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Exhibiting inferential capabilities is one of the major goals of many modern Natural Language Processing systems. However, if attempts have been made to define what textual inferences are, few seek to classify inference phenomena by difficulty. In this paper we propose a hierarchical taxonomy for inferences, relatively to their hardness, and with corpus annotation and system design and evaluation in mind. Indeed, a fine-grained assessment of the difficulty of a task allows us to design more appropriate systems and to evaluate them only on what they are designed to handle. Each of seven classes is described and provided with examples from different tasks like question answering, textual entailment and coreference resolution. We then test the classes of our hierarchy on the specific task of question answering. Our annotation process of the testing data at the QA4MRE 2013 evaluation campaign reveals that it is possible to quantify the contrasts in types of difficulty on datasets of the same task.

Introduction

Exhibiting inferential capabilities is one of the major goals of many modern NLP systems dealing with question answering, information retrieval, information extraction or text summarization. In recent years, there has even been a focus on a new task called textual entailment, which precisely aims at capturing semantic inferences [START_REF] Dagan | The PASCAL recognising textual entailment challenge[END_REF]. However, inferences have been defined in several ways in the past, and it is not always easy to know the kind of problems we are faced with when dealing with textual entailment related tasks. In the context of machine reading, we can view an inference as any information we can reasonably deduce from the text without it being explicitly stated. This is different from logical inference and statistical inference, although techniques for both are used effectively in the resolution of textual inference problems [START_REF] Moldovan | Cogex: A semantically and contextually enriched logic prover for question answering[END_REF][START_REF] Poon | Markov logic in natural language processing: Theory, algorithms, and applications[END_REF]. This broad definition does not say much of what information we want to draw from the text, how to do it and whether it is an easy task or not. However, the ability to pinpoint the kind of inferential phenomena our systems are realistically able to handle seems really valuable to us. In this paper, we present a hierarchy of classes of inference. This hierarchical view is designed with several goals in mind: the most important is being able to categorize instances of problems to spot where the difficulties lie and what nature and extent of NLP techniques and resources we need to leverage to handle them. It also allows to conduct more fine-grained diagnostic evaluations of systems, to complement typical black-box evaluations. We show in our experiments on QA4MRE 2013's multiplechoice questions that our hierarchical classes do capture the variations of type and hardness of inference problems for the task of question answering and provide a basis for experimenting and evaluating only on the data our systems are designed to handle.

Related works

To our knowledge, few attempts have been made to categorize the difficulty of inferences in a manner helpful to computational systems. The field of cognitive psychology [START_REF] Mckoon | Inference during reading[END_REF] distinguishes bridging and elaborative inferences. Bridging inferences are drawn to fill the gaps in text and explicit -often through access to world knowledgewhat is untold, yet required to understand what the text means. This is akin to what the machine reading system of [START_REF] Peñas | Filling knowledge gaps in text for machine reading[END_REF] does. Elaborative inferences are not required for textual coherence, but they serve to enrich our mental representation of the text and make it more memorable. They also are prominently used when answering questions on the text. Such a distinction, although insightful to anticipate the design of machine reading and question answering systems, is still far from giving us hints on the automatization of inference. [START_REF] Clark | An entailmentbased approach to the QA4MRE challenge[END_REF] provide a combination of well-known language resources used toward the common goal of textual entailment. Ablation tests are performed to compute the impact of each on the overall accuracy, but there is no way of knowing which resource helps best on a given type of questions or entailment pairs. Interestingly, [START_REF] Huang | Modeling human inference process for textual entailment recognition[END_REF] take the angle of modeling human negative entailment capabilities. Finding in the text hints of a contradiction with the hypothesis appears to be an effective way to tackle textual entailment, but the tools and resources are still lacking to yield significant improvements over state of the art RTE systems. [START_REF] Maccartney | Natural logic for textual inference[END_REF] introduce natural logic applied to textual inference. They describe the kind of inference problems this logic applied to natural language is capable of solving: natural logic handles monotonicity, in which the concepts or constraints expressed are expanded or contracted, but it is not designed to deal with paraphrase, temporal reasoning, or relation extraction.

More generally, contributions which analyze the categories of error of systems are those we want to build upon. [START_REF] Moldovan | Performance issues and error analysis in an open-domain question answering system[END_REF] measure their system's accuracy by question class: factual, simple-reasoning, fusion-list, interactive-context, speculative. However, these classes are more about question types than they are about their difficulty, even if the two are likely correlated.

The hierarchy

Each of our classes is built to encompass a range of natural language semantic problems, tools, techniques, resources, and even human cognitive processes and levels of world knowledge required. Practically, we say that a problem is of a given class if it can reliably be solved within that class, but not within the classes below it in the hierarchy. The aim is to capture the inference phenomena that are sufficient and necessary to solve the problem. In this respect, those classes can be used in the same way complexity classes are used: both to characterize problems and the systems solving them -a system is of a given class if it can solve problems of that class but not problems from higher classes. While this all sounds ambitious, this hierarchy does not pretend to be absolute, and in fact it does not need to: simply setting up the groundwork towards a unified framework to discuss the contrasts in relative nature and difficulty inside the same problem -and sometimes the same dataset-is already helpful. The hierarchy is shown in Figure 1. There are seven classes, and the first six (from bottom to top) pair up in three tiers, corresponding roughly to the units of sense considered. As members of the hierarchy, higher classes will often still rely on the techniques and resources featured in classes below, and it is reasonable to assume that a system of a given class behaves well when faced with problems of lower classes. We also expect the difficulty of the problems -and the error rate of the current state of the art methods-to generally increase with the class. We propose for each class examples of representative problems. We chose to frame the problems, when possible, as picking the most relevant item among several answer candidates to a natural language query. While it seems reasonable to expect that our classes can still characterize the absolute difficulty level of the query alone, this level would be difficult to assess without some elements of context or examples of concurrent wrong items our systems are susceptible to pick over the right ones. Providing this context and an explicit set of correct and incorrect items is a satisfying compromise which allows us to showcase which techniques and resources are needed to discriminate reliably between possible answers to the query. In our examples, we will put the number of the right answer in bold font. We accordingly specify how several well-known natural language tasks reduce to this common framework. In question answering, the query can take the form of a natural language question, and items can be some choices of answer, the task being naturally to find a fitting answer to the question. Ranking answer candidates is also how state of the art question answering systems like IBM's Watson computer operate [START_REF] Ferrucci | Building Watson: An overview of the DeepQA project[END_REF], so this is a quite direct formulation of the task. In coreference resolution, the query is a sentence containing a pronoun, associated with the text preceding it. The items are entities of the text and the task is to find which entity the pronoun refers to. Recently, [START_REF] Levesque | The Winograd schema challenge[END_REF] have argued that the problem of resolving the difficult pronouns in a carefully chosen set of sentences, which he refers to as the Winograd Schema Challenge, could serve as a conceptually and practically appealing alternative to the well-known Turing Test [START_REF] Turing | Computing machinery and intelligence[END_REF]. According to Levesque, the pitfalls lie in the difficulty of providing problems whose resolution is obvious for humans but hard for machines. Knowing what is difficult for machines seems key to us and is one of the goals addressed in this paper. We will use examples of Winograd Schemas to demonstrate that coreference resolution can reach a very high difficulty level. A Winograd Schema is a small reading comprehension test involving the question of which of the two candidate antecedents for the definite pronoun in a given sentence is its correct antecedent. There is a word (called the special word) which appears in the text and sometimes the question. When it is replaced by another word (called the alternate word), the text still makes sense, but the answer to the question changes. In this special coreference task, we will set the query as the sentence and the question, and the candidate items as pairs of (special/alternate word, coreferent assignment), as shown for the classic Winograd scheme example in table 1.

Pattern matching

Relatedness

Text: The city councilmen refused the demonstrators a permit because they [feared/advocated] violence. Question: Who [feared/advocated] violence?

1) feared → councilmen, advocated → demonstrators 2) feared → demonstrators, advocated → councilmen Table 1: Winograd schema sample
In student answer analysis, an applicative task to Recognizing Textual Entailment evaluated in SemEval 2013's Task 7 [START_REF] Dzikovska | SemEval-2013 task 7: The joint student response analysis and 8th recognizing textual entailment challenge[END_REF], the query is a correct reference answer to a question, and we choose as items correct and incorrect student answers. The task is to find correct student answers matching one reference answer. Some of our examples are sampled from Semeval 2013 Task 7's Beetle test data. Other problems which may fit this framework are word sense disambiguation and entity linking.

3.1. Tier 1: Word level 3.1.1. Pattern matching Class 1 pertains to problem instances that can be solved using only words of the text, without any intent to capture the representation of a higher-level structure like the sentence, and using minimal world knowledge. Sentence chunking to create smaller groups of words, filtering words of the text (with a stop-word list, for example), tokenization, grouping words in n-grams, basic stemming and lemmatization are the most advanced text processing needed to solve this class of problems.

Text: Bob is going to the swimming pool. Question: What is going to do Bob? 1) Eat a sandwich.

2) Go swimming. These sample problems (tables 2 and 3) are easily solved through counting the number of words common to a choice and the given text. It is enough to discriminate between the right choice (choice 2) and something irrelevant.

Relatedness

Class 2 does not need the inference process to represent a higher level of sense than Class 1 (we stay at word level), and uses mostly the same processing tools, but we add the notion of lexico-semantic variations of words to capture a shallow notion of semantic relatedness. Lists of synonyms/hypernyms, taxonomies, thesauri -including Word-Net [START_REF] Miller | WordNet: a lexical database for english[END_REF] used in the simplest ways-and dictionaries are among common resources that are added in to deal with those problems. In the example (table 4), counting the common words be-Text: Bob bought this hamburger. Question: What has Bob done? 1) Obtained a sandwich. 2) Played in the water. tween the choices and the text is not enough and does not distinguish one answer from the other. But hamburger is an hyponym of sandwich. This can be learned from a good enough synonym/hypernym resource, like WordNet, or the Wiktionary1 .

3.2. Tier 2: Sentence level 3.2.1. Structure Class 3's inference problems require the capture of some notion of higher-level structure in the text, at least higher than the word, generally at sentence -or clause-level. Several of the most well-studied text processing techniques come in handy, like: part-of-speech tagging, chunking, syntactic parsing, predicate-argument extraction, semantic role labeling, or polarity detection. We note that we still often need techniques and resources mentioned in Tier 1, but we moreover need to know not only what the words are, but what roles they occupy relatively to the others in the sentence.

Text: As it's raining today, Bob won't go to the beach. Question: What is going to do Bob? 1) Stay home.

2) Go to the beach with his friends. The problem described in the examples is as expected harder than Tier 1 problems. Simple Tier 1 techniques can work against us and reliably pick the wrong choice. In table 5, we have to determine that no matter what, Bob will surely not go to the beach , by parsing the text and detecting that this clause is negated, so we pick the other answer. This is also an example of using negative entailment in the decision process. In example table 6, to pick the student answer corresponding to the reference answer (choice 1), we rely on polarity detection on some kind of predicate-argument structure extraction to establish typed links between the terminal 4 and the positive terminal. Note that it is necessary to know that separated and connected are antonyms, which can be found in resources used in Class 2.

Concepts and relations

Similarly to the first two classes, Class 4 takes the complexity of Class 3 and adds in extended world knowledge. Establishing a link between a word -or sequence of wordsand a real-world concept is now required, as well as using not only the relations between concepts discovered in the text, but also those stored in a background knowledge base. Named entity recognition, paraphrases, ontologies, relations and properties extracted from dictionaries, Word-Net or Wikipedia and even relations extracted through webcrawling (like TextRunner) are good techniques and resources to capture concepts and relations. Some basic reasoning engine may be needed.

Text: Bob once gave his sister Alice a pendant. Question: Who gave Alice the pendant? 1) A brother.

2) A sister. In the question answering example (table 7), a system has to know that if a male individual has a sister, then he is the brother of that female individual, which is not linguistic knowledge easily obtainable in the previous classes. In the Winograd scheme (table 8), there are two main ways to go about it. Either you know that the indirect object of the verb ask often has to answer the question after it is asked, which is quite complex reasoning that will be handled in class 5, or you just pick the character that is more likely to answer questions, when a witness and a lawyer are involved. For this method and this example, TextRunner gives as potential relations between witness and question only variants of answer or ask at the passive form, while relations found between lawyer and question are much more diverse, modeling the fact that the witness is often one who strictly answers questions.

Tier 3:

Beyond the text 3.3.1. Events and discourse Class 5's phenomena go beyond a single sentence and deal with characters and events in the text. In particular, understanding the overall structure of a sequence of several sentences is required: to know when an event might have happened without being mentioned in the text, what event might happen in the future, what roles are filling the characters. NLP techniques and resources at this stage are much more scarce. Discourse parsing can unveil simple causal or temporal relations between events. Event chains can help filling out the blanks in a succession of events. We feel like common-sense knowledge of human society and interactions would help at this stage, without needing the full extent of what Class 6 is about.

All of the choices in the example (table 9) are true statements, but are not the reason asked in the question. This Example from QA4MRE 2013, entrance exams task Text: I probably would have [continued to argue with her], but as I lay there, I could tell that Susan's phone call was not good news. I knew she had a boyfriend back home. From what I could hear her say, I guessed he had found a new girlfriend. Question: Why was Susan so upset by the phone call? 1) Mary's boyfriend had found a new girlfriend.

2) The call interrupted her argument with Mary.

3) Her boyfriend had lost interest in her. 4) The caller did not want to talk to Mary. The Winograd schema of class 5 (table 10) requires us to keep track of 2 characters and their interaction in the text. Although technically all the information is included in the same sentence, there are multiple clauses to link together. Detecting a causal relationship -with reliable directionality-is a typical class 5 problem.

Visualization

Class 6 problems go beyond the text itself, and require an actual model of the situation at hand [START_REF] Zwaan | Situation mod-els in language comprehension and memory[END_REF]. A few dedicated NLP applications exist solely to solve one of the many facets of Class 6 inferences, including: temporal and spatial reasoning, sentiment detection. In general, computer systems are lacking human senses -vision and hearing-to deal with these problems in a generic fashion.

Example from QA4MRE 2013, main task Text: 1 person in 85 will be affected [by Alzheimer's] by the year 2050. Question: How many people affected by Alzheimer's are there expected to be in the year 2050? 1) 123 million.

2) 85 million. 3) none. 4) a pretty small number. 5) None of the above. The example from table 11 is one of the harder questions. One has to know or evaluate the predicted human population of Earth by 2050 and make a computation about that number. Several choices are provided so we can pick the likelier number, but the system still has to be aware of Text: I tried to paint a picture of an orchard, with lemons in the lemon trees, but they came out looking more like [light bulbs / telephone poles]. Question: What looked like [light bulbs / telephone poles]? 1) light bulbs → lemons, telephone poles → lemon trees 2) light bulbs → lemon trees, telephone poles → lemons Table 12: Winograd schema (Class 6) global growing demographics on Earth, and know how to perform simple calculations. Alternatively, one has to guess that the other likely number (85 million) is probably just a decoy because the number 85 is present in the text but not to designate a population count; this kind of meta-reasoning about the task format (multiple choice questions) is not currently handled by systems, and is not intended to be the main natural language problem to be addressed in the near future.

In the Winograd schema from table 12, it is much easier for a human to just imagine what fruits or trees might look like -relatively to their visual shape-than for a computer.

Leaving room for the unexpected

We leave room for more complex inference problems and techniques.

Experiments

Our data consist of the question answering test sets at QA4MRE 2013 [START_REF] Peñas | QA4MRE 2011-2013: Overview of question answering for machine reading evaluation[END_REF]. There are two tasks, the Main task and Entrance Exams task, and both feature the same format: a series of long texts, and for each of them, several multiple-choice questions to answer. The Main task's questions are traditionally designed to evaluate natural language processing systems. But the all new Entrance Exams task features tests of English as a foreign language at the Japanese University Entrance exams, hence this dataset is designed to evaluate humans. This is a key difference. There are 284 questions over 4 topics of 4 reading documents each in the Main task, and 45 questions over 9 reading documents in the Entrance Exams task. Questions have 5 answer choices in the Main task (including a None of the above option to indicate that none of the provided answer choices is correct), 4 answer choices in the Exams task (a None of the above option is not present for those). Each question has been annotated with its correct answer (as provided by QA4MRE organizers) and our own annotations of a 3-sentence passage in the text containing a single answer sentence. We removed questions for which we couldn't find a correct passage: in particular, all questions where None of the above is the correct answer were filtered out (39% of the Main dataset). Our goal is to annotate each question with their class in our hierarchy. We turn the question answering problem into 2 separate subtasks: first we need to find the passage containing the answer, and once this is done -essentially reducing the search space for the answer from hundreds of sentences to just three-we need to consider answer candidates present in this passage, and choose the correct one. Each of these tasks can be framed as described at the beginning of section 3.. For the passage retrieval subtask (PR), the query is the question and the candidate items are the passages of the text. For the answer choice subtask (AC), the query is the question and the 3-sentence passage -now assumed correct and containing the answer-and the candidate items are the answer choices. The overall difficulty of the question answering task (QA) can be approximated by taking the maximum of the difficulties of the two subtasks, passage retrieval and answer choice2 . For convenience purposes, we run a baseline counting the common lemmatized non stop-words between candidate items and query and rank the candidate items according to their score. The tokenizer and lemmatizer used are part of the Stanford CoreNLP tagging tool [START_REF] Toutanova | Feature-rich part-of-speech tagging with a cyclic dependency network[END_REF]. We then annotate for each question the class which corresponds to the passage retrieval part and the class which corresponds to the answer choice part, that is to say, the class that is necessary and sufficient to distinguish the correct item from the incorrect ones. When our baseline ranks the correct passage in first place, we automatically annotate this passage retrieval step as being of class 1. Similarly, when our baseline ranks the correct answer in first place -that is to say, the correct answer has strictly more words in common with the correct passage than all the other candidates-, we automatically annotate this answer choice step as being of class 1. The rest of the classes are manually annotated by two annotators (the authors of this paper) on all questions of the first document of each topic (documents 1, 5, 9 and 13) for the Main task, and on the first 7 documents of the Exams task, and a Cohen's Kappa score of inter-annotator agreement is calculated [START_REF] Cohen | Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit[END_REF]). We get a Cohen's Kappa of 0.81 on the passage retrieval subtask and 0.86 on the answer choice subtask for the Main dataset, on 51 questions annotated by both annotators, which denotes very high agreement. However, we have only a Cohen's Kappa of 0.49 on the passage retrieval subtask and 0.57 on the answer choice subtask for the Exams dataset, on 30 questions annotated by both annotators, which is a much lower agreement.

We observe (Tables 13 and14) that the class distribution for the overall question answering task is different for Exams questions, even though the problem and format are the same. Exams contain significantly more questions of Tier 3 compared to Main. And among Tier 1 classes, they exhibit five times as much Class 2 phenomena as Class 1, whereas Main's first two classes are balanced, with even a slight bias toward simple pattern matching questions. This confirms the hypothesis that the nature of questions in the Entrance Exams corpus is different from that of the questions in Main. Tests for entrance exams use more reformulations of the text (pertaining to Class 2 inferences) to test the english vocabulary of the student. The questions can also involve cognitive processes of higher order (Class 5 and more) which make heavy use of common-sense knowledge, as it is assumed to be naturally available to a human being.

Class

The table 15 attempts to provide some insights on why our inter-agreement rate is much lower on the Exams task than on the Main task. We found that for more difficult problems, it can be confusing to pinpoint the class to which a phenomenon belongs. For example, we report that there seems to be confusions between Class 2 and Class 4 at the passage retrieval level. Class 2 introduces the notion of semantic relatedness and exterior knowledge can already at this level be captured through the resources employed, which makes it close to Class 4 in term of external world knowledge.

Nevertheless, the class distribution of Entrance Exams being skewed towards the upper Tier 2 and Tier 3, with respect to Main's distribution, we could expect the performance of systems which ran on both at QA4RME 2013 to be lower because the problem is overall harder. This is indeed the case, as seen in Table 16, all the more so as Entrance exams feature only 4 choices while Main features 5.

Conclusion

We described a hierarchical taxonomy of textual inferences. This taxonomy is designed with computational systems in mind, and encompasses tasks, techniques, tools and re- As seen in the experiments, it can indeed make the contrasts within a dataset apparent, both in term of nature and overall difficulty of the task. From there we can guide further improvements on systems and choose the kind of problems we want to evaluate them on.

In future work, we plan to develop the specification of the annotation process of those classes, perform more finegrained evaluations on systems and finally propose solutions to improve system performances on the higher classes of inference problems.
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 2 Question Answering (Class 1)

	Reference answer: Terminal 4 and the positive termi-
	nal are separated by the gap
	1) Because they aren't damaged.
	2) positive battery terminal is separated by a gap from
	terminal 4

Table 3 :

 3 Semeval 2013 Task 7 (Class 1)

Table 4 :

 4 Question Answering (Class 2)

Table 5 :

 5 Question Answering (Class 3)

	Reference answer: Terminal 4 and the positive termi-
	nal are separated by the gap
	1) terminal 4 is not connected to the positive battery
	terminal
	2) because there is no gap between terminal four and
	the positive terminal
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 6 Semeval 2013 Task 7 (Class 3) 

Table 7 :

 7 Question Answering (Class 4)

	Text: The lawyer asked the witness a question, but he
	was reluctant to [answer/repeat] it.
	Question: Who was reluctant to [answer/repeat] the
	question?
	1) answer → witness, repeat → lawyer
	2) answer → lawyer, repeat → witness

Table 8 :

 8 Winograd schema (Class 4) 

Table 9 :

 9 Question Answering (Class 5) question also deals with common states of mind of human beings.Text: Susan knew that Ann's son had been in a car accident, [so/because] she told her about it. Who told the other about the accident? 1) so → Ann, because → Susan 2) so → Susan, because → Ann
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 11 Question Answering (Class 6)
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 14 Class distribution for Exams (all docs) found by annotator 1

		PR	AC	QA
		(%)	(%)	(%)
	1:Pattern matching	55	52	24
	2:Relatedness	12	6	16
	3:Structure	16	32	37
	4:Concepts and Relations 4	0	2
	5:Events and discourse	14	8	18
	6:Visualization	0	2	2
	7:?	0	0	0
	Table 13: Class distribution for Main (docs 1, 5, 9 and 13)
	found by annotator 1			
	Class	PR	AC	QA
		(%)	(%)	(%)
	1:Pattern matching	38	33	4
	2:Relatedness	15	16	19
	3:Structure	13	13	17
	4:Concepts and Relations 0	2	2
	5:Events and discourse	32	22	35
	6:Visualization	4	13	17
	7:?	0	0	0

http://www.wiktionary.org/

In practice, we likely misestimate the difficulty of the passage retrieval subtask, because actual passage retrieval as performed by systems can benefit from including words of the right candidate answer, but likewise can be noisier as we add words of the wrong candidate answers. Nevertheless, a human reader can find most of the relevant passages without reading the corresponding provided candidate answers, so separating the task in those 2 subtasks is reasonable.