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Turbulence
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The interaction of inflow turbulence with an airfoil is significant for low Reynolds number
applications, as it generates leading edge noise, but also strongly modifies the airfoil boundary
layer properties and thus the produced noise. Inflow turbulence impact still demands to be
better understood and is also a numerical challenge. Large Eddy Simulations are here carried
out with both incompressible and compressible solvers. The Synthetic Eddy Method and
the Random Fourier Modes method, used to generate synthetic turbulence, are studied in
this work. In order to eventually perform airfoil simulations, the second method is modified
to take into account spanwise periodic boundary conditions, to reduce spurious noise level
in compressible simulations. First, properties of the methods are studied with a spatially
decaying turbulence academic case. Even if the decay is not well represented, the methods
show satisfactory properties in terms of isotropy, homogeneity and one-dimensional spectra.
Furthermore, spurious noise levels are reduced thanks to the modified method. Preliminary
airfoil simulations are then carried out with inflow turbulence for flow validation in presence of
a laminar separation bubble. The drag coefficient is in very good agreement with experimental
results. However, there are some discrepancies between simulations and experiments on the lift
coefficient, which is extremely sensitive to perturbations. These discrepancies are attributed
to a lack of experimental turbulence characteristic information, such as isotropy or integral
length scale and to too short simulations at high angles of attack.

I. Nomenclature

• = time or spatial average
• = vector notation
E (•) = integer part

Cs = Smagorinsky constant, notation extended to the dynamic model
CFL = Courant number
CL , CD = lift and drag coefficients
E = turbulent kinetic energy spectrum (m3.s−2)
Evv

y, Eww
z = one-dimensional longitudinal autospectrum in the y, respectively z, directions (m3.s−2)

Lx, Ly, Lz = length of the computational domain at the inlet in the x,y,z directions (m)
LΛ f = adaptation distance for synthetic turbulence (m)
M = Comte-Bellot and Corrsin’s experimental mesh size of the turbulence grid (m)
Mx = upstream Mach number
N = number of synthetic eddies or Fourier modes
NExact = desired modes number
Nite = simulation iteration number
Nz

Modes = number of acceptable non-zero positive wavenumber components along z

∗PhD Student, ENSTA Paristech, Institute of Mechanical Sciences and Industrial Applications, tommy.rigall@ensta.fr
†Assistant Professor, ENSTA Paristech, Institute of Mechanical Sciences and Industrial Applications, benjamin.cotte@ensta.fr
‡Research Engineer, EDF R&D, Institute of Mechanical Sciences and Industrial Applications, philippe.lafon@edf.fr

1



Ri j = Reynolds stress tensor (m2.s−2)
RNorm
u′xu

′
x

= velocity longitudinal autocorrelation normalised function along x
Rec = Reynolds number based on the airfoil chord and the upstream velocity
Reλg = Reynolds number based on the transverse Taylor micro-scale and the turbulent kinetic energy
U = velocity field (m.s−1)
UBC = Comte-Bellot and Corrsin’s mean flow velocity before the wind tunnel contraction (m.s−1)
Ux = mean flow velocity along x (m.s−1)
VB = virtual box volume around the inlet (m3)

ai j = lower triangular matrix of the Reynolds stress tensor Cholesky decomposition (m.s−1)
(ern , eθn , eφn ) = local spherical base for the Fourier modes
fj = shape function in the j direction (m−3/2)
fΛ f = shape function for present turbulence associated to Λ f (m−3/2)
It = turbulent intensity
ke = wavenumber of energetic structures (m−1)
kExact
n = wavenumber amplitude of the nth desired mode (m−1)

kη = Kolmogorov wavenumber (m−1)
kx,y,z
Max = maximum wavenumber value acceptable in the x, y or z directions (m−1)

kn = wavenumber of the nth mode (m−1)
kt = mean turbulent kinetic energy (m2.s−2)
ky , kz = wavenumber component in the y or z directions (m−1)
k1, kN = minimum and maximum wavenumber amplitudes for the spectrum discretisation
t = physical time (s)
t∗Lx

= non-dimensional time to cross a distance Lx

uNI = normalised and isotropic velocity fluctuation field
u = velocity field (m.s−1)
u′ = final velocity fluctuation field imposed at the inlet (m.s−1)
ũn = amplitude of the nth mode (m.s−1)
x = spatial position (m)
xmin = x-coordinate of the computational domain inlet plane (m)

α, β = parameters for the shape functions (m−1/2, m)
αn = angular position of σn in the (eθn , eφn ) plane
αs = constant in the von Kármán - Saffman spectrum
∆ = simulation mesh size (m)
∆t = simulation time step (s)
ε = turbulent dissipation rate (m2.s−3)
εi j = random value (1 or -1)
Λ f = longitudinal integral length scale of the turbulence (m)
λg = transverse Taylor micro-scale of the turbulence (m)
ψn = phase of the nth mode
σn = direction of the nth mode
τη = Kolmogorov time scale (s)
ν = kinematic viscosity (m2.s−1)
ξ+, η+, ζ+ = non-dimensional wall mesh sizes
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II. Introduction
Broadband noise from wind turbines benefits from a large range of studies [1–3] but there are few models for the

boundary layer separation noise or the stall noise prediction, which is stronger and can be amplitude modulated [4]. The
appearance of domestic small wind turbines or the drone proliferation also rise the emitted noise question. These low
Reynolds number systems become numerically affordable for wall resolved Large Eddy Simulations (LES).

For drones or small wind turbines working at low Reynolds numbers, typically Re ≤ 5 × 105 [5], a Laminar
Separation Bubble (LSB) can occur on wings, that is difficult to characterise both experimentally and numerically. The
LSB structure is composed of a high recirculation area giving birth to large scale eddies on the suction side and in the
wake of the wing. LSB have been largely studied experimentally and numerically. Some works [5] deal with the lift
increase followed by a stall, triggered by the LSB burst. Other authors address the acoustic retroaction loop between the
LSB wake and its separation point [6] or the trailing edge impact on the LSB dynamics [7]. Finally, the considerable
effects of the upstream turbulence on the separation, transition and reattachment points of the LSB are highlighted in
some experiments [8]. All these studies bring to light that the LSB is very sensitive to perturbations and it is essential to
better understand it, since such a structure can change the aerodynamic behavior of an airfoil. Numerical simulations
can help a lot to understand the underlying mechanisms [7]. Furthermore, inflow turbulence generates leading edge
noise and modifies the boundary layer properties which, in turn, changes the global noise produced. Inflow turbulence
is thus essential for both acoustic and aerodynamic reasons.

In numerical simulations such as LES, inflow turbulence is also a major challenge if we want to reproduce
experimental turbulence without getting too much spurious noise in Direct Noise Calculation (DNC). The differents
categories and methods of inflow turbulence have been reviewed in Dhamankar et al. [9]. While library-based turbulence
methods are efficient in terms of statistics reproductivity, they can only be used for specific applications and can be
very expensive. The recycling methods avoid to have a long distance for the adaptation of the turbulence to the solver
but present the drawback of generating spurious modes in the flow [9]. The last category is the synthetic turbulence
generator which includes many different methods. They are still missing correct turbulence statistics but they have the
advantage to be directly embedded in solvers, without running any other simulation in parallel. Recently, Gea-Aguilera
et al. [10] used an advanced digital filtering approach with success to compute airfoil leading-edge noise with linearised
Euler equations. Batten et al. [11] used spectral approaches. They continued the work of Smirnov et al. [12] by
adding anisotropy and inhomogeneity properties to the first work of Kraichnan [13]. This method, called Random
Fourier Modes (RFM), consists in building turbulence by summing Fourier components. The RFM method was used
and simplified to compute leading edge noise of wavy airfoils with the Euler equations in Clair et al. [14]. Another
approach has been proposed by Gloerfelt and Robinet [15] who introduced unstable modes in a turbulent boundary
layer, resulting in a very low spurious noise simulation. The SEM (Synthetic Eddy Method) [16] is another way to
compute synthetic turbulence and has been used for channel flow simulations. This method has been several times
modified [17] for turbulent channel flow, or for low noise condition [18] by making the resulting fluctuating velocity
field incompressible. Later, Kim and Haeri [19] extended this work to get a von Kármán spectrum by optimising the
method with constraint parameters. They successfully applied it to the turbulence interaction noise on a wavy airfoil
with the Euler equations. For DNC, silent synthetic turbulence is seeked but is still a tricky achievement. Indeed, in
compressible codes, the velocity is often prescribed without modifying the thermodynamic variables, which forces the
code to adapt the flow field with pressure fluctuations, as explained in Gloerfelt and Robinet [15].

The present work aims to generate realistic and silent inflow synthetic turbulence in LES, in order to accurately
capture LSB on airfoils as well as to compute airfoil noise. In this paper, two methods of synthetic turbulence are studied
to check their properties. Preliminary LSB calculations on a NACA 0012 airfoil with inflow synthetic turbulence are
then carried out. Synthetic turbulence is generated inside two EDF R&D codes. The first one, Code_Saturne, solves
the incompressible Navier-Stokes equations with low order finite volumes while the second, Code_Safari, solves the
compressible ones with high-order finite differences. The second code enables us to carry out DNC, i.e. to compute
simultaneously flows and acoustics, but it is still highly computationally expensive for low Mach numbers and high
Reynolds numbers. Incompressible simulations with Code_Saturne are a way to do hybrid calculations, in which
flows are solved first and are then used as sources to compute the noise, thanks to acoustic analogies. This second
approach has no limit at low Mach number flows which makes it complementary with DNC. The SEM is implemented
in Code_Saturne and the RFM method is used in Code_Safari for its incompressibility property. A modified RFM
method, called RFM-P, is proposed in this work, to be used with periodic boundary conditions in the context of airfoil
simulations. It takes into account periodicity condition in the spanwise direction and forces the modes to respect this
condition. Less spurious noise is generated but the isotropy is broken.

The paper is organised as follows. First, the flow solvers and the synthetic turbulence methods are described in
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Section III. Then, a spatially decaying Homogeneous Isotropic Turbulence (HIT) test case is carried out to assess the
properties of the three methods in Section IV. Finally, preliminary results about airfoil simulations with LSB and inflow
turbulence in Code_Saturne are shown in Section V. The lift and drag coefficients are compared to experimental results.

III. Numerical Methods : Flow Solvers and Inflow Synthetic Turbulence

A. Flow Solvers
Two solvers are used in this work. Code_Saturne [20] is a EDF-R&D collocated finite volume code which is here

used to solve the incompressible Navier-Stokes equations by LES. The SIMPLEC algorithm ensures the pressure and
velocity coupling. For LES, 2nd-order schemes are used both for time (Crank-Nicolson) and spatial discretisations. The
role of non-resolved scales on resolved scales is played by functional sub-grid models.

The second code, Code_Safari [21], is a EDF-R&D finite difference code which is here used to solve the compressible
Navier-Stokes equations by LES with high-order numerical schemes to be able to carry out DNC. To avoid dissipation
and dispersion of acoustic waves, the time advancement is realised by an optimised 2nd-order 6-step Runge-Kutta
scheme [22]. Likewise, the spatial discretisation is carried out by an optimised 4th-order 11-point scheme [22]. Unlike
Code_Saturne, the dissipation of the non-resolved scales and of the grid to grid oscillations is ensured by a 6th-order
explicit selective filter optimised on 11 points [23]. The Bogey and Bailly outflow boundary conditions [24] and Tam
and Dong inflow boundary conditions [25] are implemented on 5 points in order to minimise the spurious noise when
an inlet perturbation is introduced [15] and to avoid any acoustic reflection at the boundaries. Close to the walls and
the boundaries, centred decreasing order schemes are used both for spatial discretisation and numerical filtering for
robustness. For Code_Safari, overset meshes with 8th-order interpolation are built with Overture [26], developped in the
Lawrence Livermore National Laboratory.

B. Inflow Synthetic Turbulence
Synthetic turbulence is necessary to trigger boundary layer instabilities and to compute leading edge noise of an

airfoil in a realistic way. Methods of turbulence generation used in each code are now described.

1. SEM : Synthetic Eddy Method

a) b)

Fig. 1 a) Isocontours of v′ of a turbulent velocity field generated by the SEM, with S the inlet plane, B
the virtual box, Uc the convection velocity and v′ the vertical fluctuating velocity. Illustration taken from the
Code_Saturne user guide [27]. b) Geometry for the nth RFMmode, σn is in the (eθn , eφn ) plane, orthogonal to
kn by incompressibility. Figure inspired from Bechara et al. [28].
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In Code_Saturne, the Synthetic Eddy Method (SEM) developped by Jarrin et al. [16] is used. An illustration taken
from the Code_Saturne user guide [27] of the SEM principle is shown on Fig.1a). It consists in summing N coherent
structures to form velocity fluctuations. First, an isotropic and normalised velocity fluctuation uNI at the spatial position
x and at the physical time t is constructed as the sum of N structures following

uNI
j (x, t) =

√
VB

N

N∑
i=1

εi j f(j)(x − xi(t))
∗, (1)

with εi j taking randomly the values 1 or -1 and VB the virtual box volume around the inlet S of the computational
domain, which are shown on Fig. 1a). More details about the virtual box can be found in Appendix VII.A. Finally, f(j)
represents the shape function of the structures in each direction j. For the present work, this function should be the
same in each direction to respect the isotropy condition and will be noted fΛ f from now on, as the function is associated
to a turbulence with a longitudinal integral length scale Λ f . The centre of each structure is initially randomly generated
inside the virtual box. Then, it is simply convected by the mean flow which is considered in the x direction in this work
and is denoted by Uc on Fig. 1a). Each time a centre exits the virtual box, a new structure is generated randomly along y

and z on the virtual box inlet plane.
Then, a Cholesky decomposition is used on the desired Reynolds stress tensor Ri j = u′iu

′
j [29] to set the turbulent

kinetic energy and a potential anisotropy to uNI , where u′ is the final fluctuation desired at the inlet. This fluctuation is
computed by

u′i
(
x, t

)
= ai j

(
x, t

)
uNI
j

(
x, t

)
, (2)

where ai j is the lower triangular matrix of the Ri j Cholesky decomposition. In the homogeneous and isotropic present

framework, the matrix becomes ai j =
√

2
3 ktδi j where kt is the known mean turbulent kinetic energy independent of

time or space and δi j is the Kronecker symbol.
For each calculation iteration, the velocity fluctuation u′ is computed on the inlet plane at x = xmin using Eq. (2).

In this work, we consider two shape functions to see their influence on the turbulence properties. The first one is a hat
function calculated using

fΛ f (x) = α
3
(
1 −
| x |
β

) (
1 −
| y |

β

) (
1 −
| z |
β

)
if x, y, z ∈ [−β; β],

= 0 otherwise,
(3)

and the second one is a Gaussian function given by
fΛ f (x) = α

3 exp

(
−

1
2

((
x
β

)2
+

(
y

β

)2
+

(
z
β

)2
))

if
√

x2 + y2 + z2 ≤ 4β,

= 0 otherwise,

(4)

where, in both equations, the parameters α and β are determined as shown in Appendix VII.A in order to impose the
values of kt and Λ f on the final generated turbulence. Thus, the SEM is designed to impose the homogeneity and
isotropy properties as well as the turbulent kinetic energy and longitudinal integral length scale. A frozen turbulence
is considered and the zero mean value is automatically ensured when the structures number N is sufficiently high to
statistically cover the inlet plane. Furthermore, the correlation function, and consequently the turbulent spectrum, is
given by the shape function. It means that the shape function should be specifically designed to give a desired spectrum.

2. RFM-P : Random Fourier Modes adapted to Periodic boundary conditions
In Code_Safari, two methods of synthetic turbulence are used. The first one is the classical RFM method and the

second one is a modified RFM method, called RFM-P. It has been developped in the present work to cancel spurious
noise due to periodicity conditions in numerical simulations. Both methods are now described.

∗The Einstein convention is used : subscript repetition implies summation, subscript between brackets avoids it.
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Classical Random Fourier Modes method

The Random Fourier Modes (RFM) method has been initially introduced by Kraichnan [13]. It consists in summing
N Fourier modes to form the velocity fluctuations. Following the formalism introduced in Bechara et al. [28] and
considering a mean flow Ux along x, with u = U + u′ = Uxex + u′ the velocity field, the velocity fluctuation u′ is given
by

u′
(
x, t

)
= 2

N∑
n=1

ũn cos
(
kn • x + ψn − knxUxt

)
σn, (5)

where ũn, kn, ψn and σn are the amplitude, wavenumber, phase and direction of the nth mode and N is the number of
modes.

It is important to note that the fluctuating velocity given by Eq. (5) is a solution of the linearised Euler equations; it
is an advantage since Code_Safari uses the non-reflecting outflow conditions of Bogey and Bailly [24] that are based
on the linearised Euler equations. Then, to limit the noise generated by the turbulence, it is necessary to respect the
incompressibility constraint ∇ • u′ = 0, as explained by Kim and Haeri [19], which leads to the condition

kn • σn = 0, (6)

giving a constraint to each mode direction σn.
Finally, the perturbation is convected by a mean flow and it has been shown by Sescu and Hixon [18] and by Kim

and Haeri [19] that the angular frequency of the perturbation must be equal to kn • U, as in Eq. (5). It means that the
turbulent perturbation must be synchronised with the mean flow to generate minimum spurious noise. Figure 1(b)
provides notations for the wavenumber kn and the direction σn of the nth mode in spherical coordinates. Following
Eq. (6), σn must be in the (eθn ,eφn ) plane where the vectors eθn and eφn , completed by ern , form the local spherical
base. The angular position of σn in the (eθn ,eφn ) plane is defined by the angle αn, so that σn is given by

σn = cosαneθn + sinαneφn . (7)

The eθn , eφn and ern are expressed in the cartesian coordinate system by

eθn =
©«

cos θn cos φn
cos θn sin φn
− sin θn

ª®®¬ , eφn =
©«
− sin φn
cos φn

0

ª®®¬ , ern =
©«

sin θn cos φn
sin θn sin φn

cos θn

ª®®¬ . (8)

The wavenumber kn can be written as kn = ern kn, where kn is chosen with a logarithmic distribution in order to
correctly discretise the energy in the low-wavenumber region. It follows the expression

kn = exp (ln k1 + (n − 1)∆ (ln kn)) , n ∈ {1, ..., N}, (9)

where k1 is the lowest wavenumber, to be set as a parameter, and ∆ (ln kn) is given by

∆ (ln kn) =
ln (kN ) − ln (k1)

N − 1
, (10)

with kN the highest wavenumber, to be set as a parameter.
Isotropy leads to a uniform probability density for αn and ψn given by p(αn) = 1

2π and p(ψn) =
1

2π , to avoid any
favoured direction for σn and to have a random phase. Likewise, the probability density for θn and φn are p(θn) =

sin(θn)
2

and p(φn) = 1
2π [30], which is established by considering an elementary surface of a kn radius sphere.

Finally, each mode amplitude is calculated by

ũn =
√

E(kn)∆kn, (11)

where ∆kn is the step between two successive wavenumbers and E(kn) is the energy associated to the nth mode. The
way to obtain Eq. (11) is given in Appendix VII.B. The spectrum E chosen here is the von Kármán-Saffman [31]
one, which depends on the desired values of kt and Λ f , and is also given in Appendix VII.B. The link between the
spectrum and both the turbulent kinetic energy and the integral length scale is also given in Appendix VII.B. Thus,
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the RFM is designed to impose the homogeneity and isotropy properties as well as the turbulent kinetic energy, the
longitudinal integral length scale and the turbulent spectrum. A frozen turbulence is considered and the zero mean
value is automatically ensured.

Random Fourier Modes for Periodic boundary conditions method

The second method, RFM-P, is now described. This method aims at reducing the spurious noise produced at the
inlet when the turbulence is injected and when periodic conditions are set to opposite faces in a simulation. Indeed, the
RFM generates random wavenumbers so that its components in the periodicity direction do not respect the periodicity
condition in general. The code has to adapt the velocity field, which leads to large pressure fluctuations inside the
computational domain. The RFM-P is thus designed to take into account this periodicity condition inside the turbulent
velocity construction. The method lies on the same physical background as the RFM one but the algorithm is changed
and is now explained. We consider in the following that the only periodic direction is along z. The algorithm can be
straightforwardly extended to other cases.

First, a logarithmic distribution for the wavenumbers is still desired. We start with an exact set of NExact modes
amplitudes, kExact

n , which are calculated with Eq. (9). Then, the only non-zero acceptable values for the wavenumbers
component in the periodic z direction, knz , follow the equation

knz = ±
2πn
Lz

, (12)

and are generated, where n is an integer between 1 and Nz
Modes , the number of positive non-zero acceptable wavenumbers

in the z direction and Lz is the length of the computational domain at the inlet in the z direction. The inlet lies in the y-z
plane for this example. The number Nz

Modes is computed by

Nz
Modes = E

(
kz
Max

2π/Lz

)
, (13)

where E (•) represents the integer part and kz
Max is the maximum admissible value in the z direction due to the mesh

size and to the numerical scheme employed. For example, using the finite difference 11-point scheme optimised in the
phase space of Bogey and Bailly [22], at least 4.6 mesh spaces by wavelength are needed to accurately resolve the wave
which gives kz

Max =
2π

4.6∆ , with ∆ the mesh size.
The next steps for one iteration are described by the pseudo-algorithm on Fig 2. The number Nkz=0 is the number of

modes for which kz = 0 and Nkz,0 the number of modes for which kz , 0. The NiteMax number is the number
maximal of iteration autorised to find modes, first, for each non zero knz mode component, and then, for each knz = 0
mode component. The global algorithm is repeated until a sufficient number of modes Nkz,0 + Nkz=0 has been found,
with a certain relative error with NExact

Generally, only one iteration for the global algorithm, and 2 or 3 iterations to find at least one correct mode for each
non-zero knz are necessary when we accept that the total modes number is at 1% or less from NExact . The final step is
to compute the other variables αn, σn, ψn and ũtn necessary to build the velocity fluctuations and this is done the same
way as in the RFM method. The fluctuating velocity is then contructed by summing the modes with Eq. (5). While
the RFM method computes randomly φn and θn to have the wavenumber components, the RFM-P computes first the
wavenumber components and then φn and θn from it.

Though the RFM-P should generate less spurious noise in case of periodicity condition, it is easy to see that the
isotropy is broken. Indeed, we set the value of the wavenumbers components in the periodic direction and, to complete
the wavenumber vector, we begin with the largest value for the periodic component in order to make sure it is used.
Indeed, the largest value is the most difficult to get since it needs a combination of two small values in the two other
directions to be in the range of the desired wavenumbers. The risk is to favour the z direction, thus breaking the isotropy.
Figure 3 illustrates this issue by comparing the distribution of modes result between the RFM and the RFM-P methods
in the y-z plane, both with 200 modes, Lz = 0.25 m and kx

Max = ky
Max = kz

Max = 466 m−1. It is clear that more
wavenumbers are present on the high z values with the RFM-P than with the RFM, which means that the z direction
appears to be favoured.
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FOR each knz , starting from the highest absolute value
IterationNumber = 0

LOOP : WHILE (IterationNumber < NiteMax)
a) Nkz,0 = 0
b) Generate NExact random values of kix ∈ [−kx

Max ; kx
Max] and kiy ∈ {−ky

Max, ..., ky
Max}

c) IF at least one ln (kni) = ln
(√

k2
ix + k2

iy + k2
nz

)
is at 0.05% or less from ln

(
kExact
p

)
, p ∈ {1, ..., NExact }

- Increase Nkz,0 from the corresponding number of modes
- Keep all the kni
- Delete kExact

m from the search base such that kExact
m ∼ kni following the previous criterion

ELSE
- IterationNumber = IterationNumber + 1

ENDIF

ENDWHILE

IF (IterationNumber = NiteMax) STOP

ENDFOR

For the remaining Nkz=0 = NExact − Nkz,0 modes, setting knz = 0, IterationNumber = 0, GO TO LOOP
with Nkz=0 instead of Nkz,0

Fig. 2 Pseudo-algorithm for one iteration of the RFM-P method

-500 0 500
-500

0

500

-500 0 500
-500

0

500

a) b)

Fig. 3 Wavenumbers distribution for a) RFMand b)RFM-Pmethods, both for 200modes and for Lz = 0.25 m
with kx

max = k
y
max = kz

max = 466 m−1

IV. Synthetic Turbulence Validation in Homogeneous Isotropic Case
Before computing turbulence interaction with airfoils, it is necessary to make sure that the SEM, the RFM and

the RFM-P methods meet the desired criteria in terms of realistic energy density spectrum, isotropy, homogeneity
and a decrease in spurious noise for the RFM-P method. Moreover, the influence of numerical parameters on those
properties must be assessed. For this purpose, a spatially decaying HIT test case is carried out for the three methods.
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Experimental data of Comte-Bellot and Corrsin [32] are used for comparison. They studied spatially decaying HIT
in a wind tunnel and made measurements of turbulent kinetic energy kt , longitudinal integral length scale Λ f and
transverse Taylor micro-scale λg in three vertical planes at UBC t

M = [42; 98; 171], with M the size of the mesh grid
generating the turbulence in the experiments and UBC the mean flow velocity before the wind tunnel contraction. Only
M = 5.08 cm is considered here. For the three methods, the synthetic turbulence in the inlet plane of the computational
domain is set with the turbulence parameters measured by Comte-Bellot and Corrsin [32] in the plane UBC t

M = 42.
The values are Λ f = 0.024 m = 0.47M and kt = 0.0739 m2.s−2 with a Reynolds number based on λg equal to
Reλg =

√
ktλg
ν = 71.6, where ν is the kinematic viscosity. Then, the mean flow convects the turbulence on the

corresponding next plane UBC t
M = 98 and the spatial spectrum is compared with the one measured by Comte-Bellot and

Corrsin. It is important to note that the convection time between the two planes is significant since a spatially decaying
turbulence is in reality a convected temporal decaying turbulence. Every simulations are run on 12 non-dimensional time
t∗Lx
=

tLxUx

Lx
, where tLx is the necessary time to cross the entire computational domain of length Lx at the simulation

mean flow Ux . All the statistics (turbulent kinetic energy and spectra) are calculated on the last 2 non-dimensional times.

A. Incompressible LES with the SEM - Turbulence Properties

1. Computational Set-up and Parameters
For the Code_Saturne incompressible LES using the SEM, the computational domain is a simple box. Its dimensions

are [180M;5M;5M] = [381Λ f ; 10.6Λ f ; 10.6Λ f ] and the numerical mesh size is ∆ = λg/1.5 = 3.23 × 10−3 m. A
small mesh size is chosen because of the low Reynolds number Reλg . Indeed, the LES subgrid models used here are
based on the assumption that an inertial slope is present in the spectrum but this one only appears clearly at higher
Reynolds numbers [31]. Because the separation between large and small scales is not obvious here, it is important to
set a mesh grid size lower than the Taylor scale to activate the subgrid model approximately where the inertial range
appears, and distant from the large scale spectral area. Indeed, the size of the Gaussian filter used in the Code_Saturne
LES for the subgrid model is twice as big as the mesh size. To see the impact of the subgrid model on the turbulence
resolution, the Smagorinsky model and the Germano and Lilly [31] dynamic model are tested. For this simple test case,
if the mesh size is well chosen, the differences between the results given by the models should be minor. However, for
the airfoils simulations, the dynamic model will be needed to cope with the high differences between inlet turbulence
and boundary layer turbulence. The influence of shape functions on the turbulence resolution will be tested as well as
the effect of the time-step ∆t through the Courant number defined as CFL = Ux∆t

∆
. Periodic conditions are set on

opposite lateral faces. A Dirichlet condition on the velocity and a zero Neumann condition on the pressure are imposed
at the inlet. A Dirichlet condition on the pressure updated at each iteration is imposed at the outlet, in order to meet
the condition ∂2P

∂n∂τ = 0, with P the static pressure, n the unit normal and τ the unit tangent at each outlet face. The
mean flow velocity is 12.7 m.s−1 as in the Comte-Bellot and Corrsin’s wind tunnel contraction. Since the velocity
before the contraction UBC is equal to 10 m/s in the experiments, the x = 0 plane in the simulation corresponds to the
UBC t
M = 42 plane of Comte-Bellot and Corrsin’s experiments while the UBC t

M = 98 experimental plane is reproduced at
x = 71.12M = 150Λ f downstream of the inlet in the simulations to keep the same convection time between both planes.

2. Influence of the Subgrid Model and of the SEM Shape Function on the Turbulence Properties

Table 1 Code_Saturne simulations characteristics for the subgrid model and the SEM shape function effects
on turbulence study, Cs is the Smagorinsky constant

Subgrid model Form function
SEM1 Dynamic (Cs ∈ [0; 0.18]) Gaussian
SEM2 Smagorinsky (Cs = 0.18) Gaussian
SEM3 Dynamic (Cs ∈ [0; 0.18]) Hat

Three simulations, SEM1, SEM2 and SEM3, are run and their characteristics are gathered in Table 1. They are
run with CFL = 1 which gives ∆t = 2.54×10−4 s and 3.398×104 iterations. Each simulation is characterised by a
subgrid model and by a shape function. As a reminder, the shape functions are driven by Eqs. (3) and (4). Finally, the

9



Smagorinsky constant Cs is set to 0.18, as the theoretical value for HIT [31] and the value of Cs , notation extended to
the dynamic model, is authorised to vary between 0, to prevent backscattering, and 0.18, to avoid unrealistic energy
exchange.
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Fig. 4 Turbulent kinetic energy decay for SEM1, SEM2 and SEM3, averaged on each y − z plane and compared
to theoretical slopes.

First, the resolved turbulent kinetic energy, averaged on each y-z plane is plotted for the three simulations on Fig. 4
and is compared with the empirical values for the decay slopes from Mohamed and Larue [33], whose values are
between -0.95 and -1.43. The first obvious conclusion is that neither the subgrid model nor the shape function seems
to have a high impact on the solution which tends to prove the robustness of the method and the correct mesh size
choice. The dynamic model seems to have a better behaviour at the outlet than the Smagorinsky one, which must be
linked to the boundary conditions. Whatever the simulation, the kinetic energy is almost constant up to 50Λ f which
means that no dissipation takes place. Then, from 50Λ f , the energy starts to decay. These results are also found in
the litterature and this distance is representative of an adaptation distance [9]. It represents a problem for most of the
synthetic turbulence methods. The problem lies in the initial spectrum choice and in the capacity of synthetic turbulence
to accurately reproduce the 3rd order moment (skewness) of the turbulence, which is responsible for the good quality of
energy exchange between large scales and small scales. It means that the adaptation distance corresponds to a distance
or to a time necessary for the energy cascade to appear and the dissipation to occur. The adaptation distance can be
roughly estimated by the large eddy turn-over distance, as Jarrin et al. did [16], such that

LΛ f = Ux

Λ f√
2/3kt

(14)

which gives LΛ f = 57Λ f . This value is in agreement with the previous 50Λ f found on Fig. 4. However, the
empirical laws for the decay slopes are really retrieved only later for x = 150Λ f which means that, to completely
recover the correct statistics, the real adaptation distance is bigger than the one estimated by Eq.(14). The surestimation
and oscillations of the turbulent kinetic energy on Fig. 4 will be analysed in Section IV.A.3. A conclusion is that the
turbulence seems to be simply convected with very little dissipation up to 50 Λ f . In other simulations, it has been seen
that the results do not depend on the number of structures N if the inlet plane is statistically covered by those structures,
i.e., if N ≥ Si

SΛ f
where Si is the inlet plane surface and SΛ f is the surface of a structure associated to Λ f .

Figure 5 shows, for the three simulations and for both plane positions, the one-dimensional longitudinal autospectra
in the y-direction. These spectra are calculated based on spatial data taken from probes distributed along the y axis
at z = Ly/2. The data are compared to the Comte-Bellot and Corrsin’s ones. It is clear that the initial spectrum at
the inlet, on Fig. 5(a), is far from the experimental one in terms of form. It is simply due to the choice of a Gaussian
function for the shape function. Again, the subgrid model or the shape function are not important choices except at high
wavenumbers where the Smagorinsky model is more dissipative than the dynamic one, which is the same conclusion as
the one obtained by Kato et al. [34] on their temporally decaying turbulence. The large structures should be correctly
represented by the SEM with a Gaussian shape function. It is clear that the middle to high wavenumbers are badly
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Fig. 5 One-dimensional longitudinal autospectra in the y direction a) in the inlet plane x = 0 and b) in
the plane x = 71.12M = 150Λf , compared to Comte-Bellot and Corrsin’s (CBC) experiments, for the three
simulations SEM1, SEM2 and SEM3

Table 2 Code_Saturne simulations characteristics for the CFL effect on turbulence study, Nite is the number
of iterations

CFL ∆t (s) Nite

1 3.8819×10−4 22260
0.5 1.9409×10−4 44520
0.25 9.7047×10−5 89030
0.1 3.8819×10−5 222600

represented,which can explain the low decay of kt on the Fig. 4. On Fig. 5(b), at x = 150Λ f , the energy seems to be
better distributed accross the wavenumbers, even if the spectra are still far from the experimental ones. If the energy is
still high, the redistribution takes place and the energy cascade begins to appear, which leads, a few Λ f later, to the
theoretical turbulent energy decay.

3. Influence of CFL Number on the Turbulence Properties
The influence of the CFL is now studied through four new simulations, for which the corresponding CFL, time step

and iteration number are gathered in Table 2. Simulations are still run on 12 non-dimensional times. To avoid expensive
simulations, the mesh size is ∆ = λg. The dynamic model and a Gaussian shape function are used since it has been
seen that they give slightly better results on the kinetic energy. Figure 6 shows the turbulent kinetic energy decay along
x/Λ f for these four simulations. It is clear that the CFL has a high impact on the results. Indeed, for CFL = 1, the
energy is overestimated and it is only with CFL = 0.5 or lower that a convergence is reached. The adaptation distance is
still present since it is linked to the initial spectrum but the overestimation and the oscillations of energy disappear.
It is important to note that every curve starts at the same kt value at x = 0 but that the energy for CFL = 1 rises on
the first cells. Figure 7 shows the one-dimensional longitudinal autospectra on the two planes under study for the four
simulations. The simulation for CFL = 1 shows a higher energy at all wavenumbers at x = 0 which confirms the
previous observations on the kinetic energy.

Finally, a more problematic effect of high CFL numbers can be seen on Fig. 8(a). It shows frequency spectra
produced thanks to time-domain x velocity fluctuations data on a probe located at x = 25M , y = Ly/2 and z = Lz/2.
For CFL = 1 and CFL = 0.5, high energy spurious peaks are present at respectively f = 300 Hz and f = 400 Hz. These
could be an aliasing problem, since CFL = 1 corresponds to a time step equal to half the lowest time scale introduced in
the simulation but Choi and Moin [35] show that a time step six times lower than the lowest time scale to be solved is
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Fig. 6 Spatial turbulent kinetic energy decay kt for different CFL numbers
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Fig. 7 One-dimensional longitudinal autospectra in the y direction a) in the inlet plane x = 0 and b) in the plane
x = 150Λf , compared to Comte-Bellot and Corrsin’s (CBC) experiments, for the four simulations at different
CFL numbers

necessary to be independent of the time discretisation, while simulating a plane channel flow. The authors showed that
the problem was not linked to the time integration scheme. Later, Kato et al. [34] carried out DNS simulations on
temporally decaying HIT and they came to the same conclusion with a factor 2 between the smallest time scale and the
time step, when seeking a convergence on the spatial spectrum, which is also found in the present work. Regarding
temporal spectrum, the condition on the CFL seems to be more restrictive. The fact that a time step lower than half the
lowest time scale is necessary could still be explained by aliasing due to the non-linearity of the Navier-Stokes equations.
Indeed, no peak is present when a frequency spectrum is computed from the SEM fluctuations without being injected
into the Navier-Stokes equations. The convective term of the Navier-Stokes equations causes the apparition of small
structures which cannot be resolved by the mesh grid. This was studied by Chow and Moin [36] which show that aliasing
due to the convective term is the cause of high energy at high wavenumbers on a narrow spectral range. Kravchenko and
Moin [37] show that it has a bad impact on turbulence statistics such as fluctuating or mean velocity profiles. Thus, the
energy overstimation on Fig 6 and the spurious peaks on Fig 7 could be explained by aliasing, disappearing only when
the time step is low enough compared to the lowest time-scale to be solved. In our case, a factor 4 between the both is
necessary.
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Fig. 8 a) Frequency spectra computed from time-domain x velocity fluctuations data on a probe located in
x = 25Λf , y = Ly/2 and z = Lz/2 for different CFL numbers and b) one-dimensional longitudinal autospec-
tra in the y and z directions for CFL = 0.25 at x = 0 and x = 150Λf

4. Isotropy and Homogeneity of the SEM
The isotropy property of the SEM is now evaluated. The previous simulation with CFL = 0.25 in Table 2 is used.

Figure 8(b) shows the comparison between the spatial spectra Evv
y
(
ky

)
and Eww

z (kz) on the planes x = 0 and
x = 150Λ f . It is easy to see that from the start to the end, the isotropy is perfectly respected. Finally, it has been
verified that the homogeneity property is also perfectly respected thanks to time-domain spectra, at x = 10M and
x = 150Λ f .

B. Compressible Simulations with the RFM and RFM-P Methods - Turbulence Properties and Spurious Noise

1. Computational Set-up and Parameters
For the compressible LES with Code_Safari using the RFM and RFM-P methods, the computational domain

is composed of two 8th-order interpolation overset boxes. The first is the study domain and has dimensions
[250Λ f ; 5Λ f ; 5Λ f ]. The second is a sponge zone, extending from 245Λ f to 290Λ f with the same dimensions along y

and z. The dimensions of the computational domain are different from those used in Section IV.A.1 because compressible
calculations are more expensive. The mesh size is ∆ = λg

1.1 in the box and it is progressively stretched with an exponential
law in the sponge zone. With the explicit filtering, the previous problem of models working only in the inertial zone is
not present; the mesh size choice has less importance. The CFL choice is based on numerical considerations, in order to
limit diffusion and dispersion errors. With the schemes described in Section III.A, CFL = 0.95 is low enough. Bogey
and Bailly outflow boundary conditions [24] are used for the up, down and outflow faces, periodic conditions are set
for the front and back faces (z direction). Tam and Dong inlet conditions [25] are used for the inlet face to prevent
acoustic reflection and to introduce the synthetic turbulence, built with the RFM or the RFM-P methods. The centre of
the Tam and Dong radiation conditions is placed at the middle of the domain. A mean flow Mach number Mx = 0.1
has been taken to give sufficient time to the turbulence to decay but also to avoid numerical errors since Code_Safari is
ill-conditionned at very low Mach numbers. We note τη =

√
ν
ε the Kolmogorov time scale, with ε is the turbulent

dissipation rate such that ε = (2/3kt )3/2
Λ f

. We also note tCBC the convection time between the two first measurements
planes in Comte-Bellot and Corrsin’s experiments, and t250Λ f the time to travel the entire study box. We have

τη = 5.7 × 10−3 s � t250Λ f = 0.18 s < tCBC = 0.2240 s. (15)

Even if the simulation does not allow the turbulence to be in the same state as in the experiments at the end of the
computational domain, the convection time should be high enough to let it decay and to see its properties evolve. With
this CFL number and this Mach number, the time step is ∆t = 1.13 × 10−5 s which is ten times lower than the smallest
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Table 3 RFM method parameters for the three Code_Safari simulations. N is the modes number, k1 and kN

are the minimum andmaximumwavenumber amplitudes for the spectrum discretisation, kx,y,z
Max is the maximum

wavenumber component value in each direction x,y and z (only for RFM-P) and NModes
z is the number of

positive non zero wavenumber components along z (only for RFM-P)

N k1 (m−1) kN (m−1) kx,y,z
Max (m

−1) NModes
z

RFM 200 25 500 / /
RFM-P 200 25 500 336 21

RFM-P - kz = 0 195 25 500 336 0

turbulent time scale to capture, so that no aliasing problem will occur. The aim here will be to see qualitative changes in
the turbulence along its convection and not to do some quantitative comparisons with the experimental results, since the
convection times are not the same. Three simulations have been run with different inlet turbulence conditions. For 12
non-dimensional simulation times, 1.85×105 iterations are needed. The filtering strength coefficient [21] is equal to 0.2.
For the first simulation, the turbulence is generated using the RFM method, the second one uses the RFM-P method and
the last one uses the RFM-P method with two-dimensional structures, i.e. kz = 0 m−1 only. This last simulation is a
limit case to see the influence of the absence of the wavenumber along z on the isotropy property and is close to a typical
airfoil simulation. Indeed, the airfoil spanwise is limited to a short distance (10% to 50% of the chord) which means
that a lot of the turbulent structures will be seen as two-dimensionnal for the airfoil. Table 3 gathers information on
modes number, minimum and maximum wavenumbers authorised for the turbulent spectra discretisation, the maximum
value for the wavenumber components (only for RFM-P) and the number of positive non zero wavenumber along z
(only for RFM-P simulations). We use 200 modes which is twice the number used in Gloerfelt and Le Garrec [30] but
different numbers should be tested in further studies.
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Fig. 9 Spatial decay of the resolved turbulent kinetic energy averaged in each y-z plane for the RFM, RFM-P
and RFM-P - kz = 0 simulations, for two different y axis scales

2. Turbulent Kinetic Energy Decay
Figure 9(a) shows the resolved turbulent kinetic energy averaged in each y-z plane in comparison with theoretical

slopes. Figure9(b) has the same y axis than Fig. 6 for direct comparison with incompressible simulations. A simple
conclusion is that the energy is very slowly decaying compared to theoretical slopes and to incompressible results.
Indeed, only 20% of the energy is lost at 200 Λ f . Then, the maximum difference of energy between simulations is 8%
and this is way less at short distance (x<100Λ f ). It means that the methods gives very similar results for the resolved
kinetic energy decay. The behavior of the turbulence seems to change at 150Λ f . Indeed, the resolved energy seems to
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Fig. 10 One-dimensional longitudinal autospectra along y for the three simulations RFM, RFM-P and RFM-P
- kz = 0 at a) x = 0 and b) x = 120Λf

increase. This increase is more important with the RFM-P simulation with kz = 0 simulation than with the RFM-P one,
the RFM simulation being an intermediate case. This is attributed to numerical errors due to the interaction between
turbulent structures and outflow boundary conditions, up and down. Even if the convection time is high enough to see
some changes, they are negligible, above all at short distances used for airfoils simulations (<50Λ f ).

3. Spatial Spectra
Figure 10 compares the one-dimensional spectra along y for the three simulations at x = 0 and x = 120Λ f . The

results on x = 0 are compared with experimental data. It is not relevant to compare results on x = 120Λ f since the
convection time is not the same as in the experiment. From this figure, it can be concluded that no major differences
exist between the three methods on the spectra, except for the RFM-P - kz = 0 simulation where the energy at high
wave numbers is lower than the two other simulations in the plane x = 120Λ f . In the three simulations, the -5/3 slope
is retrieved.

4. Spurious Noise Produced by the Three Simulations
Figure 11 shows the sound pressure level calculated on the two last non-dimensional times at some probes located at

Ly/2, Lz/2 and at different positions along x for the three simulations. It is clear that the RFM-P method creates 10 dB
less than the RFM method at short distances (x < 50Λ f ). Likewise, the RFM-P - kz = 0 simulation creates 20 dB less
than the RFM method. This figure shows that adapting the synthetic turbulence to the periodic conditions is a way to
reduce the spurious noise produced by its introduction in the computational domain. Also, a way to reduce the noise is
to place the airfoil sufficiently far from the inlet (at least 40Λ f ).

5. Turbulence Isotropy and Homogeneity
Figure 12 shows the one-dimensional longitudinal autospectra along y and z for the isotropy study on x = 0 and

x = 120Λ f and for the three simulations. While the RFM is perfectly isotropic, the RFM-P shows a slight anisotropy
at low wavenumbers, which tends to decrease with distance. The simulation RFM-P - kz = 0 is fully anisotropic with
no energy along z which is fully coherent with the fluctuations contruction. These observations are coherent with the
discussion in Section III.B.2 and with the Fig. 3. It has also been verified that the homogeneity property is perfectly
verified with time-domain spectra in x = 0 and x = 120Λ f for every simulation.
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Fig. 11 Sound pressure level calculated on the two last non-dimensional times at probes located at Ly/2, Lz/2 and at
different positions along x for the three simulations RFM, RFM-P and RFM-P - kz = 0
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Fig. 12 One-dimensional longitudinal spectra along y and z for isotropy analysis, for the three simulations
RFM, RFM-P and RFM-P - kz = 0, at the planes a) x = 0 and b) x = 120Λf

C. Comparison between SEM and RFM-P
Figure 13 compares one-dimensional spectrum for incompressible simulations using the SEM and Code_Saturne,

200 structures and a Gaussian shape function with spectrum for the compressible simulations using the RFM-P method,
Code_Safari and 200 modes. It is important to note that the spectra are computed at x = 0 to see only the inlet
perturbation in each code and not the influence of the code on it. These spectra are compared to experimental data
corresponding to the ideal spectrum. Furthermore, the theoretical spectrum for both methods are plotted on the figure.
For the SEM, the theoretical spectrum is computed directly using the velocity expression of Eq (2) while, for the
RFM-P, it is based on the von Kármán-Saffman spectrum E of Eq. (26) combined with the equation from Bailly and
Comte-Bellot [31] :

Evv

(
ky

)
=

1
2

∫ ∞

ky

E(k)
k

(
1 −

k2
y

k2

)
dk, (16)

with k = | k | the wavenumber amplitude, ky the wavenumber along y and Evv the longitudinal autospectrum along
y. The theoretical RFM-P spectrum is done with E discretised between 25 m−1 and 500 m−1 with 200 modes, same
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Fig. 13 One-dimensional longitudinal autospectra in the y directions for the SEMandRFM-Pmethods in the plane x = 0
of each incompressible and compressible simulation respectively. The spectra are compared to the theoretical ones. CSF
stands for Code_Safari, CST for Code_Saturne and CBC for the Comte-Bellot and Corrsin’s experiments.

parameters as before, to give the spectrum injected in LES, without the non-resolved scales. That is why the theoretical
spectrum on Fig. 13 draws away from the experimental one. The figure shows that the theoretical spectrum are respected
by the simulations but the Gaussian spectrum for the SEM is far from the experimental one for high wavenumbers, while
the spectrum used for the RFM is very close to it. The discrepancies between the compressible simulation using the
RFM method, and the experiment, on the plane x = 0, are only due to the LES cut. It means that the RFM should have a
better ability to reproduce quickly the energy cascade mechanism and so to reduce the adaptation distance, compared to
the SEM. The Gaussian shape for the SEM explains why the adaptation distance is so long. The fact that the turbulent
energy is not decaying in the compressible simulations with the RFM method is probably due to the high Mach number
and to boundary conditions numerical errors rather than the turbulent spectrum prescription.
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Fig. 14 Two-dimensional slices of the vorticity amplitude (s−1) for a compressible simulation at α = 15◦ and t∗c = 336, for
Rec = 104 and Mx = 0.2.

V. Preliminary Results About Turbulence Injection on a NACA 0012 Airfoil at Low
Reynolds Number

In this part, preliminary results about flow validations on a NACA 0012 airfoil with inflow turbulence are shown.
First, compressible simulations without turbulence are presented in Section V.A to emphasise the role of turbulence
fluctuations on the LSB appearance. Then, preliminary incompressible simulations of LSB with inflow perturbations
are carried out in Section V.B and the lift and drag coefficients are compared to experimental results.

A. Compressible Simulations without Inflow Turbulence
A first compressible simulation is performed with Code_Safari and without inflow turbulence, for a NACA 0012

with an angle of attack α = 15◦. With a chord-based Reynolds number Rec = 104 and an upstream Mach number
Mx = 0.2, the LSB burst which should normally appear on the suction side, according to Alam et al. [5], is not present
in the simulation. Figure 14 illustrates that while visualising the vorticity magnitude at a non dimensional time t∗c = 336,
based on the chord and on the upstream velocity, only the outbreak of 2D rolls is present when LSB (Laminar Separation
Bubble) burst is highly 3D. This is attributed to a lack of perturbation in the flow : the instabilities development is too
long to be seen in this time window. The idea is to introduce perturbations to speed up the instabilities development.
To be close to experimental conditions and to be able to compute leading edge noise, realistic synthetic turbulence is
desired. New compressible simulations with RFM built inflow perturbations are currently carried out.

B. Incompressible Simulations with Inflow Turbulence
Several preliminary incompressible simulations with Code_Saturne and using the SEM to generate inflow turbulence

are now presented. The simulation parameters are based on the experiments from Zhou et al. [38] and Wang et al. [8]
that were carried out in a closed-loop water tunnel to study the behavior of a LSB on a NACA 0012 with different inflow
turbulence intensities. The chosen cases here are for Rec = 5.3 × 103 and Mx = 3.3 × 10−5. Due to the very low
Mach number, incompressible simulations are more suitable for these configurations.

Table 4 gathers information about the experimental cases. It indicates whether a turbulence grid is present in the
experiments or not, the turbulent intensity, the integral length scale and the turbulence parameters used in simulations
corresponding to Cases 1 and 3. Simulations were run at α = [5◦, 10◦, 15◦]. The synthetic turbulence was built with
the Gaussian shape function and 200 structures. Unfortunately, for Case 1, there is no integral length scale available
in the experiments since no turbulence generator grid was present, which can also lead to anisotropy. Thus, it was
chosen such that Λ f = c = 0.1 m in order to have a turbulent scales separation without creating too large structures.
As seen in Table 4, the Taylor based Reynolds numbers are Reλg = 18 or 28. These values are too low to be able
to carry out a LES, it means that a quasi-DNS must be done to carry the inflow perturbations up to the airfoil. The
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Table 4 Information about some experiments of Zhou et al. [38] and Wang et al. [8], and corresponding
simulations, where It is the turbulent intensity,Λ f is the longitudinal integral length scale and ReΛg is the Taylor
transverse micro-scale based Reynolds number

Case 1 2 3
Experiments Zhou et al. [38] Wang et al. [8] Wang et al. [8]

Turbulence Grid No No Yes
It (%) 0.4-0.5 0.6 2.6
Λ f (m) / / 0.025

It in simulations (%) 0.45 / 2.6
Λ f (m) in simulations 0.1 / 0.025

Reλg 18 / 28

airfoil was surrounded by a O-type mesh with desired maximal non dimensional mesh size ξ+ = 10 in the streamwise
direction, η+ = 1 in the normal direction and ζ+ = 10 in the spanwise direction. These values are low enough to
efficiently capture the LSB. After the simulations were finished, the value of η+ is checked and is between 0.2 and 5 on
the suction side. The values of 5 are reached only on 10 cells near the trailing edge, probably due to distorted cells.
Elsewhere, η+ is around 1. To carry the inflow turbulence up to the airfoil with a quasi-DNS, the inlet mesh size was set
to ∆Inlet = ηK/4 = 3.1 × 10−3 m where ηK is the Kolmogorov scale of the injected turbulence for Case 1. For Case
3, this gives ∆Inlet = 1.72ηK , which is too high to obtain a quasi-DNS. The inlet is located at 6c from the leading edge
and the outlet at 5c from it. The up and down sides are at 5c from the leading edge and a symmetry condition is applied
on it. The spanwise length is 0.5c which is enough to have an accurate description of 3D structures as seen by Thomareis
and Papadakis [7]. Periodic boundary conditions are applied in the spanwise direction. The meshes are made up of
11×106 elements. This set-up gives a distance between the inlet and the airfoil leading edge of 6Λ f for Case 1 and 24Λ f

for Case 3, which prevents any energy decay as seen in Section IV.A.4. This means that the turbulent kinetic energy set
at the inlet will be the same as the one reaching the airfoil. The subgrid dynamic model is used and Cs is restrained
from 0 to 0.065, which is the theoretical value for a turbulent channel flow. Simulations are run for t∗c = 40 with a
time step ∆t = 2.5 × 10−3 s which gives 3.1×104 iterations. The time step is chosen as ∆t = min

(
τWall, τinlet

)
/4

where τWall = η+ν/(0.1Ux)
2 as the estimated minimum time scale present near the airfoil in the boundary layer, and

τInlet = ∆Inlet/U0 as the minimum time scale introduced with the SEM. The factor 1/4 ensures the quality of the
results based on what has been said in the section IV.A.3 about aliasing. This gives CFL = 0.0765 at the inlet. The lift
and drag coefficients, CL and CD , are averaged on the last t∗c = 20.

First, it is important to note that for Cases 1 and 2, there is experimentally no LSB as the CL curves show no stall and
that no particular increase is visible for α = 10◦, unlike Case 3. For α = 15◦ and Case 3, the stall shows that the LSB
has burst. Then, simulations results for CL and CD are shown in Fig. 15 along with experimental results from Zhou et al.
[38] and Wang et al. [8]. First, Fig.15(a) shows agreement of the lift coefficient for α = 5◦ between simulations and
the three experiments. Then, for α = 10◦, there is a discrepancy between the simulation and the results from Zhou
et al. [38] for Case 1 but there is a good agreement with the results from Wang et al. [8] for Case 2. There is also
a discrepancy between the simulation and the experiment for It = 2.6% (Case 3). For this angle of attack, there is a
strong influence of the turbulent intensity on the lift coefficient, even when there is no LSB on the airfoil for Cases 1
and 2. It shows that the airfoil in simulations does not see the same turbulence as in the experiments or does not not
react to it the same way, since the simulation result for It = 0.45% is closer to the experimenal results with It = 0.6%.
Furthermore, the Case 3 is not well reproduced by the simulation. In this case, an LSB is experimentally present and it
seems that the simulation is not able to correctly capture it. Finally for α = 15◦, the difference between simulation and
the experiments in Case 1 is even more pronounced but the error for Case 3 is very small. Again, the simulation in this
case is closer to the Case 2 experimental result. This tends to show that, whatever the angle of attack, the simulations in
Case 1 are closer to the experiments of Wang et al. [8] in Case 2 than the one from Zhou et al. [38] in Case 1, especially
at high angles of attack where the flow separates.

The discrepancies between simulations and experiments for Case 1 can be attributed to the fact that the experimental
turbulence is not generated by a grid and is the residual turbulence of the water tunnel. Its properties are not controlled
and the isotropy might not be respected. Another reason for the discrepancies is that the integral length scale in Zhou et
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Fig. 15 Averaged a) lift and b) drag coefficients for the incompressible LES simulations with SEM, and for the
experiments of Wang et al. [8] and Zhou et al. [38]. See Table 4 for references.

al. [38] was not specified so that a choice has been made for it in the simulation, which is maybe different from the
experimental one. Regarding Case 3, It can be concluded that the simulations are not able to correctly reproduce the way
the airfoil reacts to the inflow turbulence or the turbulence itself, since there is no aerodynamic stall in the simulations
while there is one in experiments. The LSB might not be accurately captured at α = 10◦. A reason could be that the
grid carrying the turbulence from the inlet up to the airfoil is too coarse to compute the Kolmogorov scale, which means
that the airfoil encounters only the largest scales of the turbulence. This should be improved in future simulations.
Another reason could be the averaging time window which is only on the last t∗c = 20 = 40 s in simulations while it is
5 minutes in experiments. When the LSB is a highly instationnary phenomenon and could be subject to intermittency as
seen in Eljack [39], the averaging time is critical and longer simulations should be carried out in the future. Figure 15(b)
shows that the simulated drag coefficient is in good agreement with all the experiments for each angle of attack. This is
not surprising as this coefficient is not dependent on the turbulence intensity as shown in Wang et al. [8]. The drag
coefficient is quasi-stationnary compared to the lift coefficient.

Finally, some flow visualisations for Cases 1 and 3 at α = 10◦ are shown in Fig. 16 where the streamwise velocity
is plotted for t∗c = 30.7. It clearly shows the separation of the laminar boundary layer on both visualisations. While the
Case 1 velocity seems to show 2D well-organised structures, Case 3 velocity is more disorganised with high negative
values closer to the leading edge. It could be the LSB reattaching earlier on the aifoil as the turbulent intensity increases.
This would explain the slight increase of the lift coefficient between Case 1 and Case 3. The difference between
experiment and simulation for Case 3 is still to be analysed but could be a delayed reattachment of the boundary layer in
the simulation.
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a) b)

Fig. 16 Visualisations of the instantaneous streamwise velocity at t∗c = 30.7 for α = 10◦ and a) Case 1 and b)
Case 3

VI. Conclusion
The present work aimed to generate inflow synthetic turbulence in Large Eddy Simulations (LES) with realistic

properties such as isotropy, homogeneity or energy density spectrum, in order to accurately compute Laminar Separation
Bubble (LSB) on airfoils. For future noise computations, another objective was to reduce spurious noise level due
to spanwise periodicity conditions when introducing turbulence in compressible simulations. Synthetic turbulence
has first been studied through spatial decaying homogeneous isotropic turbulence cases with LES. Both the Synthetic
Eddy Method (SEM), included in incompressible LES with Code_Saturne, and the Random Fourier Modes (RFM)
method, implemented in compressible LES with Code_Safari, show a perfect isotropy and homogeneity at every spatial
position. There is a small decay of the turbulent kinetic energy on a long distance for both methods. For the SEM in
incompressible simulations, it has been attributed to the prescribed Gaussian spectrum, far from correctly representing
the small turbulent scales and the energy exchange from the large to small structures. This distance is responsible
for a lack of dissipation up to 50Λ f . However, 150Λ f are necessary before the energy transfer mechanisms are fully
established. A way to improve the method by reducing the adaptation distance will be to sum structures, each with a
different size. For the RFM method in compressible simulations, the long adaptation distance has been attributed to the
relatively high Mach number used, which makes it more difficult to see a decay during the considered time window. By
nature, the RFM method adaptation distance should be shorter than the SEM one, since a real spectrum is prescribed,
making the correct 3rd order moments easier to retrieve but no conclusion on it can be drawn based on the present
simulations. The only way to rigorously compare both methods would be to do it the same code. Additionally for the
SEM, it has been shown that the subgrid model and the shape function have a minor effect on the turbulence decay, but
the dynamic model is best for its adaptation to the flow. Furthermore, the CFL number has a large influence on the
results. When it is too high, an overestimation of the energy is present and a high-energy spurious peak appears in
frequency spectra. This is here attributed to possible aliasing effects due to non-linearities of the Navier-Stokes equation.
A factor of 4 between the lowest time scale we want to solve and the time step simulation is necessary to get rid of the
aliasing effects.

The RFM-P method, stemmed from the RFMmethod, has been developped to make the inflow turbulence compatible
with aerodynamic periodic boundary conditions, thus making less spurious noise when introduced in the calculation
domain. Both methods are quite similar in terms of turbulent properties. The homogeneity is respected and spectra are
retrieved. The RFM-P method shows exactly the same properties as the RFM one, except that the isotropy is broken,
which is a natural consequence of the method construction. It is thought that this loss in isotropy is not necessarily a
drawback since numerical calculations will use only a small airfoil span to limit the computational cost. The slice will
then see mostly 2D structures in the spanwise direction making the isotropy not relevant. The spurious noise is reduced
by at least 10 dB by using the RFM-P instead of the RFM.

Preliminary calculations with inflow turbulence on a NACA 0012 airfoil at a Reynolds number Rec = 5.3 × 103
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have been carried out in Code_Saturne with the SEM only. While the drag coefficient is in very well agreement with
experimental results, the lift coefficient, highly dependent on the turbulence characteristics, shows some discrepancies
with the experiments, especially at high angles of attacks. This is attributed to a lack of information about the integral
length scale and isotropy in the experiments. Furthermore, the inflow turbulence could not be accurately carried from
the inlet up to the airfoil in simulations because of a too coarse mesh. Finally, the LSB and its intermittency could
be badly represented as too short simulations were carried out. New improved simulations will be run to check these
hypothesis.

22



VII. Appendix

A. SEM Theoretical and Practical Considerations
This section describes the virtual box for the SEM implementation in Code_Saturne. It details also the way to

compute the shape functions parameters α, β and lf used in Eqs. (3) and (4). In practice, a virtual box is constructed
around the computational domain inlet which has dimensions [xmin − lf ; xmin + lf ] along x, [ymin − lf ; ymax + lf ] along
y and [zmin − lf ; zmax + lf ] along z where xmin, ymin, ymax , zmin and zmax are the size of the inlet plane located in
xmin. The box half depth around xmin is defined by the length lf which depends on the shape function used and on the
integral length scale, as shown at the end of this Appendix. The fluctuating velocity is constructed on xmin by summing
the influence of every structures in the virtual box, before being added to the inlet velocity of the computational domain.
The α and β shape function parameters, used in the Eqs. (3) and (4), are determined using the known averaged kinetic
turbulent energy kt and longitudinal integral length scale Λ f . First, the constraint u′i =

2
3 kt , ∀i, must be respected.

When applied to Eq. (2), it becomes ∭
VB

fΛ f

2(x)dx = 1. (17)

Then, Λ f is linked to the velocity longitudinal autocorrelation normalised function along x, RNorm
u′xu

′
x
, by

Λ f =

∫ ∞

0
RNorm
u′xu

′
x

(
rex

)
dr, (18)

where ex is the unit vector along the x direction. Applied to Eq. (2), RNorm
u′xu

′
x

can be written as

RNorm
u′xu

′
x

(
rex

)
=

∭
VB

fΛ f

(
x
)

fΛ f

(
x + rex

)
dx. (19)

Together, Eq. (17), Eq. (18) and Eq. (19) are used to determine the shape functions parameters α and β of the
Eqs. (3) and (4). For the hat function, these parameters follow the equations

α =

(
8
9
Λ f

)−1/2
, β =

4
3
Λ f , (20)

with lf = 4
3Λ f to lead the shape function value down to fΛ f = 0 on each structure border.

For the Gaussian function, α and β are determined by

α =
(
Λ f

)−1/2
, β =

Λ f
√
π
, (21)

with lf =
4Λ f
√
π
= 4β, chosen to lead the shape function value down to fΛ f = 2 × 10−7 ×max

(
fΛ f

)
on each structure

border.

B. RFM Theoretical Considerations
This section details the way to compute the mode amplitudes ũn of Eq. (5) for the RFM and RFM-P methods.

Equation (11) can be found by making a link between average turbulent kinetic energy kt , Eq. (5) and turbulent energy
spectrum E . A first expression for the kinetic energy is

kt =
∫
k

E(k)dk =
N∑
n=1

E(kn)∆kn (22)

and a second one is

kt =
ut iut i

2
, (23)

which becomes, using Eq. (5),
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kt =
N∑
n=1

ũ2
n. (24)

Finally, the combination of Eqs. (22) and (24) gives

ũn =
√

E(kn)∆kn. (25)

The mode amplitude ũn is determined by the spectrum. To have both the inertial and dissipation parts, the von Kármán -
Saffman [31] has been chosen, such as

E(k) = αs
2kt
3

(k/ke)4

ke
[
1 + (k/ke)2

]17/6 exp

(
−2

(
k
kη

)2
)
, (26)

where kη is the Kolmogorov wavenumber and αs and ke are constants. Those are computed in Bailly and Juvé [40] so
that their final values are

αs =
55
√
πΓ(5/6)

9Γ(1/3)
w 1.453, (27)

ke =
√
πΓ(5/6)
Γ(1/3)Λ f

w
0.747
Λ f

, (28)

where Λ f is the longitudinal integral length scale to set. The αs value represents a normalisation condition to preserve
the kinetic energy of Eq. (22).
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