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Abstract—It is extremely useful to exploit labeled datasets
not only to learn models but also to improve our understanding
of a domain and its available targeted classes. The so-called
subgroup discovery task has been considered for a long time.
It concerns the discovery of patterns or descriptions, the set of
supporting objects of which have interesting properties, e.g.,
they characterize or discriminate a given target class. Though
many subgroup discovery algorithms have been proposed for
transactional data, discovering subgroups within labeled se-
quential data and thus searching for descriptions as sequential
patterns has been much less studied. In that context, exhaustive
exploration strategies can not be used for real-life applications
and we have to look for heuristic approaches. We propose the
algorithm SeqScout to discover interesting subgroups (w.r.t.
a chosen quality measure) from labeled sequences of itemsets.
This is a new sampling algorithm that mines discriminant
sequential patterns using a multi-armed bandit model. It
is an anytime algorithm that, for a given budget, finds a
collection of local optima in the search space of descriptions
and thus subgroups. It requires a light configuration and it is
independent from the quality measure used for pattern scoring.
Furthermore, it is fairly simple to implement. We provide
qualitative and quantitative experiments on several datasets
to illustrate its added-value.

Keywords-Pattern Mining, Subgroup Discovery, Sequences,
Upper Confidence Bound.

I. INTRODUCTION

In many data science projects we have to process la-
beled data and it is often valuable to discover patterns that
discriminate the class values. This can be used to support
various machine learning techniques the goals of which
are to predict class values for unseen objects. It is also
interesting per se since the language for descriptions is,
by design, readable and interpretable by analysts and data
owners. Among others, it can support the construction of
new relevant features. The search for such patterns has been
given different names like subgroup discovery, emerging
pattern or contrast set mining [1]. We use hereafter the
terminology of the subgroup discovery framework [2].

Labeled sequential data are ubiquitous and subgroup
discovery can be used throughout many application domains
like, for instance, text or video data analysis, industrial
process supervision, DNA sequence analysis, web usage
mining, video game analytics, etc. Let us consider an exam-
ple scenario about the maintenance of a cloud environment.
Data generated from such a system are sequences of events.
Applying classification techniques helps answering to “will
an event occur” (See, e.g., [3]), while applying sequential
event prediction helps determining “what event will occur”
(See, e.g., [4]). Nevertheless, another need is to explain, or
at least, to provide hypotheses on the why. Addressing such
a descriptive analytics issue is the focus of our work. Given
data sequences, labeled with classes, we aim at automatically
finding discriminative patterns for these classes. Given our
example, sequences of events could be labeled by breakdown
presence or absence: the goal would be to compute patterns
“obviously occurring with breakdowns”. Such patterns pro-
vide valuable hypotheses for a better understanding of the
targeted system and it can support its maintenance.

Let us now discuss research issues when considering
subgroup discovery on labeled data. Given a dataset of object
descriptions (e.g., objects described by discrete sequences),
a sequential pattern is a generalization of a description that
covers a set of objects. An unusual class distribution among
the covered objects makes a pattern interesting. For exam-
ple, when a dataset has a 99%-1% distribution of normal-
abnormal objects, a pattern covering objects among which
50% are abnormal is highly relevant (w.r.t. a quality measure
like the Weighted Relative Accuracy measure WRAcc [5]).
However, such patterns cover generally a small number
of objects. They are difficult to identify with most of the
algorithms that exploit an exhaustive exploration of the
search space with the help of a minimal frequency constraint
(See, e.g., SD-MAP [6]). Therefore, heuristic approaches
that are often based on beam search or sampling techniques
are used to find only subsets of the interesting patterns. An



open problem concerns the computation of non-redundant
patterns, avoiding to return thousands of variations for
Boolean and/or numerical patterns [7]. Heuristic methods
for sequential data have not yet attracted much attention.
[8] introduced a sampling approach that is dedicated to the
frequency measure only. A promising recent proposal is [9]:
the sampling method misère can be used for any quality
measure when exploiting sequences of events. Their key
idea, is to draw patterns as strict generalizations of object
descriptions while a time budget enables it, and to keep a
pool of the best non redundant patterns found so far. Such a
generic approach has been the starting point of our research
though we were looking for further quality assessment of
discovered subgroups.

Our contribution provides a search space exploration for
labeled sequences of itemsets (and not just items) called
SeqScout. It is based on sampling guided by a multi-
armed bandit model followed by a generalization step,
and a phase of local optimization. We show that it gives
better results than a simple adaptation of misère with
the same budget when considering huge search spaces. Our
algorithm has several advantages: it gives results anytime
and it benefits from random search to limit redundancy of
results and to increase subgroup diversity. It is rather easy
to implement and can be parallelized. It is agnostic w.r.t. the
used quality measure and it finds local optima only (w.r.t.
the considered quality measure).

Section II discusses related work. We formally define the
problem in Section III. Section IV describes SeqScout.
Section V presents an empirical study on several datasets,
including applications on Starcraft II data (game analytics)
and abstracts of articles published in the Journal of Machine
Learning and Research.

II. RELATED WORK

Sequential pattern mining [10] is a classical data min-
ing task. It remains a challenging task due to the size
of the search space. For instance, Raı̈ssi and Pei [11]
have shown that the number of sequences of length k is
wk =

∑k−1
i=0 wi

( |I|
k−i
)
, with |I| being the number of possible

items. As an example, if we consider the dataset promoters
[12], |I| = 4 and k = 57 (see Table II), the size of the
search space is approximately 1041. Various methods have
been proposed to mine interesting sequential patterns. We
review them briefly and we discuss their relevancy when
considering our need for discriminative patterns.

A. Enumeration-based methods

Many enumeration techniques enable to mine patterns
from Boolean, sequential and graph data [13]. They can be
adapted for the case of discriminative pattern mining. For
instance, the SPADE algorithm [14] has been adapted for
sequence classification based on frequent patterns [15]. The
main idea of such methods is to visit each candidate pattern

only once while pruning large parts of the search space.
Indeed, we know how to exploit formal properties (e.g.,
monotonicity) of many user-defined constraints (and not
only the minimal frequency constraint). The quality measure
is thus computed either during or after the discovery of all
frequent patterns [16]. This is inefficient for the discovery of
the best discriminative patterns only. To overcome this lim-
itation and to help pruning the search space, upper bounds
on the quality measure can be used. However, they remain
generally too optimistic and are specific to a particular
measure (See, e.g., [17]). Moreover, enumeration techniques
coupled to upper bounds aim at solving the problem of
finding the best pattern in the search space, and not the best
pattern set.

B. Heuristic methods

An interesting current trend to support pattern discovery
is to avoid exhaustive search and to provide anytime sets
of high quality patterns, ideally with some guarantees on
their quality. Examples of such guarantees are the distance
to the best solution pattern [18] or the guarantee that the
best solution can be found given a sufficient budget [7]. Let
us discuss some of the heuristic approaches that have been
proposed so far.

Beam search is a widely used heuristic algorithm. It
traverses the search space level-wise from the most general
to the most specific patterns and it restricts each level to a
subset of non redundant patterns of high quality [19]. The
greedy nature of beam search is its major drawback. Boley
et al. proposed a two-step sampling approach giving the
guarantee to sample patterns proportionally to different mea-
sures: frequency, squared frequency, area, or discriminativity
[20]. However this method only works on those measures.
Diop et al. proposed an approach which guarantees that the
probability of sampling a sequential pattern is proportional
to its frequency [8]. It focuses on the frequency measure
only. Egho et al. have proposed the measure agnostic method
misère [9]. Given a time budget, their idea is to generate
random sequential patterns covering at least one object while
keeping a pool of the best patterns obtained so far. It
provides a result anytime, empirically improving over time.

Sequential pattern mining can be modeled as a multi-
armed bandit problem enabling an exploitation/exploration
trade-off [21]. Each candidate sequence is an “arm” of a
bandit. For instance, Bosc et al. have developed such a
game theory framework using Monte Carlo Tree Search
to support subgroup discovery from labeled itemsets [7].
They proposed an approach based on sampling, where each
draw improves the knowledge about the search space. Such
a drawn object guides the search to achieve an exploita-
tion/exploration trade-off.

To the best of our knowledge, the problem of mining dis-
criminative sequences of itemsets with sampling approaches
has not been addressed yet in the literature. We introduce our

https://archive.ics.uci.edu/ml/datasets/Molecular+Biology+(Promoter+Gene+Sequences)


SeqScout method that computes top-k non-redundant dis-
criminative patterns, i.e., tackling a NP-hard problem [22].
For that purpose, we want hereafter to maximize the well
known quality measure called WRAcc [5]. Even though
we focus on it, our method is generic enough for using
any quality measure, without requiring specific properties.
SeqScout does not require parameter tuning, unlike Beam
Search. In contrast to misère, we have the guarantee to
find local optima thanks to a hill-climbing search.

III. NON-REDUNDANT SUBGROUP DISCOVERY:
PRELIMINARIES AND PROBLEM STATEMENT

Let I be a set of items. Each subset X ⊆ I is called
an itemset. A sequence s = 〈X1...Xn〉 is an ordered list
of n > 0 itemsets. The size of a sequence s is denoted n,
and l =

∑n
i=1 |Xi| is its length. A database D is a set of

|D| sequences (See an example in Table I). Given a set of
classes C, we denote by Dc ⊆ D the set of sequences in D
that are labeled by c ∈ C.

Definition 1 (Subsequence). A sequence s = 〈X1...Xns
〉

is a subsequence of a sequence s′ = 〈X ′1...X ′n′
s
〉, denoted

s v s′, iff there exists 1 ≤ j1 < ... < jns
≤ n′s such

that X1 ⊆ X ′j1 ...Xns
⊆ X ′jns

. In Table I, 〈{a}{b, c}〉 is a
subsequence of s1 and s2.

Definition 2 (Extent, support and frequency). The extent of
a sequence s is ext(s) = {s′ ∈ D | s v s′}. The support of a
sequence s is supp(s) = |ext(s)|. Its frequency is freq(s) =
supp(s)/|D|. In Table I, ext(〈{a}{b, c}〉) = {s1, s2}.

Definition 3 (set-extension). A sequence sb is a set-
extension of sa = 〈X1X2...Xn〉 by x if ∃i, 1 ≤ i ≤ n + 1
such that sb = 〈X1...{x}i...Xn+1〉. In other words, we have
inserted an itemset Xi = {x} in the ith position of sa.
〈{a}{c}{b}〉 is a set-extension of 〈{a}{b}〉.

Definition 4 (item-extension). A sequence sb is an item-
extension of sa = 〈X1X2...Xn〉 by x if ∃i, 1 ≤ i ≤ n
such that sb = 〈X1...Xi ∪ {x}, ..., Xn+1〉. 〈{a, b}{b}〉 is an
item-extension of 〈{a}{b}〉.

Definition 5 (Reduction). A sequence sb is a reduction of
sa if sa is an set-extension or item-extension of sb.

Definition 6 (Quality measure). Let S be the set of all sub-
sequences. A quality measure ϕ is an application ϕ : S → R
that maps every sequence s ∈ S with a real number to reflect

Table I: An example database D.

id s ∈ D c
s1 〈{a}{a, b, c}{a, c}{d}{c, f}〉 +
s2 〈{a, d}{c}{b, c}{a, e}〉 +
s3 〈{e, f}{a, b}{d, f}{c}{b}〉 −
s4 〈{e}{g}{a, b, f}{c}{c}〉 −

its interestingness (quality score). For instance, Precision,
defined by P(s→ c) = supp(s,Dc)

supp(s,D) , is a quality measure.

Definition 7 (Local Optimum). Let N(s) be the neighbor-
hood of s, i.e., the set of all item-extensions, set-extensions
and reductions of s. r? is a local optimum of S w.r.t. the
quality measure ϕ iff ∀r ∈ N(r?), ϕ(r?) ≥ ϕ(r).

Definition 8 (Non θ-redundant patterns). A set of patterns,
(also called subgroups or subsequences here), Sp ⊆ S is
non θ-redundant if given θ ∈ [0; 1] and ∀s1, s2 ∈ Sp, where
s1 6= s2, we have: sim(s1, s2) ≤ θ. In the following, we
use the Jaccard index as a similarity measure:

sim(s1, s2) =
|ext(s1) ∩ ext(s2)|
|ext(s1) ∪ ext(s2)|

.

Problem Statement (Non-redundant subgroup set discov-
ery). For a database D, an integer k, a real number θ, a
similarity measure sim, and a target class c ∈ C, the non
redundant subgroup discovery task consists in computing the
set Sp of the best non θ-redundant patterns of size |Sp| ≤ k,
mined w.r.t the quality measure ϕ.

IV. METHOD DESCRIPTION

SeqScout is a sampling approach that exploits general-
izations of database sequences, and search for local optima
w.r.t. the chosen quality measure. Fig. 1 provides a global
illustration for the method1.

A. General overview

The main idea of the SeqScout approach is to consider
each sequence of the labeled data as an arm of a multi-armed
bandit when selecting the sequences for further generaliza-
tion using the Upper Confidence Bound (UCB) principle
(See Algorithm 1). The idea of the UCB is to give a score
to each sequence that quantifies an exploitation/exploration
trade-off, and to choose the sequence having the best one.

First (Lines 2-4), priority queues, π and scores, are
created. π stores encountered patterns with their quality,
and scores keeps in memory the list of UCB scores of
each sequence of the dataset, computed by using Equation 1
(See Section IV-B). data+ contains the list of all sequences
of the data set labeled with the target class. Indeed, taking
sequences having the target class will lead to generaliza-
tions having at least one positive element. Then, the main
procedure is launched as long as some computational budget
is available. The best sequence w.r.t UCB is chosen (Line
9). This sequence is ‘played’ (Line 10), meaning that it is
generalized (See Section IV-C) and its quality is computed
(See Section IV-G). The created pattern is added to π

1In the context of sequential pattern mining, the search space is a priori
infinite. However, we can define the border of the search space (the bottom
border in Fig. 1) by excluding patterns having a null support. We can easily
prove that each element of this border is a sequence within the database.
Therefore, the search space shape depends on the data.



(Line 11). Finally, the UCB score is updated (Line 12). As
post processing steps, the top-k best non-redundant patterns
are extracted from scores using the filtering step (See
Section IV-D). Finally, these patterns are processed by a
local optimization procedure (See Section IV-E). Moreover,
SeqScout needs other modules that concern the selection
of the quality measure (See Section IV-F) and the quality
score computation (See Section IV-G).

Figure 1: Illustration of SeqScout.

B. Sequence selection

We propose to model each sequence of the dataset as an
arm of a multi-armed bandit slot machine. The action of
playing an arm corresponds to generalizing this sequence
to obtain a pattern, and the reward then corresponds to the
quality of this pattern. Following an exploitation/exploration
trade-off, sequences leading to bad quality patterns will be
avoided, leading to the discovery of better ones.

The problem of the multi-armed bandit is well known
in the Game Theory literature [23]. We consider a multi-
armed bandit slot machine with k arms, each arm having
its own reward distribution. Our problem is then formulated
as follows. Having a number N of plays, what is the best
strategy to maximize the reward? The more an arm is played,
the more information about its reward distribution we get.
However, to what extent is it needed to exploit a promising
arm, instead of trying others that could be more interesting
in the long term (explore)? Auer et al. proposed a strategy
called UCB1 [21]. The idea is to give each arm a score, and
to choose the one that maximizes it:

UCB1(i) = x̄i +

√
2ln(N)

Ni
, (1)

where x̄i is the empirical mean of the ith arm, Ni is
the number of plays of the ith arm and N is the total
number of plays. The first term encourages the exploitation

Algorithm 1 SeqScout

1: function SEQSCOUT(budget)
2: π ← PriorityQueue()
3: scores← PriorityQueue()
4: data+ ← FilterData()
5: for all sequence in data+ do
6: scoresucb.add(sequence,∞)
7: end for
8: while budget do
9: seq, qual,Ni ← scores.bestUCB()

10: seqp, qualp ← PlayArm(seq)
11: π.add(seqp, qualp)

12: scores.update(seq,
Ni∗qual+qualp

Ni+1 , Ni + 1)
13: end while
14: π.add(Optimize(π))
15: return π.topKNonRedundant()
16: end function
17:
18: function OPTIMIZE(π)
19: topK ← π.topKNonRedundant()
20: for all pattern in topK do
21: while pattern is not a local optima do
22: pattern, qual← BestNeighbor()
23: end while
24: end for
25: return pattern, qual
26: end function

of arms with good reward, while the second encourages the
exploration of less played arms by giving less credit to the
ones that have been frequently played.

Performing an exploitation/exploration trade-off for pat-
tern mining has already been applied successfully to itemsets
and numerical vectors by means of Monte Carlo Tree Search
[7]. When dealing with a huge search space, using sampling
guided by such a trade-off can give good results. However,
contrary to [7], we consider the search space of extents, not
intents. Exploring the extent search space guarantees to find
patterns with non null support while exploring the intent
search space leads towards multiple patterns with a null
support. This is a crucial issue when dealing with sequences.

C. Pattern generalization

After the best sequence w.r.t. UCB1 is chosen, it is
generalized, meaning that a new more general pattern is
built. It enables to build a pattern with at least one positive
element. Indeed, most of the patterns in the search space
have a null support [11]. SeqScout generalizes a sequence
s in the following way. It iterates through each item within
each itemset Xi ∈ s, and it removes it randomly according



to the following rule:{
remain, if z < 0.5
remove, if z ≥ 0.5

, where z ∼ U(0, 1).

D. Filtering Step

To limit the redundancy of found patterns, a filtering
process is needed. We adopt a well-described set covering
principle from the literature (See, e.g., [7], [24]), summa-
rized as follows. First, we take the best element, and then
we remove those that are similar within our priority queue π.
Then, we take the second best, and continue this procedure
until the k best non-redundant elements are extracted.

E. Local optimum search

Finally, a local optimum search is launched w.r.t. Defi-
nition 7. Various strategies can be used. The first possible
strategy is the Steepest Ascend Hill Climbing. It computes
the neighborhood of the generalized pattern, i.e., all its item-
extensions, set-extensions and reductions. Then, it selects
the pattern among those of the neighborhood maximizing
the quality measure. This is repeated until there is no
more patterns in the neighborhood having a better quality
measure. Another possible strategy is the Stochastic Hill
Climbing: a neighbor is selected at random if its difference
with the current one is large “enough”. Notice however that
it introduces a new parameter. Depending on the dataset,
the branching factor can be very important. Indeed, for m
items and n itemsets in the sequence, there are m(2n+ 1)
patterns in its neighborhood (See Theorem 1). To tackle this
issue, we use First-Choice Hill Climbing [25]. We compute
the neighborhood until a better pattern is created, then we
directly select it without enumerating all neighbors.

Theorem 1. For a sequence s, let n be its size, l its
length, and m the number of possible items, the number
of neighbors of s, denoted |N(s)|, is m(2n+ 1).

Proof: The number of item-extensions is given by:

|Iext| =
n∑

i=1

|I| − |Xi| = nm−
n∑

i=1

|Xi| = nm− l.

We have now to sum the number of reductions, set-
extensions and item-extensions:

|N(s)| = l +m(n+ 1) + |Iext| = m(2n+ 1).

F. Quality measure selection

The choice of the quality measure ϕ is application de-
pendent. Our approach can deal with any known measures
that support class characterization, such as, e.g., the F1
score, informedness or the Weighted Relative Accuracy [5].
The later, the WRAcc, is commonly used for discriminant
pattern mining and subgroup discovery. It compares the
proportion of positive elements (i.e., sequences labeled with

the target class) to the proportion of positive elements in
the whole database. Let c ∈ C be a class value and s be a
sequence:

WRAcc(s, c) = freq(s)×
(
supp(s,Dc)

supp(s,D)
− |Dc|
|D|

)
.

It is a weighted difference between the precisions P(s→ c)
and P(〈〉 → c). The weight is defined as freq(s) to avoid
the extraction of infrequent subgroups. Indeed, finding very
specific subgroups covering one positive element would re-
sult in a perfect quality value but a useless pattern. WRAcc
value ranges in [-0.25, 0.25] in the case of a perfect balanced
data set, i.e., containing 50% of positive elements.

We consider objective quality measures that are based on
pattern support in databases (whole dataset, or restricted to
a class). Using random draws makes it particularly difficult
as each draw is independent: we cannot benefit from the
data structures that are so efficient for classical exhaustive
pattern mining algorithms do (See, e.g., [26]).

G. Efficient computation of quality scores

To improve the time efficiency of support computing,
bitset representations have been proposed. For instance,
SPAM [26] uses a bitset representation of a pattern when
computing an item- or set-extension at the end of a sequence.
In our case, we consider that an element can be inserted
anywhere. Therefore, we propose a bitset representation that
is independent from the insertion position. Its main idea lies
in keeping all bitset representations of encountered itemsets
in a hash table (memoization), and then combining them
to create the representation of the desired sequence. The
main idea is given in Fig. 2. Assume we are looking for
the bitset representation of 〈{ab}, {c}〉. Let 〈{c}〉 be an
already encountered pattern (i.e., its representation is known)
while 〈{ab}〉 was not. This can not be handled by the
SPAM technique as a new element has to be added before
a known sequence. Our algorithm will first try to find the
bitset representation of 〈{ab}〉. As it does not exist yet, it
will be generated and added to the memoization structure.
Then, position options for the next itemset are computed
(Line 2 in Fig. 2). The latter is then combined with a bitset
representation of 〈{c}〉 using bitwise AND (Line 4). The
support of the generated sequence can then be computed.

V. EXPERIMENTS

We report an extensive empirical evaluation of
SeqScout using multiple datasets. All the experiments
were performed on a machine equipped with Intel Core
i7-8750H CPU with 16GB RAM. Algorithms mentioned
hereafter are implemented in Python 3.6.

Datasets: We perform the evaluation using some
benchmark datasets that are well known in the pattern
mining community, namely aslbu [27], promoters [12],
blocks [12], context [12], splice [12], and skating [28].

https://archive.ics.uci.edu/ml/datasets/Molecular+Biology+(Promoter+Gene+Sequences)
https://archive.ics.uci.edu/ml/datasets/Page+Blocks+Classification
https://archive.ics.uci.edu/ml/datasets/Protein+Data
https://archive.ics.uci.edu/ml/datasets/Molecular+Biology+(Splice-junction+Gene+Sequences)


Figure 2: Bitset representation and support computing.

We also apply our algorithm on the real life dataset sc2
that has been used in [16]. It was extracted from Starcraft
IIa famous Real Time Strategy (RTS) game. The goal of
each Starcraft match is to destroy units and buildings of the
opponent. Three different factions exist, each with its own
features (i.e., combat units, buildings, strategies). Roughly
speaking, there is a duality between economy and military
forces. Investing in military forces is important to defend or
attack an opponent, while building economy is important to
have more resources to invest into military forces. Sequences
in sc2 correspond to the buildings constructed during a
game, and the class corresponds to the winner’s faction.
Once the target class (i.e., the winning faction) has been
chosen, our algorithm will look for patterns of construction
that characterize the victory of this faction.

Moreover, we use jmlr, a dataset consisting of abstracts
of articles published in the Journal of Machine Learning
Research [29]. Table II summarizes the statistics of datasets.

Baselines: We are not aware of available algorithms
that address the problem of discriminative pattern mining
in sequences of itemsets but several exist for processing
sequences of events. Therefore, we compare SeqScout to
two algorithms that we have modified to tackle sequences
of itemsets, namely misère [9] and BeamSearch [24].
First, we implemented a simple extension of misère [9].
Second, we implemented a sequence-oriented version of
a beam-search algorithm, denoted BeamSearch. To deal
with sequences of itemsets, we consider item-extensions
and set-extensions at each given depth. Moreover, for the
sake of non-redundancy in the returned patterns, we modify
its best-first search nature so that the expanded nodes get
diverse, as defined in [24]. Indeed, without this modification,
BeamSearch selects directly the best patterns at each level,
that are often redundant. It may lead to a situation where
almost all patterns are removed in the non-redundancy post-
processing step, giving rise to solutions with less than k
elements.

Settings: If not stated otherwise, we use the follow-
ing settings. Each algorithm has been launched 5 times,
and the reported results are averaged over these runs. For
BeamSearch, we empirically set the parameter width =

Figure 3: WRAcc of top-5 best patterns (10K iterations)

50. For all algorithms, we set θ = 0.5, time budget =∞,
iteration num = 10, 000, and top k = 5. Note that
instead of giving a fixed time budget for running an al-
gorithm on each dataset, we chose to limit the number of
iterations iteration num, one iteration corresponding to
a single computation of the quality measure. Indeed, this
computation is the most time consuming one: it needs for
computing the extent w.r.t. the whole dataset. Therefore,
using the same time budget on different datasets would not
provide a fair comparison: having 50,000 iterations on a
small dataset versus 50 on a complex one with the same
time budget is not interesting.

A. Performance evaluation using WRAcc

To assess the performance of the algorithms, let us first
use the mean of the WRAcc of the top-k non redundant
patterns given by algorithms misère, BeamSearch and
SeqScout. Fig. 3 provides the comparative results. Our ap-
proach gives better results on the majority of datasets. More-
over, it remains quite stable, contrarily to BeamSearch
which can be sometimes fairly inefficient (See on splice).

Table II: Datasets

Dataset |D| |I| lmax Search Space Size
aslbu [27] 441 124 27 4.45 ∗ 1060

promoters [12] 106 4 57 1.58 ∗ 1041
blocks [12] 210 8 12 2.74 ∗ 1012
context [12] 240 47 123 5.24 ∗ 10224
splice [12] 3,190 8 60 3.28 ∗ 1062
sc2 [16] 5,000 30 30 6.48 ∗ 1048

skating [28] 530 41 120 1.15 ∗ 10212
jmlr [29] 788 3,836 228 1.84 ∗ 10853

https://starcraft2.com
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Table III: Mean values of measures for top-5 patterns.

Dataset Informedness F1

misere BeamS SeqScout misere BeamS SeqScout

aslbu 0.195 0.198 0.198 0.505 0.505 0.505
promoters 0.039 0.089 0.113 0.512 0.545 0.580

blocks 0.399 0.394 0.393 0.381 0.370 0.382
context 0.436 0.437 0.469 0.528 0.532 0.584
splice 0.342 0.006 0.356 0.394 0.082 0.471
sc2 0.004 0.004 0.010 0.524 0.519 0.526

skating 0.396 0.385 0.415 0.361 0.380 0.389
jmlr 0.224 0.403 0.355 0.143 0.236 0.243

B. Quality with respect to the number of iterations

We discuss the result quality in terms of WRAcc over
the number of iterations. Fig. 4, 5, 6 depict the results for
the top-5 non-redundant patterns on datasets promoters,
skating and sc2. Note that for the same data, the results
may vary from run to run, due to the random component of
misère and SeqScout. It explains some fluctuations of
the quality. Nevertheless, for each iteration num setting,
SeqScout has shown better results.

C. Using other quality measures

To empirically illustrate the measure agnostic characteris-
tic of SeqScout, we have used other quality measures: F1-
score and Informedness. The results are shown in Table
III. Our algorithm gives generally better results.

D. Performance study under varying θ

We evaluate the performance of the algorithms when vary-
ing the similarity threshold θ. Fig. 7 shows the performance
on the dataset promoters. We did not included the results for
θ = 0 because it would mean finding patterns with totally
disjoint extents. It results in finding a number of patterns
lesser than k for all algorithms, such that the mean would
be misleading. We can see from the plot that SeqScout
outperforms other algorithms for all θ values.

E. Performance study under varying k (top-k)

We investigate the performance of the search for top-k
patterns when changing the k parameter. Fig. 8 shows the
results when considering the context dataset. SeqScout
gives better results. Note that the mean WRAcc decreases
for all algorithms, as increasing k leads to the selection of
lower quality patterns.

F. Quality versus search space size

We evaluate the average WRAcc of the top-5 patterns
w.r.t. the maximum length of sequences (See Fig. 9). To do
so, we have truncated the dataset to control the maximum
lengths of sequences. We demonstrate it on the skating
dataset. The plot shows that SeqScout gives better average
WRAcc values whatever the search space size is. We also
note a general decrease of quality when increasing the
search space size. Indeed, some patterns that are good for a

Table IV: Number of found local optima - 10s budget

Dataset Integer Set Bitset Variation(%)
aslbu 16,453 17,330 5

promoters 7,185 8,858 24
blocks 30,725 45,289 51
context 4,651 2,667 -47
splice 289 254 -12
sc2 943 605 -36

skating 4,001 1,283 -68
jmlr 704 31 -95

smaller maximum length can appear in negative elements for
larger maximum lengths, resulting in a decreasing quality of
patterns. Note that the opposite phenomenon can also appear.

G. Comparison to ground truth

We now compute the ratio of the WRAcc result quality
of SeqScout to the one of the ground truth. Therefore,
we have launched an exhaustive algorithm (Breadth-First-
Search) on the dataset sc2. However, the search space size
makes the problem intractable in a reasonable time. To tackle
this issue, we truncate our dataset to have sequences with a
length of 10. Note that even with this severe simplification,
our exhaustive algorithm took 35 hours to conclude, and
found more than 40 billions of patterns. As we can see in
Fig. 10, SeqScout improves over time, and it reaches more
than 90% of the best pattern set in less than 2,000 iterations
(35 seconds on our machine).

H. Sequence length

The pattern lengths on all datasets are reported in Fig. 11.
Let us consider the splice dataset: BeamSearch gives short
patterns (max 8), which is significantly less than SeqScout
and misère. This may explain why the BeamSearch
result quality is bad on this dataset (See Fig. 3). One
hypothesis could be that it does not have enough iterations
to go deep enough in the search space. Another hypothesis
is that BeamSearch cannot find good patterns having bad
parents w.r.t. WRAcc: its good patterns are short ones.

I. Bitset vs. Integer set representation

We investigate the usefulness of bitset representation by
comparing it against an integer set representation where
each item is represented by an integer. Therefore, we have
compared the number of iterations SeqScout made for a
fixed time budget on each dataset. We set time budget = 10
seconds. The results are summarized in Table IV. We can
see that the bitset representation gives a performance gain
for datasets with smaller search space size upper bound.
Indeed, context, skating, and jmlr have sequences of large
lengths, leading to large bitset representations. Those bitsets
are then split into different parts to be processed by the
CPU. If the number of splits is too large, the bitset repre-
sentation becomes inefficient, and using a classical integer
set representation is a better option.



Figure 4: WRAcc for top-5 patterns
w.r.t. iterations (skating)

Figure 5: WRAcc for top-5 patterns
w.r.t. iterations (promoters)

Figure 6: WRAcc for top-5 patterns
w.r.t. iterations (sc2)

Figure 7: WRAcc of top-5 patterns versus
similarity threshold θ (promoters)

Figure 8: WRAcc of top-k patterns vs. k
(context)

Figure 9: WRAcc of top-5 patterns versus
max length on (skating)

Figure 10: Ratio of WRAcc of SeqScout to ground
truth (sc2)



Figure 11: Length of top-5 best patterns - 10K iterations

Figure 12: Additional cost of local optima search

J. Number of iterations during the local optima search

During the local optima search step, an additional number
of iterations is made to improve the qualities of the best
patterns. In Fig. 12, we plot the ratio of the additional
iterations necessary for local optima search w.r.t. the number
of iterations given in the main search. The more iterations we
have, the more negligible the ratio is. Based on that analysis,
we may infer that a rather fair number of iterations for our
experiments is 10,000. However, note that we did not plot
the additional cost of jmlr. Indeed, in the particular case of
text data, the number of possible items is quite large, leading
to a fairly long local optima search. Consequently, we note
that SeqScout may not be the relevant choice with this
kind of dataset.

K. Quality evaluation on sc2
Given a faction, what are the best strategies to

win? SeqScout will look for patterns of construc-
tion which are characteristic to the victory of this fac-
tion. Let us consider the “Terran” faction, as an exam-
ple. For this faction, one of the best pattern found is:

〈{Hatchery}, {Supply}, {Factory}, {Supply}〉. We use
the colors as indicators of fractions: blue for “Terran” and
purple for “Zerg”. We can see that the “Terran” player
is investing in military units ({Supply} and {Factory}).
The “Zerg” player chooses to invest in its economy by
creating a {Hatchery}: she fosters the so-called late game,
sacrificing its military forces in the so-called early game. In
such a scenario, the “Terran” strikes in early game, knowing
its military advantage, and she tends to win the match.
This example shows that our algorithm can provide relevant
patterns that may be useful, e.g., to identify unbalanced
strategies [16].

L. Quality evaluation on jmlr
Let us now use a dataset consisting of abstracts of articles

from JMLR journal [29]. Sentences have been tokenized and
stemmed. Each sequence is then a sequence of items, where
an item corresponds to a stemmed word. To label sequences,
we chose to add a class ‘+’ to sequences containing a target
word, and a class ‘-’ to others. We also removed the target
word from the sequences, as it would lead to the discovery of
patterns having the target word, which is not interesting. The
goal is then to find sequences of items (words), characteristic
for the target word. The results for two target words (svm
and classif ) are presented in Table V. As we can see, these
patterns are indeed characteristics of the target words.

Table V: Top-10 non-singleton patterns given by SeqScout
on jmlr for target words: “svm” and “classif ”

svm classif
effici method classifi set
requir support classifi value
propos paper gener real
formul classif problem condit
individu show learn error
scale vector support gener

base number support paper propos
support machin present show problem classification set

machin techniqu problem appli
solut number data gener

VI. CONCLUSION

We presented the algorithm SeqScout to discover rele-
vant subgroups in sequences of itemsets. Though we are not
aware of available algorithms to solve the same problem, we
have implemented adaptations of two other algorithms when
considering sequences of itemsets, namely misère and
BeamSearch. Our experiments showed that SeqScout
gave better results, without the need for additional parameter
tuning as in the case of Beam Search. However we
can note that due to the nature of the bandit approach,
this algorithm perfoms better on dataset of reasonnable
size. Parallelizing the algorithm with an efficient program-
ming language could be interesting to tackle this issue
in future works. We plan to further improve our method



by incorporating the Monte Carlo Tree Search, a logical
evolution of bandit based method to sample the search
space. Indeed, instead of repeatedly generalizing promising
dataset sequences, it could be more interesting to generalize
promising patterns that occur in such promising sequences,
identifying the best parts of the search space as the number
of iterations increases.
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