of λ in (S, h1), which is in the correct
homotopy class. Moreover, we require that such an optimal Lipschitz homeomor-
phism necessarily takes the (geodesic realisation of) leaves of λ in (S, h0) to the
corresponding (geodesic realisation of) leaves of λ in (S, h1), locally stretching tan-
gent vectors along each leaf of λ by a factor of k.

We already know from [22, Proposition 4.1 or Theorem 8.1] that such a neighbor-
hood map exists if λ is contained in the support of a projective measured lamination
maximizing K.2 Thurston’s insightful observation is that his notion of “(length-
)ratio-maximizing” laminations can be extended to chain recurrent (non-necessarily
measured) geodesic laminations containing isolated bi-infinite geodesic leaves pro-
vided that one requires also that a neighborhood of the lamination be mapped

2This measured lamination is unique when S = S1,1.
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across so as to preserve the optimal Lipschitz constant. Fortunately, the proofs for
[22, Theorems 8.2 and 8.4] hold in our context, and thus we conclude:

Theorem 4.3 ([22, Theorems 8.2 and 8.4]). There is a unique chain recurrent geo-
desic lamination which is ratio-maximizing and contains all other ratio-maximizing
chain recurrent geodesic laminations for the pair h0, h1. We refer to it as the max-
imal ratio-maximizing lamination and denote it by µ(h0, h1). These laminations

have the following property: if {h(i)
0 } and {h(i)

1 } are sequences of complete hyper-
bolic structures in T(S, b) which respectively converge to h0 and h1, then µ(h0, h1)

contains any lamination in the limit set of µ(h
(i)
0 , h

(i)
1 ) with respect to the Hausdorff

topology on the set of geodesic laminations on (S, h).

Remark 4.4. Although the above result is stated for sequences of metrics {h(i)
0 }

and {h(i)
1 }, the result obviously also applies to continuous paths

ĥ0(t), ĥ1(t) : [0, 1]→ T(S, b)

of metrics which evaluate to ĥ0(1) = h0 and ĥ1(1) = h1 at time t = 1.

Lemma 4.5. Given h0, h1 ∈ T(S, b), let λ be any maximal geodesic lamination that
contains the maximal ratio-maximizing lamination µ(h0, h1) as a sublamination.
Consider the partial stretch path

ĥt := pstretch(h0, µ(h0, h1), tK(h0, h1)).

Then either µ(ĥt, h1) is constant, or there is a first time t1 ∈ (0, 1) such that

µ(ĥt1 , h1) differs from µ(h0, h1).

Proof. Let us assume, for a proof by contradiction, that µ(ĥt, h1) is not constant
and that there is no such first time. Then, let t1 be the infimum of all times t ∈ [0, 1)

such that µ(ĥt, h1) differs from µ(h0, h1). Either t1 = 0, or there is a small interval

(0, t1) such that for all s ∈ (0, t1), µ(ĥs, h1) = µ(h0, h1). Theorem 4.3 ensures that

in both cases, µ(h0, h1) is a sublamination of µ(ĥt1 , h1). By assumption, there is a

sequence of times s decreasing to t1 for which µ(ĥs, h1) differs from µ(h0, h1). For

any such s sufficiently close to t1, Theorem 4.3 tells us that µ(ĥs, h1) lies in a small

neighborhood N of µ(ĥt1 , h1).

The construction of the partial stretch map asserts that there is an e(1−s)K(h0,h1)-

Lipschitz map from N on ĥs to N on h1 which realises the length ratio between

ĥs and h1 of some measured lamination supported on µ(h0, h1). In particular,
this means that all other measured laminations supported on N have lower length

ratio (between ĥs and h1) than e(1−s)K(h0,h1). Now, since µ(ĥs, h1) lies in N and
contains the support of some measured lamination, the optimal Lipschitz constant

eK(ĥs,h1) associated to µ(ĥs, h1) being a ratio-maximizing lamination means that

eK(ĥs,h1) ≤ e(1−s)K(h0,h1). On the other hand, since N contains only a subset
of the measured laminations on S, e(1−s)K(h0,h1) must be less than or equal to

eK(ĥs,h1). Therefore, eK(ĥs,h1) = e(1−s)K(h0,h1). We therefore see that mapping

µ(ĥs, h1) stretches it by e(1−s)K(h0,h1) and hence µ(ĥs, h1) is a sublamination of

µ(h0, h1). Conversely, the fact that eK(ĥs,h1) = e(1−s)K(h0,h1) means that µ(h0, h1)

is a ratio-maximizing lamination on ĥs, and is hence definitionally a sublamination

of µ(ĥs, h1). Therefore, µ(h0, h1) = µ(ĥs, h1) for all s > t1 sufficiently close to t1,
which is a contradiction. �

We are now well-equipped to prove that the Lipschitz metric and the curve metric
agree (Theorem 4.1).
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Proof of Theorem 4.1. We first note that µ(h0, h1) cannot contain the boundary of
the convex core as every geodesic arc on µ(h0, h1) is definitionally stretched by a
factor of k = eK(h0,h1), whereas the total length of the boundary remains fixed.
Indeed, since the boundary length is always fixed, every ratio-maximizing (chain
recurrent) lamination we encounter during the course of this proof must lie within
the interior of the convex core. Since µ(h0, h1) is chain recurrent and supported
on the interior of the convex core, it lies in one of the three types of laminations
described in Lemma 3.2.

Type (2) and (3) laminations: when µ(h0, h1) is a maximal chain recurrent
lamination (i.e. case (2) and (3) in Lemma 3.2), there is a unique partial stretch
path

ĥt := pstretch(h0, µ(h0, h1), tK(h0, h1))

which stretches along µ(h0, h1). We claim that this geodesic ray must reach h1 at
time 1. Assume not, then by Lemma 4.5, the maximal ratio-maximizing lamina-

tion µ(ĥt, h1) must differ from µ(h1, h0) for some first time t1 ∈ (0, 1). However,

Theorem 4.3 then ensures that µ(h0, h1) is a proper subset of µ(ĥt1 , h1), which is
impossible due to the maximality of µ(h0, h1) among all chain recurrent laminations
(supported on the interior of the convex core).

Type (1) laminations: the remaining case is when µ(h0, h1) is a simple closed
geodesic γ (i.e. type (1) in Lemma 3.2), in which event there are precisely two
maximal chain recurrent laminations µ± containing µ(h0, h1) which are supported
on the convex core interior. We partially stretch along µ+ without loss of generality,
and note that we cannot reach h1 or else µ+ would be a maximal ratio-maximizing
lamination and hence we would have γ = µ(h0, h1) = µ+. Thus, by Lemma 4.5 and
Theorem 4.3, there is a first time t1 ∈ (0, 1) where the maximal ratio-maximizing
lamination between pstretch(h0, µ+, t1K(h0, h1)) and h1 becomes a proper chain
recurrent superlamination of γ. The only possible candidates are either µ+ or µ−,
which are both maximal among chain recurrent laminations. This reduces our proof
to the previous case, and we see that we will eventually reach h1 partially stretching
with respect to this new lamination. In particular, since leaves of all measured
lamination supported inside of µ(h0, h1) are uniformly and maximally stretched
through the entire concatenated stretch path, this process must end precisely at
time t = 1. As a minor aside, note that the second concatenated partial stretch path
cannot be stretched with respect to µ+ as then we would have γ = µ(h0, h1) = µ+,
and hence must be with respect to µ−.

We have constructed geodesics for both L and K which join arbitrary points
(S, h0) and (S, h1) in T(S, b). Moreover, by construction, the Lipschitz constant of
the partial stretch map at t = 1 is eK(h0,h1). Therefore, the two metrics must be
equal, as desired. �

The following corollary is immediate from the proof of Theorem 4.1.

Corollary 4.6. Any two points in T(S, b) are joined by a Thurston geodesic which
is the concatenation of at most two partial stretch paths.

4.2. The curve metric versus the arc metric on T(S, b).

Theorem 4.7. If b ≤ 4 arcsinh(1), then the curve metric K and the arc metric A
on T(S, b) are equal.

Proof. When b ≤ 4 arcsinh(1), the partial horocyclic foliation (as depicted by the
blue lines in Figures 3, 4, and 6) is completely contained in the convex core of S
and hence any partial stretch map simply evaluates to being the identity map on
the convex core boundary. In particular, this says that the Lipschitz constant for
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the optimal Lipschitz map idS : (S, h0)→ (S, h1) constructed in §3.4 is the same as
the constant for the optimal Lipschitz map idS̄ : (S̄, h̄0) → (S̄, h̄1) which extends
it, and hence we have the following chain of inequalities:

L(h0, h1) = K(h0, h1) ≤ A(h̄0, h̄1) ≤ L(h̄0, h̄1) = L(h0, h1),

where the first inequality is explained in Remark 2.5 and the second inequality is a
general consequence of Lipschitz metrics being at least as great as length-ratio-type
metrics. �

In contrast:

Theorem 4.8. The arc metric is strictly greater than the curve (or the arc) metric
on T(S, b) for all sufficiently large b. That is to say, there exist hyperbolic structures
h0, h1 ∈ T(S, b) such that

K(h0, h1) < A(h0, h1).

Proof. We sketch the construction required for this proof. Consider a right-angled
hexagon H0 with alternating sidelengths

2 arcosh(x4), arcsinh(x2) and arcsinh(x2);

and consider another right-angled hexagon H1 with alternating sidelengths

2 arcosh(x4), arcsinh(x3) and arcsinh(x3),

where x is understood to be a very large number (see Figure 7).

Figure 7. Two “skinny” hexagons H0 and H1.

We double each Hi to obtain a pair of pants Pi in such a way that the above listed
sides remain unglued and form the boundary of the Pi. Then, in each Pi, we glue the
two boundary components of equal length with no twisting to form two geodesic-
bordered one-holed tori T̄0 and T̄1 in T(S̄, 4 arcosh(x4)). The two shortest interior
simple closed geodesics α, β (see Figure 8) on T̄0 are both of length 2 arcsinh(x2),
whereas on T̄1 they are respectively of lengths 2 arcsinh(x) and 2 arcsinh(x3).

We regard α and β as standard Z-basis vectors (1, 0) and (0, 1) for H1(T̄i;Z) =
Z2. The primitive elements ofH1(T̄i;Z) naturally biject with the collection of simple
closed geodesics on T̄i. In particular, since these tori are so thin, the hyperbolic
length of a geodesic γ whose homology class is (p, q) is approximately

2 arcsinh(x2)|p|+ 2 arcsinh(x2)|q| on T̄0, and

2 arcsinh(x)|p|+ 2 arcsinh(x3)|q| on T̄1.
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Figure 8. The “skinny” torus T̄1 and its two shortest geodesics of
lengths lα = 2 arcsinh(x) and lβ = 2 arcsinh(x3).

Let Ti denote the infinite-area complete hyperbolic extension of T̄i. For large x, the
inverse hyperbolic sine function is close to the logarithm function, and one sees that
K(T0, T1) ≈ 3

2 and in particular is bounded independently of x. On the other hand,

A(T̄0, T̄1) grows without bound as x → ∞ because the unique (orthogeodesic) arc
on S̄ that does not intersect β has length, with respect to T̄0 and T̄1, given by

2 arcsinh

(√
x4+1
x8−1

)
= 2 arcsinh

(
1√
x4−1

)
≈ 2

x2 and 2 arcsinh

(√
x6+1
x8−1

)
≈ 2

x .

These expressions are easily derived from hyperbolic trigonometric formulae (e.g.
[3, Theorem 2.3.4]).

�

5. Applications to general Teichmüller spaces

5.1. Novel geodesics on T(Sg,n,~b). In general, describing and establishing that
a map is optimal Lipschitz even for simple examples is difficult. The partial stretch
maps we describe in §3 resolve this in a concrete way for complete hyperbolic one-
holed tori with fixed boundary holonomy. Moreover, the fact that they are isometric
outside of a compact set easily enables additional gluing-map-based constructions,
allowing for a rich family of novel Thurston geodesics. We give the following exam-
ples:

(1) When the boundary geodesic representative satisfies b ≤ 4 arcsinh(1), the
stretch region (i.e. the set of points on the surface where there is any
metric distortion) of the partial stretch map between the two hyperbolic
structures lies within the convex core of the surface. We may double this
convex core along its boundary component to yield partial stretch maps on
closed genus 2 surfaces. Varying the expansion factor k = et, we get a new
class of Thurston geodesics in the Teichmüller space T(S2) equipped with
Thurston’s metric. To see that this differs from a Thurston stretch map-
induced geodesic, we first observe that the length of the central curve stays
constant along the above partial stretch map-induced geodesic. Further-
more, every point along our geodesic is isometric with respect, to reflection
in the central curve, which means that the maximal ratio-maximizing lam-
ination is also reflection symmetric. In particular, the first stretch path
segment for a Thurston stretch map-induced geodesic is stretched along a
maximal ratio-maximizing lamination which is also maximal as a geodesic
lamination aside from the possible addition of leaves on punctured mono-
gons (which cannot occur in this setting, as the complement of the maximal
ratio-maximizing lamination on the two halves of the surface is either a 4-
holed sphere or a annulus with punctures on its boundary components),
and the reflection symmetry forces it to contain the central geodesic. This
means that such a stretch map would expand the length of the central curve,
thereby distinguishing it from our partial stretch map-induced geodesic.
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(2) Whenever a topologically stable neighborhood of the stretch region of the
partial stretch map may be isometrically embedded in another (not nec-
essarily hyperbolic) surface Σ of greater topological complexity, we obtain
partial stretch maps on Σ by setting the new Lipschitz map to be the iden-
tity on the complement of the embedded stretch region. One simple, but
potentially useful instance of this arises (again) when b ≤ 4 arcsinh(1) and
we extend S to Σ = Sg,n by gluing on a genus g − 1 surface with n+ 1

holes of lengths (b,~b′). This construction produces new geodesics for the

Thurston metric in T(Sg,n,~b
′).

(3) We may adapt Example (2) to work in greater generality by performing
small metric deformations with Lipschitz constant smaller than or equal
to the Lipschitz constant on S (such as small Fenchel–Nielsen twists) in
such a way as to not disturb the metric expansion along the embedded
stretch region of S ⊂ Σ . One example of this comes from adapting Exam-
ple (1) when 4 arcsinh(1) < b ≤ 4 arcosh( 3

2 ), where we double the surface
(including its extruding stretch region) and reglue to a genus 2 surface with
a b

4 twist. This enables the extruding stretch loci to fit on top of (origi-

nally) unstretched domains. The b = 4 arcosh( 3
2 ) instance of this particular

construction is used by Lenzhen, Rafi and Tao in their proof of [12, Theo-
rem 1.1] (the length of b = 4 arcosh( 3

2 ) can be computed using Figure 10 of
their paper). Another example of this is simultaneously performing stretch-
ing along λ as well as small earthquakes along measured laminations which
do not transversely intersect λ. In any case, this is not a new idea, but a
potentially useful one.

(4) In the present paper, all of our stretch maps on one-holed tori S are in-
variant under the hyperelliptic involution ι and hence descend to S/ι—a
hyperbolic sphere with three π-cone angles and one hole with geodesic rep-
resentative of length b

2 (see Figure 9(2)). This cone surface is also the
quotient, with respect to a Z2 × Z2 symmetry, of a four-holed sphere S0,4

with boundary geodesic representatives of length b
2 (see Figure 9(3)), and

hence all relevant stretch maps lift to S0,4 with four equal length bound-
ary components. This new S0,4 building block immediately affords new
flexibility in gluing-map based constructions.

(5) We further observe that in Example (4) above, in instances where the
stretching lamination contains a simple closed curve γ (see Figure 9), this

γ then descends to an interval γ′ of length
`γ
2 joining cone points in S/ι

and lifts to a separating geodesic γ′′ in S0,4 of length 2lγ . Since γ′′ lies on
the stretching lamination, it remains geodesic under stretching, and so we
may cut S0,4 along γ′′ to obtain two isometric pairs of pants P of boundary

lengths 2lγ ,
b
2 ,

b
2 . In particular, the partial stretching map on P increases

the length of just one of its boundary components. This gives an S0,3

building block for potential gluing-map based Lipschitz map constructions.
(6) Finally, continuing from the previous example, we may glue the unstretched

boundary components of P to then obtain a stretching map on a one-holed
torus which increases the boundary length but preserves the length of (at
least) one interior simple closed geodesic. For b ≤ 4 arcsinh(1), some of
these examples may be used to construct boundary-length fixing paths in
Teichmüller space, thereby yielding completely novel arc metric geodesics
(thanks to Theorem 4.7).

Remark 5.1. The construction in Example (4) suffices to show that

(T(S1,1, 2b), L ≡ K) is isometric to (T(S0,4, b, b, b, b), L ≡ K) .
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Figure 9. Partial horocycle foliations (blue) on (1) the one-holed torus
of boundary length L; (2) the quotient one-holed sphere with three π-
cone points with boundary length L

2
; (3) the four-holed sphere with all

boundary components of length L
2

. The maximally stretched lamination
consists of two geodesics: the support of the transverse measure (red)
and the geodesic which spirals towards the former (orange).

The specialized setting when b = 0 positively answers the first of the three cases in
a question posed by Walsh in [24, Paragraph after Theorem 7.9]. We doubt that the

other two cases posed, T(S1,2,~0) versus T(S0,5,~0) and T(S2) versus T(S0,6,~0), are
isometric, however, it is plausible that these pairs may be made isometric, provided

that one permits cone-point boundaries for T(S0,5,~b) and T(S0,5,~b).

5.2. The metric geometry of the Thurston metric. We further illustrate the
versatility of partial stretch maps by proving the following result inspired by [12,
Theorem 1.1]. In this statement, a two-way geodesic is a geodesic which is also a
geodesic when traversed in the reverse direction. Note that every geodesic for a
symmetric metric is two-way.

Theorem 5.2 (Arbitrarily non-thin geodesic triangles). For every g ≥ 2 and for
every D > 0, there are points W,X, Y ∈ T(Sg) joined by two-way Thurston geodesic
segments GWX , GWY and GXY such that there is a point Z ∈ GXY which is
distance at least D away from G := GWX ∪ GWY (i.e. the distances K(Z,G)
and K(G,Z) are both greater than D). Moreover, G is also a two-way Thurston
geodesic between X and Y .

Proof. We first give the proof for g = 2. Fix D > 0 and choose any b < 4arcsinh(1).
The main construction is the following: take a constant-speed geodesic arc ht :
[0, 1] → T(S = S1,1, b), and glue ht to an orientation reversed family of metrics
h̄1−t along the boundary curve, with some amount of twisting φt. We claim that if
b is small, if the arc is long, and if φt does not vary too much in t, this path is a two-
way geodesic. Making two choices for the function φt that are, roughly speaking,
as different as possible while meeting these constraints gives two geodesics with the
same endpoints but which are very far apart at the midpoint, as required.

We consider the double (Sd, hd) of the convex hull of (S, h) and denote by γ the
separating simple closed geodesic we glued along to get Sd. There is a small collar
neighborhood C around γ that is outside of the stretch region and hence unaffected
by partial stretch maps on either of the components of Sd−γ. Construct a smooth
family of Lipschitz maps φt : C → Ct where Ct is the Fenchel–Nielsen twist of C
by t. For τ � 2D arcsinh(1)/b, any metric on Sd that comes from gluing (possi-
bly with twisting) the convex cores of two 1-holed tori in T(S, b), when Fenchel–
Nielsen twisted by φτ on C, will give a map with Lipschitz constant Lip(φτ )� D.
We reparametrize and rescale such a family of Fenchel–Nielsen twist deformations
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φt∈[0,τ ] on C so that the Lipschitz constant for φt increases linearly with respect to
t and finishes at τ = 1.

Choose arbitrary points h0, h1 ∈ T(S, b) such that,

• K(h0, h1) ≥ K(h1, h0), and the curve length ratio K(h0, h1) is realised by
a very short simple closed curve α on S. In particular, the length of α on
both (S, h0) and (S, h1) is close to 0,

• K(h0, h1) > 2 Lip(φτ )� 2D.

Consider a Thurston geodesic ht : [0, 1]→ T(S, b) joining h0 and h1 obtained via
a concatenation of partial stretch maps (hence no metric distortion ever occurs in a
small collar neighborhood around the boundary geodesic). Furthermore, consider
h̄t, the same path of metrics in T(S, b) but with the orientations on the surface
reversed. Construct a path of metrics in T(S2) by gluing ht to h̄1−t, and set the
endpoints of this path as X and Y (see Figure 10). Since we can independently
construct optimal Lipschitz maps on the left and the right halves of the surface
with Lipschitz constants depending solely on K(h0, h1) and K(h1, h0), we need
only consider simple closed curves which lie on these two half surfaces rather than
on the entire surface when determining the optimal Lipschitz constant for the entire
surface.

The path so produced is necessarily a geodesic in both directions. Going from
X to Y , the Lipschitz constant on the left of γ is governed by the growth in the
length of α (going from `α(h0) to `α(h1)) versus the Lipschitz constant on the
right of γ being governed (roughly) by the logarithm of the reciprocal of α (going
from − log `α(h1)) to − log `α(h0)). Thus, the path is dominated by the left of γ
when traversing from X to Y and the right of γ when going from Y to X. Set the
midpoint of this geodesic as W and define GWX as the two-way Thurston geodesic
between X and W and GWY as the two-way Thurston geodesic between W and Y .

Figure 10. A depiction of the closed genus 2 hyperbolic surfaces
W,X, Y, Z on the geodesics GWX , GWY and GXY . Going from X to
Y , the leftmost (red) curve is maximally stretched; from Y to X the
rightmost (red) curve is maximally stretched; Z is distance D away
from/to G = GWX ∪GWY because of the twisted (blue) curve.

Next, we produce another two-way Thurston geodesic between X and Y by
gluing ht and h̄1−t with a “twist”: we apply φt on C until half-way (i.e. t = 1

2 ) and
then unwind the Fenchel–Nielsen twist with φ−t until t = 1. Since K(h0, h1) �
2D and both geodesics are uniformly parametrized (and we are producing actual
Lipschitz maps for t ∈ [0, 1]), the Fenchel-Nielsen twist is small enough so that
the optimal Lipschitz constant from X to Y is unaffected along this new path,
thus ensuring that it is a two-way Thurston geodesic. We label this path as GXY
and denote the t = 1

2 midpoint by Z. The Fenchel-Nielsen twist introduced along
G means that Z is necessarily at least distance D from every single point in G
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with distances measured in either direction: consider the length of the blue curve
depicted in Figure 10 for the distances from GWX ∪GWY to Z, likewise consider a
(relatively) short curve on Z which minimally intersects γ but is disjoint from the
left and right αs to bound (from below) the distances from Z to GWX ∪GWY .

For general g, the proof is essentially the same: one simply needs to glue an
additional “unstretched” Sg−1,2 between the convex hulls of (S, h0), (S, h1) which
cap off the two ends. �

Roughly speaking, the above result says that there is no näıve sense in which the
Thurston metric can be Gromov hyperbolic [7, 4]. However, without wanting to
clarify what δ-hyperbolicity might mean for an asymmetric metric, we instead make
the following concrete statement in which we use the classical notion of Gromov
hyperbolicity defined by the Gromov product for spaces with a symmetric distance
function, and make no assumptions about the metric being geodesic:

Corollary 5.3. The sum-symmetrization dsum(h0, h1) := K(h0, h1) +K(h1, h0) of
the Thurston metric on T(Sg) is not Gromov hyperbolic.

Proof of Corollary 5.3. Two-way geodesics for the Thurston metric are geodesics
for dsum. Hence, the edges GWX , GWY , GXY constitute the edges of a geodesic
triangle 4WXY for dsum. It is evident that dsum ≥ K, and hence 4WXY is not
D-thin. By choosing D > 0 to be arbitrarily large, this contradicts the condition
that all geodesic triangles (if any exist) be δ-thin for some δ > 0, which in turn is
a necessary (but not necessarily sufficient, due to the potential sparsity of geodesic
triangles in metric spaces which might not be geodesic) condition for Gromov’s
δ-hyperbolicity. �

Remark 5.4. Brock and Farb, in their paper [2], give conditions on a metric on
Teichmüller space which is invariant by the mapping class group action to be non-
Gromov hyperbolic. Their result holds for geodesically complete path metrics on
Teichmüller, and cannot be used in our context since we do not know whether
the sum-symmetrization of Thurston’s asymmetric metric belongs to this class of
metrics.

We also highlight the following result which follows from the statement of Theo-
rem 5.2: The sum-symmetrized metric of Thurston’s metric is not uniquely geodesic.

Remark 5.5. Our proofs for Theorem 5.2 and Corollary 5.3 are fairly flexible, and

one extends easily to T(Sg,n,~b) by gluing in combinations of unstretched surfaces
or stretched S0,4 (Example (4) of §5.1) as needed. In particular, we can use the
same construction in the following cases:

• g ≥ 2 with arbitrary n ≥ 0;
• g = 1 and n ≥ 2, with the condition that at least 4 − n of the boundary

components must have geodesic representatives of the same length b <
2 arcsinh(1);

• g = 0 and n ≥ 4, with the condition that at least 8 − n of the boundary
components must have geodesic representatives of the same length b <
2 arcsinh(1),

to obtain generalizations of Theorem 5.2 and Corollary 5.3. We leave the construc-
tion of these cases to interested readers.

This (informal) non-hyperbolicity of the Thurston metric (Theorem 5.2) essen-
tially comes from the fact that the envelope from X to Y in T(S2), i.e. the union of
all the geodesics from X to Y (a notion studied in [6]), becomes very “fat” as the
distance between X and Y increases. Indeed, the geodesics G and GXY constructed
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in the proof of Theorem 5.2 fail to fellow-travel. Moreover, due to the generality of
our construction, either:

(1) there are no arbitrarily long arc metric geodesic segments in the thick part
of Teichmüller space, or

(2) it is impossible to have a quasi-“thin triangles”-type claim of the same form
as [20, Theorem E], where if a side of a geodesic triangle is in the thick part
of Teichmüller space, then it lies near to one of the other two sides.

Nonetheless, it seems plausible that one might recover a weaker notion of hyper-
bolicity such as: there exists some δ > 0 so that any three points X,Y, Z are the
vertices of some δ-thin triangle. Or, perhaps the stronger statement that the en-
velope from X to Y lies within the union of the δ-neighborhoods of the envelopes
from X to Z and from Z to Y .
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