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ABSTRACT
Information Extraction has recently been extended to new
areas by loosening the constraints on the strict definition
of the extracted information and allowing to design more
open information extraction systems. In this new domain of
unsupervised information extraction, we focus on the task
of extracting and characterizing a priori unknown relations
between a given set of entity types. One of the challenges
of this task is to deal with the large amount of candidate
relations when extracting them from a large corpus.

We propose in this paper an approach for the filtering of
such candidate relations based on heuristics and machine
learning models. More precisely, we show that the best
model for achieving this task is a Conditional Random Field
model according to evaluations performed on a manually an-
notated corpus of about one thousand relations. We also
tackle the problem of identifying semantically similar rela-
tions by clustering large sets of them. Such clustering is
achieved by combining a classical clustering algorithm and
a method for the efficient identification of highly similar re-
lation pairs. Finally, we evaluate the impact of our filtering
of relations on this semantic clustering with both internal
measures and external measures. Results show that the fil-
tering procedure doubles the recall of the clustering while
keeping the same precision.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—clustering, information filtering,
selection process

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
Traditionally, Information Extraction was considered from

the viewpoint of the MUC (Message Understanding Confer-
ences) paradigm [11]. According to this view, its objective is
to extract pieces of information from texts for filling with a
fixed role a predefined template. More recently, new forms of
information extraction have been developed under the gen-
eral idea of having more flexible ways to specify the infor-
mation to extract from texts. Such information is generally
defined as a configuration of relations between entities1 with
each relation being defined either as a handcrafted model
(frequently a set of rules) or by a set of examples of rela-
tions in context that are used to train a statistical model.
For an event such as an earthquake for instance, the extrac-
tion typically focuses on its location, its date, its magnitude
and the damages it has caused and relies on the relations
between these pieces of information and the mentions of the
event [17]. This approach is globally a supervised or goal-
driven approach. Weak forms of supervision have also been
developed in this field. Work based on bootstrapping where,
following [16], relations are first specified by a small number
of examples or linguistic patterns [1], falls into this category.
More recently, work related to the notion of distant supervi-
sion [23], in which relation examples are limited to pairs of
entities without any linguistic form for relations, is also an
example of such trend.

A reverse approach, called unsupervised information ex-
traction, has also been explored during these last years. It
aims at finding in texts relations between target entities or
types of entities without any a priori knowledge concerning
the type of the extracted relations. Furthermore, these re-
lations can be clustered according to their similarity to be
structured into meaningful sets. Work in this area can be
considered according to three main viewpoints. The first one
regards the unsupervised extraction of relations as a means
for learning knowledge. This view has been developed both
for learning “general world knowledge” through the concept
of Open Information Extraction [2] applied for large-scale
knowledge acquisition from the Web in [3] and in more re-

1Configuration that is often restricted to one relation.



In 2002, Kerry voted to authorize the use of force against Saddam in Irak.

E1 (PERSON) E2 (PERSON)

Cpre Cmid Cpost

Figure 1: Example of extracted relation

stricted domains, as the biomedical domain, where such re-
lation extraction is used for adding new types of relations
between entities in an already existing ontology [6].

The two other viewpoints are more directly related to In-
formation Extraction. The main one tackles the problem
of making it possible for users to specify their information
needs in a more open and flexible way. The On-demand
information extraction approach [26], relying on [14] and
extended by the notion of Preemptive Information Extrac-
tion [27], aims at inducing a kind of template from a set of
documents that are typically retrieved by a search engine
from queries that are representative of the information to
extract. The same perspective can be found in [19] and,
with a specific emphasis put on relation clustering, in [25].

Finally, the last viewpoint, less represented than the two
others, considers unsupervised information extraction as a
source of improvement for supervised information extrac-
tion. The supervised approach frequently depends on man-
ually annotated corpora. As the task is complex, the anno-
tation cost is high and these corpora are generally not very
large. In this context, the results of an unsupervised ap-
proach can be used to extend the coverage of models learned
from an annotated corpus. This idea is more specifically de-
veloped in [4] and is also present in [10].

Following the second viewpoint above, our work contributes
to the definition of a more flexible information extraction
scheme. Within this context, it tackles more particularly
the problem of the filtering of extracted relations. The ob-
jective of such information extraction process is to discover
new types of relations between entities by clustering rela-
tions, which requires as less noise as possible among the
extracted relations. Hence, we first focus on the filtering
procedure, whose objective is to determine whether a rela-
tion exists between two named entities in a sentence without
any a priori knowledge about its type. Then, we evaluate
the impact of such filtering on the clustering of large sets of
relations and show that it leads to double its recall with the
same precision.

2. OVERVIEW
The work we present in this article takes place in a larger

context whose global objective is to develop an unsuper-
vised information extraction process for addressing technol-
ogy watch issues such as “tracking all events involving com-
panies X and Y”. This process is based on the extraction of
relations defined initially by the co-occurrence of two named
entities in a sentence, similarly to most of the works cited in
the previous section2. The main idea behind these restric-
tions is to focus first on simple cases to counterbalance the
difficulties raised by the unsupervised nature of the global
approach. “Simple cases” means here relations whose argu-

2In some works such as [2], entities in relation are extended
to any noun phrases.

ments are rather easy to identify and relations whose linguis-
tic expression is small enough to be easily delimited and to
avoid coreference phenomena concerning their arguments.

More formally, candidate relations extracted from texts
are characterized by two different kinds of information:

• a pair of named entities (E1 and E2);

• the linguistic form of the relation. It refers more pre-
cisely to the way the relation is expressed. As relation
extraction is based on the presence of two named enti-
ties in a sentence, the linguistic form is made of three
parts of this sentence:

– Cpre: part before the first entity (E1);

– Cmid : part between the two entities;

– Cpost : part after the second entity (E2).

The core expression of the relation is generally con-
veyed by Cmid while Cpre and Cpost are more likely
to bring context elements that are used for detecting
its similarity with other relations in the perspective of
their clustering.

Figure 1 gives an example of relation with its constituents.
It should be noted that such relation has a semi-structured
form as one part of its definition – the pair of entities –
is defined with elements coming from an already existing
ontology while its other part only appears under a linguistic
form.

The unsupervised information extraction process based on
this notion of relation is defined by the following sequence
of tasks:

• analysis of documents (linguistic preprocessing);

• extraction of candidate relations;

• filtering of extracted candidate relations;

• clustering of relations according to their similarity.

The linguistic preprocessing of documents aims at extract-
ing the defining elements of relations. Hence, it includes
named entity recognition for the target types of entities but
also part-of-speech tagging and lemmatization for normaliz-
ing the three parts of the linguistic description of relations.
It is achieved by the OpenNLP tools3.

The step of candidate relation extraction involves very
limited constraints: all pairs of named entities with the tar-
get types are extracted provided that the two entities appear
in the same sentence with at least one verb between them.
Table 1 illustrates the volume of the extracted candidate
relations from a subpart of the AQUAINT-2 corpus con-
taining news articles from 18 months of the newspaper New

3http://opennlp.sourceforge.net



Figure 2: Interface for relation annotation

York Times. All our experiments in this article about rela-
tion filtering in section 3 and relation clustering in section 4
are based on this corpus and focus on relations involving
persons (per), organizations (org) or locations (loc).

Table 1: Volume of extracted relations

Relation type Number of relations
loc – loc 116,092
loc – org 57,092
loc – per 78,845
org – loc 71,858
org – org 77,025
org – per 73,895
per – loc 152,514
per – org 126,281
per – per 175,802

3. RELATION FILTERING
As a consequence of our relation extraction strategy, a sig-

nificant number of candidates do not contain a true relation
between their entities. This basic method, which can lead
to good results in specific domains ([9] shows that 79% of
extracted candidates using this heuristic are true relations
in the biomedical domain), does not seem to be selective
enough for open domain. Therefore, we added to this sim-
ple strategy a filtering procedure designed to determine the
existence of a relation between two entities in a sentence.

3.1 Filtering Heuristics
We first defined more discriminative criteria to filter out

sentences that do not contain a true relation between a pair
of entities. In this perspective, three heuristics were tested:

• elimination of relations that contain a discourse related
verb between the two entities (the list of verbs is cur-
rently limited to to say and to present). This aims
at avoiding to extract a relation between the entities
Homgren and Allen in a sentence like: “Holmgren said
Allen was more involved with the team . . . ”;

• the maximum distance between the two entities is lim-
ited to 10 words. Effective relations become very rare
beyond this empirical limit;

• only one verb is allowed between the two entities, ex-
cept auxiliary verbs (be, have and do): we discard sen-
tences with a too complex syntactic structure between
the entities as they tend to make the existence of a
relation between them less likely.

The application of these three heuristics to relation ex-
traction globally reduced the volume of candidate relations
by about 50%. Table 2 presents in more details the filtering
ratio of each relation type for a sample of 8,000 relations for
each type. For each pair of entity types, the second column
shows the numbers of relations filtered and kept using all the
heuristics, as well as the ratio of kept relations. The three
following columns give the number of filtered relations for
each individual heuristic, considering that one relation may
be filtered by more than one heuristic. The distance limit
has obviously an important filtering effect but the only-one-
verb limitation has an equally significant impact.

These filtering ratios only give quantitative information
about the reduction of relation candidates. In order to eval-
uate the efficiency of this heuristic filtering in a reliable and
feasible way, a subset of 50 randomly selected relations of
each type were manually annotated to verify their validity
with a Web interface (presented in Figure 2) generated by
applying XSLT transformations to the XML representation
of relations.

Table 3: Evaluation of filtering heuristics

Relation type
Filtered Kept

true false true false
loc – loc 1 49 (98%) 9 (18%) 41
loc – org 4 46 (92%) 8 (16%) 42
loc – per 3 47 (94%) 2 (4%) 48
org – loc 7 43 (86%) 14 (28%) 36
org – org 6 44 (88%) 20 (40%) 30
org – per 4 46 (92%) 20 (40%) 30
per – loc 13 37 (74%) 40 (80%) 10
per – org 12 38 (76%) 40 (80%) 10
per – per 5 45 (90%) 14 (28%) 36

The results of this annotation, presented in Table 3, show
that a very high percentage of filtered relations are indeed
false ones, which confirms the relevance of our filtering crite-
ria. These results also show that the ratios of false relations



Table 2: Effect of the application of filtering heuristics on a sample of 8,000 relations

Relation type filtered/kept discourse distance one verb
loc – loc 4287/3713 (46%) 440 3548 2763
loc – org 4097/3903 (49%) 488 3224 2650
loc – per 4790/3210 (40%) 1636 3352 2638
org – loc 4225/3775 (47%) 643 3324 2869
org – org 4169/3831 (48%) 627 3123 2810
org – per 4541/3459 (43%) 1541 3155 2859
per – loc 4209/3791 (47%) 905 3199 2813
per – org 3888/4112 (51%) 952 2742 2566
per – per 4444/3556 (44%) 1290 3109 2741

after filtering remain important, especially those with loc
as first named entity type. This phenomenon can be ex-
plained by the fact that, in a true relation, the first entity
should have an agent role in the sentence whereas location
names often occur at the beginning of sentences in adverbial
phrases. These cases could be detected using a deeper syn-
tactic analysis but such analysis is too costly for the amount
of data we process. Considering this observation, relations
between entities involving a loc as first entity are excluded
from the following steps.

3.2 Filtering by Machine Learning
The results of Table 3 demonstrate the utility of our filter-

ing heuristics. However, it also indicates that these heuris-
tics are not sufficient to reach a high proportion of correct
relations (i.e. high enough for the following steps of the
unsupervised information extraction process). We present
in this section an additional filtering method using statisti-
cal machine learning models. Training and test corpora for
these models were built manually by annotating relations
with the same interface as in Figure 2. More precisely, 200
relations for each of the 6 pairs of our target entity types
were randomly selected and annotated. The annotation dis-
tinguished correct relations (true), incorrect relations due
to a named entity recognition error (NEerr), and incor-
rect relations due to the absence of any effective relation
(false). An additional distinction between the nature of the
relations was also made (between attributive relations and
event-related relations) but it was not exploited in this work.
The results of this annotation are presented in Table 4.

Table 4: Results of manual annotation

Relation Type true NE errors false
org – loc 38% (77) 18% (35) 44% (88)
org – org 39% (78) 14% (28) 47% (94)
org – per 36% (72) 18% (36) 46% (92)
per – loc 51% (102) 31% (62) 18% (36)
per – org 60% (120) 18% (36) 22% (44)
per – per 41% (82) 20% (39) 40% (79)

All 44% (531) 20% (236) 36% (433)

The figures of Table 4 show that about 20% incorrect re-
lations are caused by named entity errors. These relations
were removed from the corpus to avoid introducing too much
noise in the training data. The remaining corpus was com-
posed of 964 relations, 531 of which were true and 433 were
false. The resulting set of relation instances is well-balanced

enough to avoid problems related to the training of classifiers
with unbalanced data sets.

3.2.1 Non-Structured Local Feature Models
We first tested several models based on non-structured lo-

cal features. Classically, we trained a Naive Bayes classifier,
a Maximum Entropy classifier (MaxEnt), a Decision Tree
and a Support Vector Machine classifier (SVM). The first
three models were implemented using the tools provided by
MALLET [22] while the last model was implemented with
SVMlight [18].

The same set of features was used to train these four dif-
ferent classifiers:

• type of named entities E1 and E2;

• Part-of-Speech (POS) of words between the two enti-
ties, using a binary feature for each pair < Pi, POSi >
(with Pi, the position of current word in Cmid), as well
as bigrams of POS between the two entities, using a
binary feature for each triplet < Pi, POSi, POSi+1 >;

• POS for the two words before E1 and the two words
after E2, both with unigrams and bigrams;

• POS sequence for words between E1 and E2: each pos-
sible sequence of 10 POS was encoded as a binary fea-
ture;

• number of tokens between E1 and E2;

• number of punctuation marks (comma, quotation mark,
parenthesis . . . ) between E1 and E2.

3.2.2 Sequential Model for Machine Learning Fil-
tering

As [4], we also tested a classifier based on the sequential
tagging of each word in a sentence. Our representation of
this sequential model is illustrated by Figure 3.

O NE BREL IREL NEIREL O

NE NEO O O O

Figure 3: Sequential representation of sentence an-
notation

More precisely, each word is tagged with one of the four
labels below, following the BIO encoding model introduced
by [24]:



Table 5: Evaluation of statistical classifiers

Model Accuracy Precision Recall F1-measure
Naive Bayes 0.637 0.660 0.705 0.682

MaxEnt 0.650 0.665 0.735 0.698
Decision Tree 0.639 0.640 0.784 0.705

SVM 0.732 0.740 0.798 0.767
CRF 0.745 0.762 0.782 0.771
[4] / 0.883 0.452 0.598

• O: words not related to a relation or named entity;

• NE: named entity that defines a potential relation (E1
or E2);

• B-REL: first word after E1 inside a relation;

• I-REL: continuation of a relation after B-REL.

After their tagging, sentences containing true relations are
labeled as the first configuration of Figure 3 (with a variable
number of I-REL depending on the expression of the re-
lation) whereas false relation sentences are labeled as the
second one. In practice, a well-trained classifier should not
generate configurations other than the two presented in Fig-
ure 3: for instance (O – NE – B-REL – O – O – NE – O) is
not possible since B-REL is always followed by at least one
I-REL in the training corpus.

This approach was implemented by a linear Conditional
Random Fields (CRF) model, using the Wapiti [20] tool,
and trained with the following set of features for each word
of the sentence:

• POS of the current word, the previous one and the
following one;

• bigrams of POS <POSi−1, POSi > , with i=-1,0,1 (0:
current word; -1: previous word; 1: following word);

• entity type of the current word and the 6 previous and
following words. This type is equal to null when the
word is not a named entity.

3.2.3 Evaluation of Statistical Filtering
Considering the relatively small size of the annotated cor-

pus, we used a 10-fold cross-validation to evaluate these dif-
ferent classifiers: the corpus was split into 10 equal parts,
9 of which being used for training and 1 for testing; the
procedure is repeated 10 times so that each part is used for
training and for test at least once. The results of Table 5 rep-
resent the average values on the 10 iterations of the standard
measures of Accuracy, Precision, Recall and F1-measure.

Table 5 first shows that the SVM classifier obtains the
best performance among the non-sequential models, which
is a result generally obtained by similar works about rela-
tion extraction. It also shows that the CRF classifier slightly
outperforms the SVM classifier, which confirms the advan-
tage of the sequential model. Moreover, we note a balance
between precision and recall for all types of classifiers. Com-
pared with the results of [4] on the same subject (see the last
line of the table), our results exhibit a better F1-measure,
with a much better recall and a slightly lower precision.
However, the work in [4] relies on more general entities than
only named entities, which makes the task harder. As we

have not enough room here for detailing the various rela-
tion representations and the different sets of features we
have tested, we only present those achieving the best per-
formance. However, it is interesting to notice, concerning
the entities of relations, that removing the entity type as a
feature and replacing it by a generic “NE” tag to mark the
presence of a named entity only causes a slight decrease of
the performance of the CRF classifier, with a F1-measure
equal to 0.768. This indicates a promising extensibility of
our classifier to other named entity types. Finally, as a con-
sequence of the global results of this evaluation, the CRF
model was adopted for the relation filtering part of our unsu-
pervised information extraction method in the experiments
of section 4.

3.3 Application of Relation Filtering
The extraction of relations is composed of three successive

steps:

• initial extraction, only based on the the co-occurrence
of two named entities with the target types and the
presence of at least one verb in between;

• application of three filtering heuristics for eliminating
a large number of false relations with a good precision;

• application of a machine learning filtering to distin-
guish more finely true relations from false ones.

Moreover, we observed the presence of a certain number
of identical relations coming either from articles about the
same subject or from very formatted expressions. Hence,
we completed the filtering procedure with a final deduplica-
tion step for discarding these redundant relations. As there
exists a superior boundary for the values of the similarity
measure between relations, the implementation of this fi-
nal step was based on the identification of pairs of relations
with this maximal similarity value, which was done by rely-
ing on the same approach as for the clustering of relations
in section 4 for evaluating the similarities between relations.
For relations having this maximal similarity value, only one
representative element was kept. We put this deduplication
operation as the last step of the relation extraction process
for two reasons: first, this procedure is more costly than the
other filtering operations; second, it relies on the evaluation
of relation similarity performed for relation clustering.

Table 6 shows detailed information for each step of rela-
tion filtering, starting from all candidate relations of Table 1.
We can note that this filtering put aside a large number of
the initially extracted relations but we have estimated that
only 19.9% of these discarded relations result from erroneous
decisions, with a global recall of the filtering procedure es-
timated to 0.553. Finally, the remaining volume is a priori
sufficient for the next steps of our unsupervised information



Table 6: Relation volumes after each filtering step

org-loc org-org org-per per-loc per-org per-per
initial extraction 71,858 77,025 73,895 152,514 126,281 175,802

heuristics 33,505 (47%) 37,061 (48%) 32,033 (43%) 72,221 (47%) 66,035 (52%) 78,530 (45%)

classifier CRF 16,700 (23%) 17,025 (22%) 12,098 (16%) 55,174 (36%) 50,487 (40%) 42,463 (24%)

deduplication 15,226 (21%) 13,704 (18%) 10,054 (14%) 47,700 (31%) 40,238 (32%) 38,786 (22%)

extraction process. Furthermore, as in [4], the context of our
work is the processing of large text collections characterized
by informational redundancy for which high-precision results
are preferred to avoid too much noise.

4. RELATION CLUSTERING

4.1 Method
The objective of our work is to cluster similar relations

in order to offer users a better view of existing relations
between entities as in many articles in the domain of unsu-
pervised information extraction [27, 25]. We have chosen for
this clustering an approach similar to [14]: we only consider
one level of clustering for gathering relations that share the
same meaning (semantic clustering). The definition of this
similarity of meaning is relatively loose: it does not only
represent a strict notion of paraphrase or implication but is
more related to the notion of information redundancy used
in automated summarization.

The clustering method relies on two elements: a simi-
larity measure between relations and a clustering algorithm
that uses the pairwise similarities between relations. For the
similarity measure, we chose the widely used cosine measure
and applied it to a bag-of-words representation of relations.
More precisely in our case, we only used the Cmid part of
each relation in order to focus on its core meaning rather
than on its context. The choice of the cosine measure was
also justified by the results of preliminary experiments show-
ing its superiority over the edit distance for a similar task.

Clustering algorithms often rely on a similarity matrix
which can be costly to compute, in particular for larges sets
of relations like the one we want to process (several tens
of thousands of relations), since the number of similarities
is quadratic with respect to the number of relations. Al-
gorithms such as k-means are a little less costly since they
only consider the similarities between the points and the
centroids of current clusters but they require to fixed a pri-
ori the number of classes, which is hard to evaluate in our
case (optimizing this number is possible but can lead again
to a problem of complexity). We tackled this issue by using
the All Pairs Similarity Search algorithm (APSS) [5] that
allows to compute efficiently a similarity measure such as
the cosine measure for all pairs of elements whose similarity
value is above a given threshold. The efficiency of this algo-
rithm relies on a series of optimizations in the indexing of
the elements to compare that exploit the fixed threshold and
the sparsity of the input vectors for reducing the number of
comparisons to perform. In our experiments, this thresh-
old was based on observations from the Microsoft Research
Paraphrase Corpus [8]. This corpus contains a set of sen-
tence pairs associated with an assessment indicating if they
are paraphrases or not. We computed the cosine measure
for all pairs of paraphrase sentences and chose to fix our

threshold value to 0.45, which covers 3/4 of the similarity
values between these sentences.

We then used the Markov Clustering algorithm [29] to
create the final clusters of relations from the similarity ma-
trix computed by the APSS algorithm. More precisely, this
matrix, which is rather sparse, is directly transformed into
a similarity graph by associating each relation with a node
and each non-zero similarity with a weighted edge between
two nodes. The Markov Clustering algorithm performs the
partitioning of a graph by the means of a series of random
walks on the graph. This algorithm converges quite fast in
practice, which allows to deal with large graphs, and does
not depend on a fixed number of clusters: its only parame-
ter, inflation, controls the granularity of the clusters. In our
experiments, we adopted the default inflation value of the
MCL implementation4.

4.2 Evaluation of Relation Clustering
We present in this section a quantitative evaluation of

the relation clustering. Evaluation of clustering is a hard
task because no gold-standard partitioning of the set of el-
ements is available: such a reference would be too costly to
build, considering we have tens of thousands of relations.
The usual approach in this case is to evaluate the quality of
the results obtained by manually looking at a particular set
of clustering results. A major drawback of this kind of eval-
uation is that it relies on a specific clustering configuration
and would require to perform the complete evaluation pro-
cess again if the clustering technique changes. We wanted
to have a more reproducible evaluation framework in order
to compare clustering results with and without filtering and
possibly with different filtering techniques.

We then propose to perform two evaluations of the clus-
tering: the first one is an evaluation using internal criteria;
the second one using external criteria, but only on a par-
tial reference. On one hand, internal criteria for clustering
evaluation allows to establish to which extent the clusters
obtained correspond to the similarity measures between the
relations [12]. More precisely, we use the internal criteria to
test the hypothesis that the similarities in the relation space
after filtering have a better distribution that the ones before
filtering, then leading to a better clustering. On the other
hand, external criteria allow to better take into account an
actual evaluation of whether two relations in the same clus-
ter belong to the same semantic relation. Since we do not
have the possibility to create a gold-standard for the whole
set of relations, we decided to create reference data for a
selected subset of relations and evaluate how these relations
are distributed among the different clusters.

4.2.1 Clustering Evaluation with Internal Measures
Among various internal measures for clustering evalua-

4http://micans.org/mcl



tion, we chose a measure of expected density, which is eval-
uated in [28] as the one having the best correlation with
F-measure for documents clustering (the more usual mea-
sure of the Dunn index is said to be less stable).

Given a weighted graph (V,E,w) with a node set V , an
edge set E and a weight function w, the density θ of the
graph is defined by:

θ =
ln(w(G))

ln(|V |)

with w(G) = |V | +
P
e∈E w(e) and the weight function w

defined by the relation similarity in our case.
Expected density can be computed by local and global

graph density of clustering. For a set of result clusters C =
{Ci} with Ci = (Vi, Ei, w), the expected density is defined
by:

ρ =

|C|X
i=1

|Vi|
|V | |Vi|

θi−θ

where |Vi|
|V | intends to balance the difference of size of clus-

ters. For taking into account the considerable difference of
the collection size due to the filtering phase, we defined an
expected density measure that is less dependent on the cor-
pus size by loosening the exponential factor |Vi|, which is
connected to the size of each cluster. Therefore, we used the
following definition of expected density:

ρ′ =

|C|X
i=1

|Vi|
|V |

θi
θ

A higher value of the measure ρ′ implies a better clustering
quality.

We also considered the Connectivity measure [13], another
internal measure. Connectivity evaluates how many nearest
neighbors are not clustered together. This measure is of
particular interest for us since it is based on the same sim-
ilarity graph that we are using for the clustering method.
The connectivity measure is defined by:

c =

|V |X
i=1

pX
j=1

xi,nni(j)

where p denotes how many neighbors are taken into account,
nni(j) is the jth nearest neighbor of i and xi,nni(j) equals
to 0 if i and nni(j) are in the same cluster and equals to 1
otherwise.

As shown by its formal definition, connectivity also de-
pends on corpus size. To avoid such dependence, we selected
randomly a subset of the total corpus (5,000 relations were
used for evaluation in our experiments). This measure is
inverse compared to the expected density: a lower connec-
tivity value indicates a better clustering.

Results of expected density measure and connectivity mea-
sure are presented in Table 7. The results with these two
internal measures show that the filtering phase generally im-
proves the clustering processing. Better clusters are gener-
ated from the filtered relations using the same clustering
method. The two entity pairs which do not follow the same
tendency are, for the expected density, org – loc and per
– loc. Since both share the same entity type location, this
observation probably indicates a special behavior of these
entities. Actually, as we stated in section 3, location entities

are often included in adverbial phrases. When such a case
happens, there is no real relation between the location entity
and the other entity although, with the currently used simi-
larity measure, phrases with similar location adverbials can
be clustered together and obtain a good clustering score.

4.2.2 Clustering Evaluation with External Measures
The first results with internal measures demonstrate the

interest of the filtering procedure. Then, we have tried to
confirm this interest using external measures by comparing
the clustering results with reference clusters. A partial ref-
erence has been built in three steps:

1. indexing of all relation candidates with a search engine;

2. querying of this index iteratively to locate interesting
relations;

3. creation of relation clusters manually from the results
of the queries.

More precisely, we first indexed the extracted relations
with the search engine Lucene5, using distinct fields for the
text, the named entities and the entity types. This allows us
to search relations with queries specifically targeting their
first or second named entity (E1, E2 ), the types of these
entities (T1, T2 ) or the linguistic constituents of relations
Cmid, Cpos or Cpre (see relation example in Figure 1). We
used this possibility by querying the index with various com-
binations of fields, in a first step to explore potential tar-
get relations between given named entities and entity types
(e.g. with queries such as E1=Bush,T2=loc), and then in a
second step, to explore different named entities with target
relations (e.g. with queries such as T1=per, Cmid con-
tains “visit”). After several iterations of these two steps, we
obtained a set of relations mixing a large diversity of rela-
tions together with a significant number of similar relations.
Based on these relations, we built manual clusters with a
specific Web-based annotation tool.

Currently, our gold-standard reference concentrates on the
relation type per – loc and contains 17 clusters with 253
relations, including relations such as, come from, be going to,
have a speech in, like, etc. We present below some examples
for the relation grow up in:

• Pitcher Brandon Backe, who grew up 50 miles from
here in Galveston and dreamed of pitching for the As-
tros in the postseason, displayed a veteran’s savvy with
his varying speeds.

• Chief Justice Wallace B. Jefferson, a Republican, named
Pat Priest , a retired Democratic judge from his home-
town of San Antonio, to hear the case – but not before
Jefferson’s own multiple ties to DeLay’s political oper-
ation were questioned.

• By the time he turned 10, Levine had performed as a
soloist with his hometown Cincinnati Orchestra.

External measures like Purity, Normalized Mutual Infor-
mation and Rand Index are well discussed in the literature
(e.g. [21]). Given reference clusters with N relations, Rand
Index is defined to check how all N(N − 1)/2 pairs of rela-
tions are grouped. A clustering method should assign similar

5http://lucene.apache.org



Table 7: Internal evaluation for relation clustering (best results are presented in bold)

Expected density Connectivity (p = 20)
pre-filtering post-filtering pre-filtering post-filtering

org – org 1.06 1.13 5335.7 3450.8
org – loc 1.13 1.02 4458.7 2837.6
org – per 1.09 1.17 3025.4 1532.4
per – org 1.02 1.06 5638.0 4620.0
per – loc 1.08 1.07 5632.5 4571.3
per – per 1.13 1.15 3892.7 2569.2

Table 8: External evaluation for relation type PER – LOC

phase rand index precision recall F1 TP FP FN TN purity MI NMI
pre-filtering 0.8863 0.5372 0.1271 0.2056 469 404 3221 27784 0.5540 1.6338 0.6008
post-filtering 0.8864 0.5280 0.2211 0.3117 866 774 3051 28979 0.5889 1.7216 0.6285

relations to the same cluster and separate dissimilar ones.
Hence, there are four kinds of decisions. First, a true posi-
tive (TP) decision assigns two similar relations to the same
cluster while a true negative (TN) one assigns two dissim-
ilar relations to different clusters. TP and TN are both
correct decisions. On the other hand, there are two incor-
rect decisions: false positive (FP) decisions, which assign
two dissimilar relations to the same cluster, and false neg-
ative (FN) decisions, which assigns two similar relations to
different clusters. The Rand Index measures the clustering
accuracy, which is defined by:

RandIndex =
TP + TN

TP + FP + FN + TN

F-measure can be defined in the same time, relying on the
precision P and recall R:

P =
TP

TP + FP
R =

TP

TP + FN
Fβ =

(β2 + 1)PR

β2P +R

We have computed the distribution of reference relations
in clustering results for both the pre-filtering phase and the
post-filtering phase. The results are presented in Table 8.
These results show that the filtering procedure almost dou-
bles the recall measure, from 0.1271 to 0.2211, while the pre-
cision is kept around 0.53. We can also see directly from this
table that many more pairs of truly similar relations (TP)
are found by the clustering method on the post-filtering cor-
pus than on the pre-filtering corpus.

Rather than examining all pairs of relations, clustering
quality can be measured directly at a cluster level. Purity
and Normalized Mutual Information (NMI) are usually used
for this purpose. A prerequisite of this approach is to assign
each result cluster to the class (a reference cluster) with
which it shares the largest number of relations. Purity is
defined by:

purity(Ω,C) =
1

N

X
k

max
j
|wk ∩ cj |

where Ω = {w1, w2, ...wK} is the set of result clusters and
C = {c1, c2, ..., cJ} is the set of reference clusters.

Purity has a bias when the number of clusters is large:
it is equal to 1 when each relation forms its own cluster.
Normalized mutual information makes a trade-off between

the number of clusters and their quality. It is defined by:

NMI(Ω,C) =
MI(Ω,C)

(H(Ω) +H(C))/2

MI(Ω,C) is the mutual information between Ω and C,
with the definition:

MI(Ω,C) =
X
k

X
j

P (wk ∩ cj) log
P (wk ∩ cj)

P (wk) ∗ P (cj)

where H(Ω) and H(C) are respectively entropies of Ω and
C, defined as:

H(Ω) = −
X
k

P (wk) logP (wk)

where P (wk), P (cj) and P (wk ∩ cj) are respectively the
probabilities of a relation being in a result cluster wk, in a
reference cluster cj and in the intersection of the two. The
probabilities are computed directly by counting the cardi-
nalities of the clusters.

In the same way as for the Rand Index measure, we com-
puted these measures for the result clusters obtained using
relations extracted with or without the filtering phase. Eval-
uation results for Purity and NMI are illustrated in Table 8.
The results show that both Purity and Normalized Mutual
Information are improved by the filtering. In particular, the
augmentation of Purity confirms the recall improvement ob-
served with the Rand Index measure.

5. RELATED WORK
One of the specificities of the work we have presented in

this article is to associate two types of work in the field of
unsupervised information extraction, relation filtering and
relation clustering, and to study the consequences of this as-
sociation. Concerning relation filtering, our work is close to
the work described in [4], with two main differences. First,
relation arguments are restricted to named entities in our
case, whereas such argument has more general form in [4]
and can be any base noun phrase6. Second, [4] does not
rely on manually annotated examples as we do but exploits
examples built automatically from the successful parses of a

6Base noun phrases refer to noun phrases that do not con-
tain nested noun phrases or modifiers such as prepositional
phrases.



syntactic parser by applying a small set of heuristics. The
possible impact of these two differences is not easy to pre-
dict as they tend to diverge in terms of effects. The first dif-
ference makes relation extraction more difficult in the case
of [4] as it enlarges the set of possible relations to cover.
However, restricting the possible relations to a subset of the
successful parses of a syntactic parser clearly favors relations
with a simple syntactic form whereas the limits of our refer-
ence relations are only set by a human annotation. Finally,
the results of [4], a high precision but a low recall, can be
explained as follows: because of the kind of entities it fo-
cuses on, [4] considers a large set of possible relations but
the classifier it has developed is actually able to takes into
account only a small subset of them because of the way it is
trained. Our approach implements a more balanced choice
between the set of relations we want to take into account
and the set of relations we actually model, which globally
leads to higher results. From a practical viewpoint, building
the training examples automatically from the results of a
syntactic parser as [4] did is of course an interesting choice
to have a large training set without the cost of a human
annotation but of course, this method heavily depends on
both the availability and the quality of such parser in the
target context (language, domain or type of texts).

Concerning relation clustering, the comparison with ex-
isting work raises two main issues. The first one is the scal-
ability of the clustering process. Clustering algorithms fre-
quently start from a similarity matrix that can be difficult
to compute when the number of items to cluster is large.
One way to overcome this difficult is to fix or to evaluate
a priori the number of clusters to build. For instance, [30]
sets arbitrarily the number of clusters according to the doc-
ument set, [25] tests different values whereas [10] uses the
Akaike Information Criterion to evaluate this number in one
of its experiments. This problem is also bypassed in some
works by limiting the number of relations to cluster, either
directly or through the initial number of documents. [14] for
instance only considers relations with at least 30 occurrences
whereas experiments in [25] are limited to 4,000 relation oc-
currences and those in [30] to 526 Wikipedia documents.
In our case, this issue is tackled by associating a filtering
method for discarding explicitly false relations and the use
of the APSS algorithm for evaluating efficiently the similar-
ity of the remaining relations. This combination makes the
use of a large spectrum of clustering algorithms possible.

The second important issue concerning relation clustering
is the evaluation of its results. As mentioned in section 4.2,
a direct evaluation of the built clusters and their content
by human annotators as it was performed in [14] or in [30]
cannot be achieved very often because of its cost. In partic-
ular, it does not fit the constraints resulting from the tuning
of a system. It is why we have adapted and applied mea-
sures for the internal evaluation of clustering to the context
of unsupervised information extraction, which was not done
before to our knowledge. These measures were more specif-
ically used for testing the impact of relation filtering and
their conclusions appear as coherent with those of external
measures, as illustrated in section 4.2.2. For our external
evaluation, we have chosen as [25] to select a sample of re-
lations and to cluster them manually to build a reference.
More precisely, because of the very large number of relations
we have, this selection was guided in our case by a search
engine. Finally, the evaluation consists in determining to

what extent relations that are part of a reference cluster
are found in the same cluster in the evaluated clustering.
Following [15], [10] adopts the same principle but uses as
reference the relations annotated in a corpus in the context
of a supervised information extraction task, more precisely,
the Relation Mention Detection task of the ACE (Automatic
Content Extraction) evaluation [7].

6. CONCLUSION AND PERSPECTIVES
In this paper, we have presented a work on relation filter-

ing for unsupervised information extraction whose purpose
is to determine if two entities occurring in the same sen-
tence are linked by a relation without a priori knowledge
about the relation type. This filtering is performed using
both heuristic and machine learning techniques. Heuristic
filtering is first used to remove the simple cases whereas ma-
chine learning techniques are used for more ambiguous cases.
Evaluation of machine learning techniques shows that best
results are obtained with CRF, compared with results ob-
tained with SVM, MaxEnt or NaiveBayes classifiers. Our
best performances are quite balanced between precision and
recall and are better than the results reported in [4] (but
their study is not limited to named entities, which makes
the task more difficult). Applied to unsupervised informa-
tion extraction, we have also showed, through an evaluation
of relation clustering with both internal and external crite-
ria, that this filtering is useful for a semantic clustering of
the extracted relations.

The most direct perspectives of this work are about the
clustering of relations. We will improve the external eval-
uation of the clustering using a larger set of annotated ex-
amples and try to have more evidences on the interest of
such partial external evaluation by computing its correla-
tion with a completely annotated reference. We also plan
to use a more sophisticated clustering including two levels
of clustering: a semantic clustering and a thematic cluster-
ing. Finally, we also consider applying this filtering process
to improve a system for knowledge base population based
on distant supervision by filtering out the candidate rela-
tions extracted from a corpus for learning linguistic relation
patterns.
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