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The calculation of the Probability Of Detection (POD) in Non Destructive Eddy Current Testing requires the solution of a stochastic 

model requiring numerous calls of a numerical model leading to a huge computation time. To reduce this computation time, we propose in 
this paper to combine either the use of a stochastic metamodel and a mapping which avoids the remeshing step. The stochastic metamodel 
is constructed using the Least Angle Regression Method. This approach is tested on a axisymmetric problem with 6 random input 
paramters which shows its efficiency and its accuracy.   

 
Index Terms— Eddy Current Testing, Finite Volume Method, Stochastic Model, Least Angle Regression Method, Probability Of 

Detection.  
 

I. INTRODUCTION 

owadays, non-destructive testing (NDT) is an 
essential element of component quality qualification. 
For inspecting materials and components, several 

methods are developed. One of these methods is the Eddy 
Current Method (ECT). The qualification of this process is 
then required. The size of defects that can be detected should 
be determined. In practice, it appears that imperfections on the 
sensors or uncertainties on the material characteristics to be 
inspected modify the response of the NDT device. The 
measurement is not deterministic and varies around a targeted 
value. For this reason, a statistical study must be carried out to 
calculate the possibility of detecting (or not) defects under 
different operation conditions [1-2].  A Probability Of 
Detection (POD) can be estimated to quantify this capability 
of the NDT device to detect a defect. 

The ECT system can be represented by electromagnetic 
equations such as Maxwell's equations. The difficulty of 
solving these equations analytically leads to use a numerical 
method to construct an accurate model. In this work, the Finite 
Volume (FV) method has been applied. As long as the input 
parameters are no longer nominal values, so the numerical 
model FV can be represented by a stochastic system [3] with 
input parameter which are random.  

The response of ECT system is no longer deterministic and 
a sampling technic like the Monte Carlo Simulation Method 
can be used to characterize the output and particularly to 
calculate the POD. A high number of calls of the numerical 
model FV are required.  So repeating the model FV for a fairly 
large number of realizations is time consuming, especially 
when the geometry is modified because the mesh should be 
modified. To avoid the remeshing (RM), a geometric 
transformation (GT) method [4] has been used which consists 
in changing the coordinates of the nodes without changing 
their connectivity. The GT method has been used to solve an 
electrokinetic problem [5] and more recently a 
magnetoelectric problem [6]. To approximate the response of 
the stochastic system, a stochastic metamodel [2-3, 7] is 

constructed based on a polynomial chaos expansion and the 
Least Angle Regression (LAR) method. 

In this work the numerical POD of the defect depth is 
estimated using the Hit/Miss method in both methods GT and 
RM. To reduce the time calculation a stochastic metamodel is 
used in both methods (GT and RM) to approximate the 
responses. The two approaches are compared on a NDT 
stochastic example.  

II. ECT AND FV MODEL  

The ECT problem is modeled by the axisymmetric 
formulation of the magnetic vector potential "A " in the 
domain Ω  is used as follows: 
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with w , sJ , σ , and µ  are the angular frequency, source 

current density, electrical conductivity and magnetic 
permeability respectively.  
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Fig. 1 Coil-tube geometry [8], with rci, wc, tc are the inner radius, the width, 
height of the coil, tt the thickness of the tube, and the defect a (shaded area). 



 

 

This ECT problem consists of a coil located in a steam 
generator tube with an external circumferential defect. The 
geometry is shown in Fig. 1.  

To solve Eq.1 with the FV model, we subdivide the domain 
into a large number of elements (triangle or quadrilateral). The 
integration of Eq.1 over each element (P) of the domain Ω is 
required as it is shows in Fig. 2. 

The integration of first term of Eq.1 over the element P can 
be done by using the divergence theorem as in:  
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where

iNA , PA  are the nodal magnetic vector potential of the 

nodes iN (i=1:4) ,P  respectively, if  are the faces with 
r
n its 

outward normal vector , ic∆  are the distances between the 

centres of iN  andP , iη∆  are the lengths of the edges of the 

element. The non-orthogonal term is considered and 
interpolated as in [9]. We first solve the Eq.1 for the unknown 
potential A  for all elements of the mesh and then we calculate 
the impedance of coil which is the quantity of interest to detect 
the default. It can be calculated using Faraday’s law and 
Stokes theorem [10] as follow: 
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III.  PROBABILITY OF DETECTION ESTIMATION  

A. Empirical POD  

The determination of the empirical POD requires 
considerable experimental measurements. A large number of  
samples are required to have a representative statistical 
population for signal of the defect. This method is time 
consuming and very expensive [11]. In this paper, we work 
with the numerical POD. 

B. Numerical POD 

• Monte Carlo Simulation Method (MCSM) 

The Monte Carlo Simulation method [3, 12] consists in 
generating a sample of size which corresponds to M 
realizations of the input parameters, to solve M times the 
model and then in a postprocessing to give an estimation of 
the POD.   

Its accuracy depends on sample size, and convergence is 
relatively low. Indeed, thousands of random realizations are 
often required to obtain a desired accuracy of the POD, which 
necessarily implies a high calculation time. 

For the implementation of the MCSM, it is assumed that the 
input parameters are independent and have a uniform 
distribution. 

• Stochastic model  

As long as the calculated response of the ECT system is no 
longer nominal (deterministic), the notation of a random 
variable (Z ) is used. So the stochastic model is given by the 
function: 

( ), a .Z f X=                                                                     (4) 

where a  is the depth of the defect (in the case without defect 
a 0=  and Z is denoted 0Z ) and X  the vector a finite 
number of random input parameters. To alleviate the 
notations, we replace in the following ( ), aZ f X= by 

( )Z X  (or Z ). X  ( { }1 2, ,...,
XNX X X X= with 

XN the 

number of input parameters) gathers the input parameters 
which are : 10 %σ ± , 10%µ + , , , 5%rci wc tc ± , and 

5%tt ± . The depths of the defect are 0.05, 0.4970 and 0.9675 
mm of the thickness tube with a width of 1.5 mm. The defect 
is circular and coaxial with the coil.  

The model Z can be replaced by an approximate model 

(metamodel) ( )ˆ , aLARZ f X= and is given in the following 

equation: 
 

( ) ( )ˆ, a , a .LARZ f X Z f X= ≈ =                                     (5) 

 
The metamodel will be discussed in the next section. The 

Monte Carlo Simulation is applied to the model ( )Z X or 

ˆ ( )Z X  in order to estimate the POD.   

• Stochastic Metamodel 

It is necessary to find a model faster than the FV model in 
order to reduce the calculation time. In this case, it may be 
considered to propagate the uncertainties through a metamodel 
constructed from Truncated Polynomial Chaos Expansion 

[12]. In that case, the approximation ˆ ( )Z X  of the stochastic 

FV model ( )Z X  can be written in the form [7]:  
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Fig. 2 Unknown elements representation.



 

 

with 1 2, , ...,
outP Ψ = Ψ Ψ Ψ  are the multidimensional 

polynomials of outP  terms, ( )Xξ  is a vector of the input 

parameters distributed in the interval [ ]1 , 1− , iα  are 

coefficients to be determined. The value of outP  depends on 

two quantities, 
XN and the order of expansion of the 

polynomial p  such as 
( ) !

! !
X

out
X

N p
P

N p

+
= , if the number of 

the input parameters is 6XN =  and the polynomial order 

3p = , thus the number of polynomial is equal to 84outP = . 

The coefficients of the polynomial can be estimated using a 
non-intrusive method such as the regression approximation 
[13]. The number of realisations desired is at least outP   , 

therefore, X outN P≥ . The unknown coefficients iα  can be 
calculated by the least square minimization, i.e. by minimizing 
the mean square of the residual reads:  
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with the mean operator [ ]E .  .  

The LAR method is a regression method that reduces the 
computational cost by selecting the polynomial terms which 
are correlated the most with the output. The number of terms 
is therefore significantly reduced compared to the classical 
regression method.  However, the number of polynomials 
increases exponentially with the dimension. So, in order to 
decrease the number, an improved LAR which consists in 
constructing iteratively with an increasing order of 
polynomials has been used [7].  

 

• Threshold Determination  

To determine the detection limit (s), the probability of False 
Alarm (PFA) has to be imposed at a very low value [14]. In 
our case, we put PFA = 0.05. Therefore the detection limit s is 
calculated by the following formula: 

 

0( ) 0.05.PFA Z s= > =P                                                    (8) 

 
with 0Z  is the random impedance without any defect.  

• Probability of detection  

After the detection limit has been determined, the POD is 
estimated. The POD is the probability of the model response 
Z  of a given defect (a 0> ) that is above threshold s  as 
shown in the following expression 

 
ˆ( ) ( ).POD Z s Z s= > ≈ >P P                                           (9) 

 
The total number of realizations of the impedance in the 

presence of defect is denoted by M  , we denote sM  the 

number of realizations that exceeds the threshold s , therefore 
the POD can be estimated by /sPOD M M= . 

IV.  GEOMETRIC TRANSFORMATION (GT) METHOD  

The dimensions of the sensor as well as the thickness of the 
tube are random input parameters. It means that during the 
sampling process the geometry is modified.  Due to the large 
number of FV model calls, the remeshing of the geometry 
adds non negligible computational time. Moreover, the 
remeshing introduced an additional numerical noise due to the 
modification of the connectivities between nodes. The GT 
method is based on changing the position of the coordinates of 
the nodes without changing their connectivity. First of all an 
initial mesh is proposed and decomposed into different 
subdomains, if the coordinates are changed according to the 
random vector gX (vector of geometric random parameters 

with gX X⊂ ), then the new mesh is obtained by dilation, 

compression or translation. The main idea of the GT method is 
to determine the appropriate transformation. Fig. 3 represents 
an initial domain and a transformed domain knowing that the 
new coordinates of gX . 

The transformation T  transforms the initial domain E  into 
a random domain ( )gD X . For each realization of X, the 

nodes are repositioned.  Fig. 4 gives the different steps to 
obtain with the two methods (GT and RM) the stochastic 
approximate model of the impedance by applying the LAR 
method. 

V. NUMERICAL APPLICATION  

A sample of M  realizations of the input parameters is 
generated. With the RM method the geometry and the mesh 
are recalculated for each realization.  Therefore, we estimate 
the POD for different meshes with a different size, denoted 

E   ( )gD X ( , )gT T x X=   
 

 
                (b)                                                       (a) 

Fig. 3 Geometric domain; a) initial domain (E ); b) transformed domain 

( ( )gD X ). 
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Fig. 4 Impedance calculation approximation with LAR in both methods: RM 
and GT.  



 

 

PODRM. The meshes used have S1=9102, S2= 14504, S3= 
19836, S4= 25252 elements.  

The second method used is the GT method, in which the 
mesh is fixed at the beginning (initial mesh) and the 
appropriate transformation is determined. Meshes of different 
size are also considered as in RM method (S1, S2, S3, and 
S4). The process of estimating the POD for the GT method 
denoted PODGT. For each realization, the GT is used in order 
to relocate the nodes according to the modification of the 
geometry.  

In the both methods (RM and GT), the PODRM and PODGT 
will be determined with defect sizes a1, a2, and a3 equal to 
0.05, 0.4970, and 0.9675mm respectively.  

To estimate the POD with two methods, the approximate 
model is used. It is constructed with 150N =  realisations of 
the FV model obtained with GT or RM method, once the 
metamodel is constructed, the MCSM is applied with a sample 
of 10000M =   realisations for each value of defect size ai. 
Repeating the same process with the RM and GT methods and 
all meshes. A linear metamodel is constructed and considered 
in this study; hence, the chaos coefficients are perfectly 
calculated. 

To verify the accuracy of the approximate model, an error is 
calculated by the following expression: 
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 The convergence of the metamodel is accurate with an 
error less than 10-4 which shows that the approximation is of 
good quality. 

  The Fig. 5 represents the POD for the S2 mesh, the PODRef 
is the reference POD of the GT method with 10000M =  and 

[ ]Ref 0.06, 0.38, 0.95POD = ; it shows great agreement with 

the two methods (RM and GT) based on LAR and the 
reference.  

The Table I represents the POD for different methods (RM 
and GT) and for different size meshes (Si) where we can see 
also a good agreement between the different methods with 
changing of the defect size ai. We can see that accurate results 
can be obtained with a coarse mesh and we can see also that 
the RM and GT methods give very similar results for this case 
meaning that the numerical has really few influence in the 
considered example.   

 
TABLE I 

POD FOR DIFFERENT METHODS 

 order PODRM  PODGT  
  a1 a2 a3 a1 a2 a3 
S1 P=1 0.06 0.38 0.96 0.06 0.37 0.95 
S2 P=1 0.06 0.38 0.95 0.06 0.37 0.95 
S3 P=1 0.06 0.39 0.96 0.06 0.35 0.94 
S4 P=1 0.06 0.39 0.96 0.06 0.38 0.95 

VI.  CONCLUSION 

In this paper two approaches to estimate the POD of an 
eddy current testing problem of tube coil system (steam 
generator tubes) have been estimated. The modification of the 
geometry which is random has been handled by a geometric 

transformation. The geometric transformation (or mapping) is 
shown to give similar results to the remeshing technic but is 
less time consuming. The stochastic metamodel has been used 
in both methods to reduce the computation cost of the high 
number of realisation and showed a great precision.  
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Fig. 5 Probability of Detection for different methods (RM and GT). 
 




