
HAL Id: hal-02282219
https://hal.science/hal-02282219v1

Submitted on 9 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spatio-temporal convolutional neural networks for
failure prediction

Nicolas Aussel, Fabian Dubourvieux, Yohan Petetin

To cite this version:
Nicolas Aussel, Fabian Dubourvieux, Yohan Petetin. Spatio-temporal convolutional neural networks
for failure prediction. GRETSI 2019: XXVIIème colloque francophone de traitement du signal et des
images, Aug 2019, Lille, France. pp.1-5. �hal-02282219�

https://hal.science/hal-02282219v1
https://hal.archives-ouvertes.fr


Spatio-temporal convolutional neural networks for failure
prediction

Nicolas Aussel1,2, Fabian Dubourvieux1,2, Yohan Petetin2,

1TriaGnoSys GmbH
Argelsrieder Feld 22, 82234 Wessling, Germany

2Télécom SudParis / Département CITI et CNRS UMR 5157
9 Rue Charles Fourier, 91011 Evry, France

nicolas.aussel@telecom-sudparis.eu, fabian.dubourvieux@telecom-sudparis.eu
yohan.petetin@telecom-sudparis.eu

Résumé – L’utilisation de techniques d’apprentissage statistique pour identifier une panne au sein d’un système à partir de
séries temporelles intrinsèques à ce système est bien connu. Néanmoins, dans le cadre d’un système industriel composé de plusieurs
sous systèmes, l’application directe de ces techniques au système global est limitée par la complexité de celui-ci, tandis que leur
application sur chacun des sous systèmes ne prend pas en compte les dépendances qui peuvent intervenir entre eux et mènent
à des performances faibles. L’objectif de cette communication est de proposer un modèle de réseau de neurones convolutionnels
spatio-temporels capable de prendre en compte à la fois des dépendances spatiales et temporelles de séries temporelles observées
par des sous systèmes pour la classification de pannes dans un système industriel.

Abstract – The use of statistical learning techniques to identify a failure in a system by using time series collected from it
is well known. However, in the case of an industrial system made of multiple subsystems, their direct application is limited by
the system complexity. In the meantime, the application of those techniques individually to each subsystem does not take their
dependencies into consideration leading to limited performances. The objective of this paper is to propose a model of spatio-
temporal convolutional neural network able to consider spatial and temporal dependencies on time series collected on subsystems
of an industrial system for failure classification.

1 Introduction
1.1 Failure prediction of an industrial sys-

tem
There are multiple challenges specific to failure predic-

tion of complex industrial systems to keep in mind when
designing a statistical method to identify and prevent fai-
lures.

First, the occurrence of a failure in an industrial system
is (hopefully) quite rare. This is obviously desirable from a
user’s perspective but it is a source of difficulties for failure
classification as many learning techniques for classification
operate best when the proportion between the two classes
to learn is close to 1 [1]. Rare event classification with im-
balance ratio such 1 to 10.000 is a constraint that need to
be taken into account when designing a failure prediction
algorithm.

The second difficulty that can arise when working on a
complex industrial system is precisely its complex nature.
There are several ways for this complexity to create issues
but for this contribution we will focus on two specific ones.
The first one is that it might not make sense to try to mo-

del the behaviour of a complex system as a single entity.
A more efficient approach would be to model individual
subsystems and their interactions but these interactions
can introduce dependencies that need to be accounted for.
In our application case, the subsystems considered are all
part of the same network with a ring topology that intro-
duces spatial dependencies. Indeed, as neighbouring sub-
systems from a network perspective can affect each other,
it is no longer sufficient to apply a learning method indi-
vidually to each subsystem. The second issue we consider
is that for a complex system, the information collected at
each time step is not necessarily sufficient to fully describe
its state. It can be necessary to consider the information
with regards to the previously known state of the system
which in other words means that time dependencies are
present.
Classical learning methods that can deal with those

constraints exist. In the case of time dependencies, tech-
niques related to time series analysis are adapted and, in
the case of spatial dependencies, techniques related deep
learning and in particular to convolutional neural net-
works are often the most efficient. However, when consi-



dering both constraints at once, the solutions are more
limited. To that end, we consider a variant of convolutio-
nal neural network called spatio-temporal convolutional
neural network initially developed for video classification
and show how it can be transposed to failure classification
of an industrial system.

In this paper, we will first give a brief overview of the
currently widespread model of convolutional neural net-
work. Then we detail the variant that we will consider of
spatio-temporal convolutional neural network. Then we
present the modifications we made to adapt it to the fai-
lure classification problem.

1.2 Neural networks
1.2.1 Deep Neural Networks

Fully connected Deep Neural Networks (DNN) are po-
pular architectures which aim at approximating a com-
plex unknown function f(x), where x ∈ Rn is an observa-
tion, by fθ(x) [2] [3]. θ consists of the parameters of the
DNN, the bias vectors b(i) and the weight matrices W(i)

for all i, 1 ≤ i ≤ P where P is the number of layers of
the DNN, and fθ(x) is a sequential composition of linear
functions built from the bias and from the weights, and
of a non-linear activation function g(.) (eg. the sigmoid
g(z) = 1/(1 + exp(−z)) or the rectified linear unit (ReLu)
g(z) = max(0, z)) [4][5].

Parameters θ = {b(i),W(i)} are estimated from the
back-propagation algorithm via a gradient descent method
based on the minimization of a cost function Lθ((x1, y1),
· · · , (xN , yN )) deduced from a training dataset [6].

However, when the objective is to classify high dimen-
sional data such as colour images with a large number of
pixels, fully connected DNN are no longer adapted from a
computational point of view.

1.2.2 Convolutional neural networks

Convolutional Neural Networks (CNN) aim at dealing
with the previous issue by taking into account the spatial
dependencies of the data [7]. More precisely, data are now
represented by a 3-D matrix where the two first dimen-
sions represent the height and the width of the image while
the depth represents the three colour channels (R,G,B).

Next, as fully connected DNN, CNN consists in buil-
ding a function fθ(x), where x ∈ Rd1 ×Rd2 ×Rd3 , by the
sequential composition of the following elementary steps :
• a convolution step via the application of convolution
filters on the current image. Each filter is described
by a matrix with appropriate dimensions ;

• the application of an activation function g(.) such as
the ReLu ;

• a pooling step to reduce the dimension of the resul-
ting image.

After the recursive application of these three steps, the

Figure 1 – Example of a CNN architecture

output image is transformed into a vector of Rn and is
classified via a fully DNN described in the previous para-
graph [8]. A general CNN architecture is displayed in Fig.
1.2.2.
Again, the back-propagation algorithm estimates the

parameters (weights and bias of the final DNN and of the
convolution matrices) of the CNN.

2 Architectural design
Our system consists of a collection of subsystems or-

ganized in a ring network. Each subsystem produces log
messages describing events relative to its operational sta-
tus. We first propose a log parsing technique to transform
these logs then we propose an architecture based on CNN
to predict failures.

2.1 Features
The information collected for our use case is in the form

of log messages in full text, similar to syslog messages of
linux systems and collected by each subsystem. As text is
not a suitable input for the spatio-temporal convolutional
neural network, we parse those messages using the Na-
tural Language Processing approach described in [9]. To
summarize this process, the logs follows four main steps :
First, the messages are broken down in individual words

through a standard tokenizer. The words are then regrou-
ped in tuples using a n-gram approach. Following this,
a hashing trick is used to compress the model in order to
minimize its memory footprint. Finally, a Latent Dirichlet
Allocation (LDA) is applied to clusterize the messages by
topic and the original log messages are mapped into their
vector of topic distribution.
As the industrial system studied here is the same that

this method was first developed on, we simply keep the
same parameters that were found optimal in [9], namely,
we use a bi-gram approach and a number of topic for the
LDA of 50.
Each subsystem generates logs and the system itself is

a ring network of the subsystems. The failures that we
aim to classify are loss of connectivity of the subsystems.
The figure 2.1 shows an example of failure in a simplified
network.



Figure 2 – Example of subsystem failures in a simplified
network

2.2 Spatio-temporal convolutional neural
network

We now consider a variant of the general CNN presen-
ted in Paragraph 1.2 which is based on spatio-temporal
CNN developed to classify data video streaming [10] [11].
Such architectures are indeed adapted to multiple subsys-
tems connected in a ring network when the objective is to
estimate the failure probability of each subsystem in the
future by taking into account i) the spatial dependencies
of the global system and ii) the temporal dependencies of
the observed data.

More precisely, we set dtime as the size of the time
window, Nf as the number of observed features of each
subsystem during dtime and Ns as the number of subsys-
tems which compose the global system. At time t, the
global system is described by a 3D matrix x = (xt,j,k),
1 ≤ t ≤ dtime, 1 ≤ j ≤ Ns, 1 ≤ k ≤ Nf , where the term
xt,j,k coincides with the value of the k-th feature at time
t, for the j-th subsystem. We conserve spatial topology of
the problem by ensuring that the subsystems of features
x.,j−1,. and x.,j+1,. are the 2 neighbours in the ring graph
of the system of features x.,j,..
In the intermediate layers, the architecture relies on 2D

convolution filters, that is to say that the filters are des-
cribed by a 3D matrix with the same depth as the original
input, contrary to 3D convolution filters. The reason why
is that we want to emphasize on the dependency between
the temporal and the spatial dimensions for a given feature
and not on that of the different features between them-
selves. It is why that contrary to spatio-temporal CNN
developed for video streaming, the temporal dimension
coincides now with the first dimension of the input.

Next, our architecture is based on deep residual lear-
ning. Roughly speaking, a bloc of convolution and poo-
ling layers in the classical CNN presented in paragraph
1.2.2 learns directly an intermediate function H(x). Resi-
dual learning consists in learning an intermediate residual
function F (x) = H(x)− x rather than H(x) directly. In-
tuitively, this approach reduces the difficulty when a bloc
of convolution and pooling layers aims at approximating
an identity mapping, in particular in CNN with a large
number of layers [12].

Finally, for a given subsystem the global architecture
approximates the probability of a failure at time t + 1

given the past observations from time t − dtime + 1 until
t, x, i.e. it computes Pθ(y(j) = 1|x) for all j, 1 ≤ j ≤ Ns.

2.3 Detail of the architectures and imple-
mentation

2.3.1 Loss function

Let ((x1,y1), · · · , (xN ,yN )) be our training set, with xi
being the input processed as described in 2.2 for a certain
range of time and yi = (y(1)

i , ..., y
(Ns)
i ) the sequence of

binary labels of the subsystems at the next time step. The
function fθ(x) = (f (1)

θ (x), · · · , f (Ns)
θ (x)) computed by our

CNN aims at estimating the probabilities of failure of the
subsystems given a new input x.
To that end, we assume that the probabilities of failure

of the subsystems are independent given x (the conditional
independence is a modelling choice motivated by compu-
tation limits and does not mean that the marginals yji are
independent for a fixed i),

Pθ(yi|xi) = Pθ(y(1)
i |xi)× · · · × Pθ(y

(Ns)
i |xi),

with Pθ(y(j)
i |xi) = f

(j)
θ (xi)y

(j)
i × (1− f (j)

θ (xi))(1−y(j)
i

).
The minimum negative log-likelihood estimate of θ is

given by argminθLθ(x,y) where

Lθ(x,y) =
N∑
i=1

Ns∑
j=1
L(j)
θ (xi,yi)

and where L(j)
θ (xi,yi) = −y(j)

i ×log(f (j)
θ (xi))−(1−y(j)

i )×
log(1 − f

(j)
θ (xi)) is the binary classification loss for the

subsystem j.

2.3.2 Architecture details

The architecture of our neural network is the ResNet18 1.
It is a 18 layer CNN with a fully-connected last layer where
we apply the sigmoid function to enforce fθ(x) to belong
to [0, 1]Ns , with the result being interpreted as the proba-
bility for a failure to occur for each subsystem. The size of
filters are modified to fit our spatio-temporal model as in
2.2. We manage the problem of rare events by balancing
the training mini batch of data. We use a batch size of 32
and a learning rate of 0.01 to minimize Lθ(x,y). Finally,
we use a time window of size 100 selected to maintain a
manageable memory footprint for our method.

We implemented this model with PyTorch 2 running
over CUDA 3 except for the log parsing step described
before which is implemented on Spark 4 with a Python
interface.

1. https ://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
2. https ://pytorch.org/
3. https ://developer.nvidia.com/cuda-zone
4. https ://spark.apache.org/



3 Simulation
3.1 Metrics

For performance evaluation, we report precision and re-
call. By considering the failure of a subsystem as a posi-
tive, they are given by :

Precision = TruePositives

TruePositives+ FalsePositives

Recall = TruePositives

TruePositives+ FalseNegatives

Those metrics are selected instead of the more standard
accuracy for their robustness to class imbalance. Indeed,
in the situation considered, negative samples outnumber
positive samples by a factor 10, 000 meaning that a naive
classifier always outputting negative predictions regardless
of its input would reach 99.99% accuracy.
We also use 3-fold stratified cross-validation in order to

ensure that the measurement are reliable, given the rela-
tively low number of positive samples in the dataset. The
stratification is done to ensure that a similar number of
positive sample remains in every split as small variations
could potentially results in large variations of the class
imbalance ratio in the splits.

3.2 Results and conclusion
The performances reached by our architecture are 11.3%

precision and 3.42% recall. These results are very encoura-
ging compared to the decision tree-based approaches tes-
ted before on the same use case. On this dataset, more
traditional learning methods such as Random Forest and
Gradient Boosted Trees provide no results at all with 0%
precision and recall. The spatio-temporal convolutional
neural network that we describe is the first method to
provide non zero results.

Our interpretation is that even though the traditional
methods proved useful in studying other kind of failures of
this system in [9] they are only able to model time depen-
dencies which are not sufficient here. This highlight the
importance for industrial applications of developing mo-
dels that can take into account dependencies that match
the systems actually in place.

It is important to note however that, while this result
is encouraging, because of constraints on computation re-
sources such as memory and computation power, a full
architectural search is still in progress in order to deter-
mine the exact parameters of the neural network that can
optimize the performances.

Références
[1] N. Japkowicz and S. Stephen, “The class imbalance

problem : A systematic study,” Intelligent data ana-
lysis, vol. 6, no. 5, pp. 429–449, 2002.

[2] F. Rosenblatt, “The perceptron–a perceiving and re-
cognizing automaton,” Tech. Rep. 85-460-1, Cornell
Aeronautical Laboratory, 1957.

[3] M. Negnevitsky, Artificial Intelligence : A Guide to
Intelligent Systems. Boston, MA, USA : Addison-
Wesley Longman Publishing Co., Inc., 1st ed., 2001.

[4] G. Cybenko, “Approximation by superpositions of a
sigmoidal function,”Mathematics of Control, Signals,
and Systems (MCSS), vol. 2, pp. 303–314, Dec. 1989.

[5] Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep lear-
ning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015.

[6] D. E. Rumelhart, G. E. Hinton, and R. J.
Williams, “Neurocomputing : Foundations of re-
search,” ch. Learning Representations by Back-
propagating Errors, pp. 696–699, Cambridge, MA,
USA : MIT Press, 1988.

[7] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Un-
derstanding of a convolutional neural network,” in
2017 International Conference on Engineering and
Technology (ICET), pp. 1–6, Aug 2017.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Ima-
genet classification with deep convolutional neural
networks,” in Proceedings of the 25th International
Conference on Neural Information Processing Sys-
tems - Volume 1, NIPS’12, (USA), pp. 1097–1105,
Curran Associates Inc., 2012.

[9] N. Aussel, Y. Petetin, and S. Chabridon, “Improving
performances of log mining for anomaly prediction
through nlp-based log parsing,” 2018 IEEE 26th In-
ternational Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Sys-
tems (MASCOTS), pp. 237–243, 2018.

[10] K. Simonyan and A. Zisserman, “Two-stream convo-
lutional networks for action recognition in videos,” in
Proceedings of the 27th International Conference on
Neural Information Processing Systems - Volume 1,
NIPS’14, (Cambridge, MA, USA), pp. 568–576, MIT
Press, 2014.

[11] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and
M. Paluri, “Learning spatiotemporal features with
3d convolutional networks,” in Proceedings of the
2015 IEEE International Conference on Computer
Vision (ICCV), ICCV ’15, (Washington, DC, USA),
pp. 4489–4497, IEEE Computer Society, 2015.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in 2016 IEEE Confe-
rence on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016,
pp. 770–778, 2016.


