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). Under some assumption on the Gelfand pair (K, N ), we determine explicity the topology of ( G)gen and we show that the topological space ( G)gen equipped with the Fell topology is homeomorphic to (g ‡ /G)gen endowed with the quotient topology.

Introduction

Let G be a second countable locally compact group and G its dual space, that is the set of all equivalence classes of irreducible unitary representations of G. An important tool for investigating the group algebra of G is the socalled hull-kernel topology (Fell topology) of G which is a special case of the relation of weak containment [START_REF] Fell | Weak containment and induced representations of groups[END_REF][START_REF] Fell | Weak containment and induced representations of groups (II)[END_REF]. The question arises: For a such group G, how do we determine G and its topology? For many groups G, Mackey's theory of induced representations permits us to catalogue all the elements of G. We recall the definition of weak containment. If S is a family of unitary representations of G, and τ a unitary representation of G, τ is weakly contained in S if all positive functionals on G associated with τ can be weakly approximated by sums of positive functionals associated with representations in S. When restricted to G, the relationship of weak containment gives the operation of closure in the hull-kernel topology. Then the description of the dual topology is a good candidate for some aspects of harmonic analysis on G (for example, see [START_REF] Ben Halima | On the dual topology of a class of Cartan motion groups[END_REF][START_REF] Halima | Dual Topology of the Heisenberg Motion Groups[END_REF][START_REF] Elloumi | Espaces duaux de certains produits semi-directs et noyaux associs aux orbites plates[END_REF][START_REF] Ludwig | Dual topology of the motion groups SO(n) R n[END_REF]). In such a situation, the natural and important question arises of whether the bijection between the space of coadjoint orbits g * /G of G (g * is the dual vector space of g := Lie(G)) and G is a homeomorphism. For a simply connected nilpotent Lie group and more generally for an exponential solvable Lie group G = exp(g), its dual space G is homeomorphic to the space of coadjoint orbits through the Kirillov mapping (see [START_REF] Kirillov | Lectures on the Orbit Method[END_REF]). In the context of semidirect products G = K N , where K is a connected compact Lie group acting smoothly on simply connected nilpotent Lie group N. Then it was pointed out by Lipsman in [START_REF] Lipsman | Orbit theory and harmonic analysis on Lie groups with co-compact nilradical[END_REF], that we have again an orbit picture of the dual space of G. Let G ψ be the stabilizer in G of a linear form ψ ∈ g * . Then ψ is called admissible if there exists a unitary character χ of the identity component of G ψ such that dχ = iψ| g ψ . Let g ‡ ⊂ g * be the set of all the admissible linear forms on g. Here, we recall some results in the literature. The unitary dual space of Euclidean motion groups is homeomorphic to the admissible coadjoint orbits [START_REF] Ludwig | Dual topology of the motion groups SO(n) R n[END_REF]. This result was generalized in [START_REF] Ben Halima | On the dual topology of a class of Cartan motion groups[END_REF], for a class of Cartan motion groups. Analogue results have been proved for which the so-called generalized motion groups (see [START_REF] Aymen | Dual Topology Of Generalized Motion Groups[END_REF]), and for the Heisenberg motion groups (see [START_REF] Halima | Dual Topology of the Heisenberg Motion Groups[END_REF]). Recently , M. Elloumi. J. Kathrin Gunther and J. Ludwig have proved an analogue result for the compact extension of the Heisenberg groups (see [START_REF] Elloumi | On the dual topology of the groups U (n) Hn[END_REF]).

We turn to our setting. We say that the pair (K, N ) is a nilpotent Gelfand pair if L 1 K (N ) is an abelian algebra under convolution. For such pair (K, N ), let n := Lie(N ) and write n = V ⊕z, where z is the center of n and [V, V] ⊂ z. Definition 1.1. Let (K, N ) be a nilpotent Gelfand pair. We say that (K, N ) has spherical central orbits if generic orbits of the restricted action of K on z are of codimension one.

We endow n = V ⊕ z with an inner product , such that z = [n, n] and V ⊥ z. If (K, N ) has a spherical central orbits, then we can fix a unit base point A ∈ z, and define a skew-symmetric form (v, w) -→ [v, w], A on V (for more details, see [START_REF] Friedlander | Transformation Groups[END_REF]). Definition 1.2. We say that a nilpotent Gelfand pair (K, N ) is non-degenerate on V if the skew-symmetric form

(v, w) -→ [v, w], A
is non-degenerate on V. Here v, w ∈ V and A ∈ z is the fixed unit base point.

In this document, Ad L , Ad * L denotes respectively the adjoint and the coadjoint representations for such Lie group L. Any action of Lie group we denote it by ".". Now, we describe exactly which pair (K, N ) our result applies to. Let K be a connected compact abelian subgroup of automorphisms of N such that (K, N ), is a nilpotent Gelfand pair satisfies Definitions 1.1 and 1.2. We shall assume that the subgroup K is the product of n ≥ 1 copies of the unit cercle S 1 . Then we can form the semidirect product G = K N with group law

(k 1 , (x 1 , X 1 ))(k 2 , (x 2 , X 2 )) = (k 1 k 2 , (x 1 , X 1 )(k 1 .(x 2 , X 2 ))).
Let ( G) gen ⊂ G be a subset of the unitary dual of G, which the so-colled space of generic representations of G (see Section 2 for this Definition). We denote by g ‡ /G the space of the admissible coadjoint orbits of G. In the spirit of the orbit method due to Kirillov, R. Lipsman established a bijection between g ‡ /G and the unitary dual G of G, in the following way. For every admissible linear form ψ on the Lie algebra g of G, we can construct an irreducible unitary representation π ψ by holomorphic induction and according to Lipsman (see [7, p. 23]) (compare [START_REF] Lipsman | Orbit theory and harmonic analysis on Lie groups with co-compact nilradical[END_REF]), every irreducible representation of G arises in this manner. Then we get a map from the set g ‡ of the admissible linear forms onto the dual space G of G. Note that π ψ is equivalent to π ψ if and only if ψ and ψ are in the same G-orbit. That is, the association (Kirillov-Lipsman mapping)

g ‡ /G O G
ψ ←→ π ψ ∈ G yields a bijection between admissible coadjoint orbits in g ‡ and irreducible unitary representations of G. Let (g ‡ /G) gen denotes the space of generic coadjoint orbits of G arising from the generic representations of G via the Kirillov-Lipsman orbit method. Our main results are the following.

Theorem 1.3. The convergence in ( G) gen is given in terms of Mackey parameters.

According to Lipsman [START_REF] Lipsman | Orbit theory and harmonic analysis on Lie groups with co-compact nilradical[END_REF], we have the following bijection ( G) gen (g ‡ /G) gen .

We arrive to.

Theorem 1.4. The topological space ( G) gen equipped with the Fell topology is homeomorphic to (g ‡ /G) gen endowed with the quotient topology.

Elements of g = k n (k = Lie(K)) will be written as (U, (b, B)) where U ∈ k and (b, B) ∈ n = V ⊕ z. A direct computation, one obtains that the adjoint action of G is

Ad G (k, (x, X))(U, (b, B)) = Ad K (k)U, k.(b, B) -(Ad K (k)U ).(x, X) + [(x, X), k.(b, B)] - 1 2 [(x, X), (Ad K (k)U ).(x, X)] .
Identify the Lie algebra n with its vector dual space n * through the Kinvariant scalar product , The coadjoint actions of N and n on n * are defined by

(Ad * N (x, X)(b, B))(y, Y ) = (b, B)(Ad N ((x, X) -1 )(y, Y )) (ad * N (x, X)(b, B))(y, Y ) = -(b, B)(ad N (x, X)(y, Y )).
Since N is 2-step, the identification of N with n allows us to write

Ad * N (x, X)(b, B) = (b, B) + ad * N (x, X)(b, B). (1.1)
Then, each linear functional ψ ∈ g * can be identified with an element (U, (x, X)) ∈ g such that

ψ(V, (y, Y )) = (U, (x, X)), (V, (y, Y )) g for (V, (y, Y )) ∈ g. Write points ψ ∈ g * as ψ = (ν, (b, B)) where ν ∈ k * and (b, B) ∈ n * . That is ψ(U, (y, Y )) = ν(U ) + b(y) + B(Y ).
Following [START_REF] Benson | The orbit method and Gelfand pairs associated with nilpotent Lie groups[END_REF], we define a map

× : n × n * -→ k * by (x, X) × (b, B) (U ) := (b, B)(U.(x, X)) = -U.(b, B) (x, X) for U ∈ k, (x, X) ∈ n and (b, B) ∈ n * . The map × : n × n * -→ k * satisfies the equivariance property Ad * K (k) (x, X) × (b, B) = k.(x, X) × k.(b, B) .
Then the coadjoint action of G on g * is given by

Ad * G (k, (x, X))(ν, (b, B)) = Ad * K (k)ν + (x, X) × (k.(b, B)) + 1 2 (x, X) × ad * N (x, X)(k.(b, B)) , Ad * N (x, X)(k.(b, B)) .
According to [START_REF] Benson | The orbit method and Gelfand pairs associated with nilpotent Lie groups[END_REF], one obtains the following description of the coadjoint orbits

O G (ν,(b,B)) of G. O G (ν,(b,B)) = k. ν + (x, X) × (b, B) + 1 2 (x, X) × ad * N (x, X)(b, B), Ad * N (x, X)(b, B) k ∈ K, (x, X) ∈ n where k. ν, (b, B) := Ad * K (k)ν, k.(b, B) = Ad * G (k, 0) ν, (b, B) .
This paper is organized in the following way. In Section 1, we present some history and some definitions. Section 2, is devoted to the description of the unitary dual G, in which we determine explicitly the topology of ( G) gen . We reserve the last Section to the admissible coadjoint orbits of G and we prove Theorem 1.1.

generic representations of G = K N

We keep the notations of the previous Section. We begin this Section by recalling the unitary dual of the Heisenberg group. We cover this group because our proof of Theorem 3.1 uses the relationship between the infinite dimensional representations of the Heisenberg group (type I representations) and the infinite dimensional representations of N.

The Heisenberg group H

V is identified with V ⊕ R (where V C n ) with law (z, t)(w, t ) = (z + w, t + t + 1 2 Im(z.w))
where z.w := n k=1 z k w k for all z = (z 1 , . . . , z n ) and w = (w 1 , . . . , w n ) in V. A maximal compact connected group of automorphisms of H V is given by the unitary group U (n) acting via k(z, t) = (kz, t).

Let T n be a maximal torus of U (n). It is well known that the pairs (U (n), H V ) and (T n , H V ) are Gelfand pairs. There are many proper closed subgroups K ⊂ U (n) for which (K, H V ) is a Gelfand pair. A such pair was determined by Benson, Jenkins and Ratcliff. Note that the group T n acts on H V (by automorphisms) by e iθ (z, t) = (e iθ z, t)

where e iθ = diag(e iθ 1 , . . . , e iθn ) ∈ T n (the torus T n is the product of n copies of S 1 ). So one can form the semidirect product G n = T n H V . The multiplication rule in this group is given by (e iθ , z, t)(e iθ , z , t ) = (e i(θ+θ ) , z + e iθ z , t + t -1 2 Im(z.e iθ z )).

For λ = (λ 1 , . . . , λ n ) ∈ Z n , let χ λ : T n -→ S 1 be the character of T n defined by

χ λ (e iθ ) = e iλ.θ
,

where θ = (θ 1 , . . . , θ n ) ∈ R n .
The irreducible unitary representation of H V are classified by Kirillov's "orbit method" [START_REF] Kirillov | Lectures on the Orbit Method[END_REF]. Then the unitary irreducible representations of H V naturally split into tow types via their parametrization by the coadjoint orbits in h * V (h V = Lie(H V )). In particular, the type I representations are parametrized by real numbers s = 0, with associated coadjoint orbit

O H V s = V ⊕ {s}.

The type II representations correspond to one-point orbits O H

V b = {(b, 0)} with b ∈ V.
Recall that type I representations are infinite dimensional representations of the Heisenberg group H V . For s ∈ R * , we denote by π s the type I representations of H V , which are realized on the Fock space

F s (V ) := f : V -→ C holomorphic V |f (v)| 2 e -|s||v| 2 2 dv < ∞ by π s (z, t)f (w) = e ist-s 4 |z| 2 -s 2 w,z f (w + z) if s > 0 and π s (z, t)f (w) = e ist+ s 4 |z| 2 + s 2 w,z f (w + z) if s < 0.
(See for example, [START_REF] Halima | Dual Topology of the Heisenberg Motion Groups[END_REF][START_REF] Ludwig | Dual topology of the motion groups SO(n) R n[END_REF] for a discussion of the Fock space).

For each e iθ ∈ T n , the operator W s (e iθ ) :

F s (V ) -→ F s (V ) given by W s (e iθ )f (z) = f (e -iθ z) ∀f ∈ F s (V ) ∀z ∈ V
intertwines π s and (π s ) e iθ . W s is called the projective intertwining representation of T n on the Fock space, then for each s ∈ R * and each element

χ λ in T n , π (λ,s) (e iθ , z, t) := χ λ (e iθ ) ⊗ (π s (z, t) • W s (e iθ )) ∀(e iθ , z, t) ∈ G n is an irreducible unitary representation of G n realized on F s (V ).
We close this Section by describing the unitary dual of G = K N. As a first step in this process, we review the representation theory of the nilpotent group N. Representations of simply connected, real nilpotent Lie groups are classified by Kirillov's "orbit method" [START_REF] Kirillov | Lectures on the Orbit Method[END_REF]. Given an element ∈ n * , one selects a subalgebra m ⊂ n which is maximal in the sense that ([m, m]) = 0. One then defines a character χ of M = exp(m) by χ (exp(x, X)) = e i (x,X) and σ := ind N M χ . From Kirillov (see [START_REF] Kirillov | Lectures on the Orbit Method[END_REF]), we know that each irreucible unitary representation of N is of the form σ for some , and σ ∼ σ if and only if and are in the same coadjoint orbit in n * . That is, the association

Ad * N (N )( ) =: N.
-→ σ yields a bijection between coadjoint orbits in n * and irreducible unitary representations of N. In our setting, N is a two-step nilpotent Lie group. This structure allows us to choose an "aligned point" (see Definition below) in each coadjoint orbit [START_REF] Benson | The orbit method and Gelfand pairs associated with nilpotent Lie groups[END_REF]. We describe this process now. For a coadjoint orbit O ⊂ n * , we take ∈ O so that O N := Ad * N (N ) , then we define a bilinear form on n by

B O (x, X), y, Y ) = ([(x, X), (y, Y )]). Let a O := {v ∈ V; ([v, n]) = 0}.
According to [START_REF] Benson | The space of bounded spherical functions on the free 2-step nilpotent Lie group[END_REF], this process gives us a decomposition

n = a O ⊕ w O ⊕ z,
where w O = a ⊥ O ∩ V. The identification between w O and O does depend on the choice of . (see [START_REF] Benson | The space of bounded spherical functions on the free 2-step nilpotent Lie group[END_REF], for a full discussion). However, in [START_REF] Benson | The space of bounded spherical functions on the free 2-step nilpotent Lie group[END_REF] it is shown that there is a canonical choice of in the following sense. Next, we use the Mackey machine to recall the process for describing the unitary dual G in terms of representations of N and subgroups of K. There is a natural action of K on N by

k.σ := σ • k -1 ,
where k ∈ K and σ ∈ N . Let σ be an irreducible unitary representation of N corresponding to a coadjoint orbit O ⊂ n * . Let K σ = {k ∈ K : k.σ σ} the stabilizer of σ under the K-action (here denotes unitary equivalence). According to Lemma 2.3 of [START_REF] Benson | The orbit method and Gelfand pairs associated with nilpotent Lie groups[END_REF], There is a unitary representation

W σ : K σ -→ U (H σ )
(here H σ denote the space of σ) of K σ that intertwines k.σ with σ. For k ∈ K σ , the W σ (k) 's are only characterized up to multiplicative constants in the unit circle S 1 by the intertwining condition. Then Mackey theory ensures that π (ρ,σ) := Ind K N Kσ N (k, (x, X)) -→ ρ(k) ⊗ σ(x, X)W σ (k) is an unitary irreducible representation of G. Up to unitary equivalence, all unitary irreducible representations of G have this form. This means that

G = {π (ρ,σ) , ρ ∈ K σ , σ ∈ N }.
We say that π (ρ,σ) has Mackey parameters (ρ, σ). Let O ⊂ n * be a coadjoint orbit with aligned point ∈ O. The corresponding representation σ ∈ N factors through

N O = exp(n/ ker( | z )).
The group N O is the product of a Heisenberg group H and the (possibly trivial) abelean group a O . Using the inner product , to construct an explicit isomorphism ϕ between H and the standard Heisenberg group H V := V ⊕ R, with V is a unitary K σ -space (see Section 5.1 of [START_REF] Benson | The space of bounded spherical functions on the free 2-step nilpotent Lie group[END_REF]). According to this construction, an important worth mentioning here is that one can realize π as the standard representation of H V in the Fock space F s (V) on V. Thus we realize W σ as the restriction to K σ of the standard representation of U (V ) on F s (V). Now, we fix A ∈ z to be a unit base point (as in Section 1). For any = (b, B) ∈ n * with B = 0, we have B = sA with s > 0. The form

(v, w) -→ [v, w], A
is non-degenerate on V. Hence the orbit through is V ⊕ sA with aligned point = (0, sA). For = (b, 0) the coadjoint orbit through is a single point. From [START_REF] Friedlander | Transformation Groups[END_REF], we conclude that we have two types of coadjoint orbits.

• Type I Orbits: When the parameter s > 0, we have an aligned point of the form = (0, sA). We call the corresponding coadjoint orbits type I orbits and the corresponding representations Here N O N sA is the Heisenberg group H A := V⊕RA. On H A , our representation is a type I representation π s of the standard Heisenberg group, which can be realized on Fock space (see [START_REF] Friedlander | Transformation Groups[END_REF] ). Following [START_REF] Friedlander | Transformation Groups[END_REF], we can describe the group isomorphism ϕ from H A to the standard Heisenberg group as follows: At first, note that the stabilizer K σs of σ s is equal to the stabilizer K A of A. Then we define a K A -equivariant group isomorphism

ϕ : H A -→ H V := V ⊕ R (v, tA) -→ (ϕ(v), t)
(see [START_REF] Friedlander | Transformation Groups[END_REF] for a full discussion about the expression of ϕ). This gives us the relationship between type I representations σ s ∈ N and the type I representations π s ∈ H V :

σ s = π s • ϕ.
Then for s ∈ R >0 , the representation σ s realized on the Fock space F s (V) as follows

σ s (v, tA)f (w) = e ist-s 4 |ϕ(v)| 2 -s 2 w.ϕ(v) f (ϕ(v) + w) where v, w ∈ V, t ∈ R and f ∈ F s (V). Let χ µ be an unitary irreducible representation of K A wit highest weight µ = (µ 1 , . . . , µ n ) ∈ Z n . The one dimensional representation of K A is given by χ µ (e iθ ) := e iµ.θ ∀θ = (θ 1 , . . . , θ n ) ∈ R n .
From [START_REF] Friedlander | Transformation Groups[END_REF] and according to Mackey theory, one can see that the unitary irreducible representations of G arising from the type I representations σ s of N are giving by ,s) is called generic representation and the set of all generic representations of G is denoted by ( G) gen . More precisely the following identification

π (µ,s) := Ind G K A N (π (µ,s) := χ µ ⊗ σ s • W s ). A such representation π (µ
( G) gen := π (µ,s) ; µ ∈ K A , s ∈ R >0 K A × R >0
is a bijection. Hereby, we give some results which are being used in the description of the dual topology of G. These are required for our proof of Theorem 1.3. Given (π, H π ) an irreducible unitary representation of G on the Hilbert space H π , the functions of positive type of π are, by definition, given by the linear functionals C π ξ : G -→ C, g -→ π(g)ξ, ξ , where ξ is a cyclic vector in H π .

Theorem 2.2. ( [START_REF] Dixmier | Les C * -Algèbres et leurs Représentations[END_REF]) Let (π k , H π k ) k∈N be a sequence of irreducible unitary representations of G. Then (π k ) k converges to π in G if and only if for some non-zero (resp. for every) vector ξ in H π , there exist

ξ k ∈ H π k , k ∈ N, such that the sequence (C π k ξ k ) k of functions converges uniformly on compacta to C π ξ .
The topology of G can also be expressed by the weak convergence of the coefficient functions.

Theorem 2.3. ([6]) Let (π k , H π k ) k∈N
be a sequence of irreducible unitary representations of G. Then (π k ) k converges to π in G if and only if for some non-zero (resp. for every) vector ξ in H π , there are ξ k ∈ H π k such that the sequence of linear functionals (C π k ξ k ) k ⊂ C * (G) converges weakly on some dense subspace of the C * -algebra C * (G) of G to the linear functional C π ξ . If G is a Lie group, then we denote respectively by g its Lie algebra and by U(g) the enveloping algebra of g. For a unitary representation (π, H π ) of G, let H ∞ π be the subspace of H π consisting of the smooth vectors for π. . . z mn n . We take as basis of the Lie algebra h V the left invariant vectors fields {Z 1 , . . . , Z n , Z 1 , . . . , Z n , T } where

Z p = 2 ∂ ∂z p + i z p ∂ 2∂ ∀p ∈ {1, . . . , n}, T = ∂ ∂t .
The differential operator

L p := 1 2 (Z p Z p + Z p Z p )
will play a key role in our proof of Theorem *. We fix the elements E p = diag(0, . . . , 0, i, 0 . . . , 0) ∈ k A := Lie(K A ) ∀p ∈ {1, . . . , n}

where the complex number i is the p th diagonal entry. We refer to [START_REF] Benson | Bounded K-spherical functions on Heisenberg groups[END_REF], we give the foolowing Lemma.

Lemma 2.5. For every irreducible representation π(µ,s) of K A N, we have

dπ (µ,s) (L p )h m,s = -s(2m p + 1)h m,s for each m = (m 1 , . . . , m n ) ∈ N n .
We easily obtain the following Lemma.

Lemma 2.6. For any irreducible representation π(µ,s) of K A N, we have

dπ (µ,s) (T )ξ, ξ = is
where ξ is a unit vector in F s (V).

With the above notations, we have.

Theorem 2.7. The sequence (π (µ j ,s j ) ) j converges to the irreducible representation π (µ,s) in ( G) gen , if and only if lim j-→+∞ s j = s and µ j = µ for large j.

Proof. We note that K A N is a normal subgroup of G = K N. Then Proposition 1.1 in [START_REF] Fell | Weak containment and induced representations of groups (II)[END_REF], tell us that the sequence (π (µ j ,s j ) ) j converges to π (µ,s)

in G, if and only if π (µ,s) is weakly contained in (π (µ j ,s j ) ) j .

By Theorem 4.4 in [START_REF] Fell | Weak containment and induced representations of groups[END_REF], this is equivalent to the following condition π(µ,s) is weakly contained in {π (µ j ,s j ) } j . (2.1) Mackey's theory of induced representations tells us that π(µ,s) is an unitary irreducible representation of the subgroup K A N. Then (2.1) is equivalent to the following convergence lim j-→+∞ π(µ j ,s j ) = π(µ,s) .

(2.2)

The representation π(µ,s) of K A N realized on the Fock space F s (V), as follows:

π(µ,s) (e iθ , v, tA)f (w) = e iθ.µ e ist-s 4 |ϕ(v)| 2 -s 2 w.ϕ(v) f (e -iθ ϕ(v) + e -iθ w)
where e iθ ∈ K A , v, w ∈ V and f ∈ F s (V). Now, let ξ = m∈N n c m h m,s be a smooth unit vector in F s (V). Then by Corollary 2.4, the fact (2.2) implies that there exists a sequence of smooth unit vectors ξ j = m∈N n c m,j h m,s j in F s j (V), such that lim j-→+∞ dπ (µ j ,s j ) (T )ξ j , ξ j = dπ (µ,s) (T )ξ, ξ (2.3) and for all p ∈ {1, . . . , n},

lim j-→+∞ dπ (µ j ,s j ) (L p )ξ j , ξ j = dπ (µ,s) (L p )ξ, ξ (2.4) lim j-→+∞ dπ (µ j ,s j ) (E p )ξ j , ξ j = dπ (µ,s) (E p )ξ, ξ . (2.5)
Taking into account Lemmas 2.5, and 2.6 together with (2.5), we obtain lim j-→+∞ s j = s (2.6) and for all p ∈ {1, . . . , n},

lim j-→+∞ s j m∈N n m p |c m,j | 2 = s m∈N n m p |c m | 2 (2.7) lim j-→+∞ µ j p - m∈N n m p |c m,j | 2 = µ p - m∈N n m p |c m | 2 . (2.8)
From the above convergence, we easily see that lim j-→+∞ µ j p = µ p for all p ∈ {1, . . . , n}. i.e,.

µ j = µ for j large enough. Conversely, let us assume that lim j-→+∞ s j = s and µ j = µ for large j. Let

f ∈ C ∞ c (K A N ), we have C π(µ j ,s j ) h 0,s j , f = K A N f (e iθ , v, tA)e iµ j .θ e is j t-s i 4 |ϕ(v)| 2 ( s j 2π ) n × V e - s j 2 (w.ϕ(v)+|w| 2 )) dwdθdvdt.
Using Lebesgue's theorem, one can see that C π(µ j ,s j ) h 0,s j , f j converges to C π(µ,s) h 0,s , f . According to Theorem 2.3, we conclude that lim j-→+∞ π(µ j ,s j ) = π(µ,s) . Finally, we refer to the relation (2.2), we can see that the last convergence implies that lim j-→+∞ π (µ j ,s j ) = π (µ,s) .

This completes the proof of the theorem.

generic admissible coadjoint orbits of G

As usual, we continue to use the notations of the previous Sections. We put ψ s := (µ, (0, sA)) ∈ g * and we denote by G ψs the stabilizer of ψ s in G under the coadjoint action of G. Then we have G ψs = {(k, x, X) ∈ G, Ad * (k, x, X)(µ, 0, sA) = (µ, 0, sA)} = {(k, x, X) ∈ G, k ∈ K A and Ad * (k)µ = µ}.

Then G ψs = K ψs N ψs , then ψ s is aligned (see [START_REF] Lipsman | Orbit theory and harmonic analysis on Lie groups with co-compact nilradical[END_REF]). Note that ψ s is an admissible linear form in the sense of Lipsman. A linear form ψ ∈ g * is called admissible if there exists a unitary character χ of the identity component of G ψ such that dχ = iψ |g ψ . According to Lipsman (by [7, p. 23]) (compare [START_REF] Lipsman | Orbit theory and harmonic analysis on Lie groups with co-compact nilradical[END_REF]), the representation of G obtained by holomorphic induction from (µ, 0, sA) is equivalent to the representation π (µ,s) . We denote by g ‡ ⊂ g * the set of all admissible linear forms on g. The quotient space g ‡ /G is called the space of admissible coadjoint orbits of G. The admissible coadjoint orbits passing through the linear form ψ s are called generic orbits of G and we denote by (g ‡ /G) gen the space of all the generic orbits of G. Let O G (µ,s) be the admissible coadjoint orbit of G contains the linear form ψ s . Recall that O G (µ,s) is given by O G (µ,s) = k. µ+(x, X)×(0, sA)+ 1 2 (x, X)×ad * N (x, X)(0, sA), Ad * N (x, X)(0, sA) k ∈ K, (x, X) ∈ N and (g ‡ /G) gen is the union of all the generic orbits O G (µ,s) . 

Then

Definition 2 . 1 .

 21 A point ∈ O is said to be aligned if | w O = 0. Note that this gives us a canonical identification w O O. The action of K on n * sends aligned points to aligned points, which implies that the stabilizer K O = {k ∈ K : k.O = O} of a coadjoint orbit coincide with the stabilizer K = {k ∈ K : k. = } of its aligned point. (see Section 3.2 of [5] for more details).

  σ s ∈ N type I representations. These orbits depond only on the positif real number s > 0, we denote them O N sA • Type II Orbits: For s = 0, the corresponding coadjoint orbits O N b contains only the aligned point = (b, 0) where b ∈ V. We call such coadjoint orbits type II orbits and the corresponding representations χ b ∈ N type II representations. Since these orbits depond only on the parameter b ∈ V, we denote them O N b . We turn our attention to the type I coadjoint orbits O N sA associated to the aligned point = (0, sA) and corresponding type I representations σ s ∈ N . Recall that the coadjoint orbit O N sA has the form O N sA = V ⊕ sA. Note that the representation σ s has codimension 1 kernel in z, and factors through N O N sA = exp(n/ ker( | z )).

Corollary 2 . 4 .|s| 2π n 2 |s| |m| 2

 2422 ([6]) Let (π k , H π k ) k∈N be a sequence of irreducible unitary representations of the Lie group G.If (π k ) k converges to π in G then for every unit vector ξ in H ∞ π , there exist ξ k ∈ H ∞ π k , k ∈ N, such that the numerical sequence ( dπ k (D)ξ k , ξ k ) k converges to dπ(D)ξ, ξ , for each D ∈ U(g).Let B s := {h m,s , m = (m 1 , . . . , m n ) ∈ N n } be the orthonormal basis of the Fock space F s (V) defined by the Hermite functions h m,s (z) = |m| m! z m with |m| = m 1 + . . . + m n , m! = m 1 ! . . . m n ! and z m = z m 1 1 .

  lim n-→+∞ s n = s n A = sk -1 .A = s (3.5)On examining Corollary 3.3, one naturally asks the following question: Is that the orbit mappingg ‡ /G O G π ←→ π ∈ G is a homeomorphism?Unfortunately, we are not able to answer this question at present. So we can state the following Conjecture.Conjecture 3.4. Let G = K N, such that (K, N ) is a nilpotent Gelfand pair satisfies Definitions 1.1 and 1.2. Then the orbit mappingg ‡ /G O G π ←→ π ∈ G is a homeomorphism.

A useful result is now given. Lemma 3.1. Let p G : g * -→ g * /G be the canonical projection. We equip g * /G with the quotient topology, i.e., a subset V in g * /G is open if and only if p -1 G (V ) is open in g * . Therefore, a sequence (O G n ) n of elements in g * /G converges to the orbit O G in g * /G if and only if for any l ∈ O G , there exist

A proof of this Lemma can be found in [7, p. 17]. Now, we are able to prove the following.

, if and only if (s n ) n converges to s and µ n = µ for n large enough.

Proof. We assume that (s n ) n converges to s and µ n = µ for n large enough. Applying Lemma 3.1 we easily see that

n converges to µ, (0, sA) . Then we obtain

n converges to (0, sA). Compactness of K allows us to assume that the sequence {k n } n converges to k ∈ K. So we obtain lim n-→+∞

and k ∈ K A . Hence there exists w in the Weyl goup W K A associated to K A , such that Ad * K (k -1 )µ = w.µ. According to (3.2), we get lim n-→+∞

for all U ∈ k A . By an easy calculation we obtain the following lim n-→+∞

for all U ∈ k A . Passing to subsequence if necessary, we may assume without loss of generality that for each U ∈ k A , the numerical sequence

. From (3.5) and (3.6), we deduce that the sequence (µ n ) n converges and we can put

Then we can write

If t 0 = 1, we obtain w.µ -ν = s 2 . This implies that s ∈ 2N, which is absurd. It remains to take t 0 ∈]0, 1[, hence we obtain from (3.7), that 2 w.µ -ν 1 s ≤ t 0 = 0. (3.9) Using (3.10), we deduce that s > 1, which is also contradicted the fact that s ∈ R >0 . From (3.5), we conclude that µ n = w.µ for n large enough. Since the weights µ n and µ are contained in the set iC + K A (here C + K A denotes the positive Weyl chamber associated to the Weyl group W K A [START_REF] Helgason | Differential geometry, Lie groups and symmetric spaces[END_REF]) and since each W K A -orbit in k * A intersects the closure iC + K A in exactly one point, it follows that µ n = µ for n large enough.

From Theorem 3.1 together with Theorem 3.2, we obtain immediately the following consequence.

Corollary 3.3. The topological space ( G) gen equipped with the Fell topology is homeomorphic to (g ‡ /G) gen endowed with the quotient topology.