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Abstract

This paper performs a comparison of the Taylor Rule and Nominal GDP Targeting by esti-

mating a DSGE model with Bayesian techniques. The first part builds a New Keynesian DSGE

model with investment adjustment costs, prices and real wages rigidities, a government sector,

and imperfect competition, alongside various shocks. The second part estimates and contrasts the

models using Bayesian methods on Euro Area data. The results show that the data strongly prefer

the Nominal GDP Targeting Rule over the Taylor Rule. We conduct numerous robustness checks

to guarantee the solidity of our results. We also provide impulse response functions evaluation

of the two Monetary Policy Rules.
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1 Introduction

The idea of Nominal GDP Targeting (NGDPT) was introduced in Economics by Meade

(1978) and Tobin (1980). But since the 1990s, it was eclipsed by the Taylor Rule since

the introduction of this latter notion by Taylor (1993). Ever since, most of the Central

Banks in the Developed and Emerging Countries have implemented the Taylor Rule in

one of its many variants as demonstrated by many of the DSGE models that are built in

these institutions and the academic literature that followed. However, when the Great

Recession of 2008 struck, many voices advocated for alternative Monetary Policy Rules

and Practices. Among them, the Blog Posts by Scott Sumner attracted the support of

many Economists and the Economic Press. He resuscitated the view point of NGDPT

which is summarized in Sumner and Roberts (2018).

Motyovszki (2013) is one of the first works analyzing the concept of NGDPT in a DSGE

model framework. He analyzes the issue in the setting of a New Keynesian DSGE model

containing three shocks and no zero lower bound. His results show that Nominal GDP

Level Targeting gives a steadier real economy than strict inflation targeting at the cost of

higher inflation volatility. He also finds that Nominal GDP Level Targeting accomplishes

better outcomes in terms of inflation and output gap volatility relative to a flexible Taylor

Rule characterized by situations where inflation targets can momentarily be missed. In

light of his results, he sums up by arguing that Nominal GDP Level Targeting might

deserve to be taken as an alternative tool for Monetary Policy Analysis.

Benchimol and Fourçans (2016) employ a Bayesian method to estimate the Smets

and Wouters (2007) DSGE model using nine distinct Monetary Policy Rules on a USA

dataset from 1955 to 2015 and with three distinct sub-periods. Their results illustrate

the supremacy of the Nominal GDP Level Targeting Rules compared to the Taylor Rules

over all considered periods if we take into account only the loss function of the Central

Bank. Nevertheless, they discover that the objectives of the Central Bank are not always

satisfied by one rule for all the considered periods if we take other criteria into account.

Beckworth and Hendrickson (2016) utilize a New Keynesian DSGE model to sup-

pose that the Central Bank has imperfect information concerning the output gap and

consequently have to forecast this variable on the knowledge of past information. They

stipulate that the forecast errors made by the Central Bank can possibly cause unexpected
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variations of the short-run nominal interest rate that are different from a usual Monetary

Policy shock. Their results illustrate that forecast errors made by the Federal Reserve can

cause, at most, 13% of the changes in the output gap. Their findings also demonstrate

that, in the context of imperfect information, a Nominal GDP Targeting Rule might yield

lesser instability in both the output gap and inflation compared to a Taylor Rule.

Garin, Lester and Sims (2016) use a New Keynesian DSGE model with both price and

wage rigidity to examine the welfare characteristics of Nominal GDP Targeting. They

contrast a Taylor Rule, output gap and inflation targeting, and NGDPT. Output gap

targeting is the most suitable rule. NGDPT is almost as good as output gap targeting.

NGDPT is characterized by minor welfare losses than inflation targeting and a Taylor

Rule. In the presence of supply shocks and when wages are rigid compared to prices,

NGDPT beats a Taylor Rule and inflation targeting. If the output gap is observed with

errors, NGDPT could leave behind output gap targeting. NGDPT possesses more wanted

equilibrium determinacy characteristics than output gap targeting.

Similarly to the works cited above, this paper studies the concept of NGDPT in a

New Keynesian DSGE model framework. Compared to previous works on NGDPT, it

makes numerous contributions. First, our DSGE model formulation, that is to say the

model specification, is different from previous studies on NGDPT. Second, we introduce

and estimate real wages rigidities. Third, our model contains a government sector with

a slightly different formulation. Fourth, the specification of our Nominal GDP Targeting

Rule is different. Fifth, our work is the first to use the newly invented Hamilton Filter,

Hamilton (2018)1, to compute the observable variables of our model. Sixth, this study is

the first to perform a Bayesian DSGE Model Comparison of the Taylor Rule and Nominal

GDP Targeting. Seventh, our research is the first to conduct a Bayesian DSGE Model

Comparison of the Taylor Rule and Nominal GDP Targeting on Euro Area data. Our

Bayesian DSGE Model Comparison results attribute a Posterior Model Probability of 0.00

to the Taylor Rule and a Posterior Model Probability of 1.00 to the Nominal GDP Targeting

Rule. Our estimation results also give a Bayes Ratio of 1.00 to the Taylor Rule and a Bayes

Ratio of 6.17 × 1098 to the Nominal GDP Targeting Rule. These results demonstrate that

1For the interested reader, I introduce a new Stata User-Written command named “hamiltonfilter” that
Calculates the Hamilton Filter for a Single Time Series or for a Panel Dataset. The command is downloadable
at: https://ideas.repec.org/c/boc/bocode/s458449.html. Please, see this website for more details.
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the Nominal GDP Targeting Rule is overwhelmingly preferred by the Euro Area data

than the Taylor Rule. We also ran numerous robustness checks that corroborate these

results.

The remaining of the paper is organized in the following manner: the first section

presents the theoretical model, the second section exposes the empirical investigations

and the last part concludes.
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2 Theoretical Model

In this section, we expose the theoretical model and illustrate how the main equations

are obtained.

2.1 Households

The model presumes identical individuals, meaning that they have similar preference

parameters. Therefore, we can employ the representative-agent hypothesis within which

the analysis is done from the decisions of one agent. The household maximizes the

expected value of the present value of his lifetime utility function2 subject to some

constraints and the initial value of capital stock. His optimization program is given by:

Max
{Bt,ct,ivt,kt+1,lt}

∞
t=0

E0















∞
∑

t=0

βtat

(

ct
1−θ − 1

1 − θ
−
ζ lt

1+η

1 + η

)















(1)

Subject to:

ct + ivt + 1/2φk

(

ivt

kt
− δ

)2

kt +
Bt

Ptrt
=

Qtkt +Wtlt + Bt−1 +Dt

Pt
− τt (2)

kt+1 = (1 − δ) kt + xtivt (3)

In the equations above, we have:

ln (at) = ρa ln (at−1) + εa,t (4)

ln (xt) = ρx ln (xt−1) + εx,t (5)

In expression (1), the household chooses bonds Bt, consumption ct, investment ivt,

next period physical capital stock kt+1 and labor lt to maximize this objective function

given the constraints he faces. Equation (2) says that the household gets his income from

supplying capital Qtkt, supplying labor Wtlt, bonds holding Bt−1 and receiving dividends

Dt. His income is expressed in real term by dividing by the price level Pt. To obtain

his disposable income, he deducts his previous real income from lump-sum taxes τt.

The household uses his disposable income to pay for consumption ct, investment ivt,

investment adjustment costs 1/2φk

(

ivt

kt
− δ

)2
kt and new bonds Bt

Ptrt
, all expressed in real

terms. The investment adjustment costs function employed in this study has been also

2The agent lives forever.
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utilized by Ireland (2003) and Roehe (2012). Equality (3) is the law of motion of capital

stock. Equations (4) and (5) represent the intertemporal preference shock and the shock

to the marginal efficiency of investment respectively. In equality (2), rt is the short-

run nominal gross interest rate and in the objective function (1), E0 (·) is the Rational

Expectations Operator using all available information. In the expressions above, we have

the following conditions for the parameters and the remaining variables: 0 < β < 1; 0 < θ;

0 ≤ η; 0 < ζ; 0 < ρa < 1; εa,t ∼ N
(

0, σ2
a

)

; 0 ≤ φk; 0 < δ < 1; 0 < ρx < 1; εx,t ∼ N
(

0, σ2
x

)

.

The First-Order Conditions for the household problem give us the following equations

with λt and ψt, the Lagrange multipliers of equations (2) and (3) respectively:

First-Order Conditions with respect to ct:

at

ct
θ
− λt = 0 (6)

First-Order Conditions with respect to lt:

− atζ lt
η
+
λtWt

Pt
= 0 (7)

Combining equations (6) and (7), allows us to write the equation for real wages

rigidity as it is done in Blanchard and Gali (2007) and Ascari and Rossi (2011) with

0 ≤ γ < 1.

Wt

Pt
=

(

Wt−1

Pt−1

)γ
(

ct
θζ lt

η
)1−γ

(8)

First-Order Conditions with respect to Bt:

−
λt

Ptrt
+ Et

(

βλt+1

Pt+1

)

= 0 (9)

First-Order Conditions with respect to kt+1:

−ψt−Et

















1/2

((

δ2Pt+1φk − 2 Qt+1

)

kt+1
2 − Pt+1ivt+1

2φk

)

βλt+1

kt+1
2Pt+1

















−Et
(

βψt+1 (δ − 1)
)

= 0 (10)

First-Order Conditions with respect to ivt:
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λt

(

δ ktφk − ivtφk − kt

)

kt
+ ψtxt = 0 (11)

2.2 Firms

In this section, we will analyze the decisions of the final good firm and the intermediate

goods firms.

2.2.1 Final Good Firm

The profit maximization problem of the final good firm is given by:

Max
yt(i)
Πt = Pt

(∫ 1

0

(

yt (i)
)
ν−1
ν di

)

ν
ν−1

−

∫ 1

0

Pt (i) yt (i) di (12)

In equation (12), yt =

(

∫ 1

0

(

yt (i)
)
ν−1
ν di

)
ν
ν−1

is the final good, yt (i) are the differentiated

intermediate goods and Pt (i) are the prices of the intermediate goods. We have 1 <

ν. Maximizing expression (12) with respect to yt (i), doing lots of simplifications and

substitutions, we find:

yt (i) = yt

(

Pt (i)

Pt

)−ν

(13)

Pt =

(∫ 1

0

(Pt (i))−ν+1 di

)

1
−ν+1

(14)

Equation (13) means that the demand for the intermediate good i, yt (i), is proportional

to the final good yt and is a function of its relative price Pt(i)
Pt

, where ν is the price elasticity

of demand. Equation (14) indicates that the final good price Pt is a constant elasticity of

substitution (CES) aggregator function of the prices of the intermediate goods Pt (i).

2.2.2 Intermediate Goods Firms

The optimization problem of the intermediate goods firms is:

Max
{Pt(i),kt(i),lt(i)}

∞
t=0

E0















∞
∑

t=0

βtλtDt (i)

Pt















(15)

Subject to:
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yt (i) = (kt (i))α (ztlt (i))1−α (16)

yt (i) =

(

Pt (i)

Pt

)−ν

yt (17)

In the equations above, we have:

Dt (i)

Pt
=

Pt (i) yt (i)

Pt
−

Wtlt (i) +Qtkt (i)

Pt
− 1/2φP

(

Pt (i)

πPt−1 (i)
− 1

)2

yt (18)

ln (zt) =
(

1 − ρz
)

ln (z) + ρz ln (zt−1) + εz,t (19)

In expression (15), the intermediate goods firm i chooses price Pt (i), capital stock

kt (i) and labor lt (i) to maximize this objective function given the constraints it faces.

Equation (18) are the dividends in real terms. In this equality, 1/2φP

(

Pt(i)
πPt−1(i) − 1

)2
yt are

the quadratic adjustment costs of the nominal price Pt (i). This concept was introduced

by Rotemberg (1982). Equation (16) is the Cobb-Douglas production function of the

intermediate goods firm i and equality (17) represents the demand for the intermediate

good i. The technology shock is provided by equation (19). In the expressions above, we

have the following conditions for the parameters and the remaining variables: 0 < α < 1;

0 ≤ φP; 0 < z; 0 < ρz < 1; εz,t ∼ N
(

0, σ2
z

)

.

The First-Order Conditions for the intermediate goods firm i problem give us the

following equations with ϑt, the Lagrange multiplier of equation (16), after substituting

equality (17) in equations (16) and (18) respectively:

First-Order Conditions with respect to lt (i):

−
λtWt

Pt
+ ϑt (kt (i))α zt (ztlt (i))−α (1 − α) = 0 (20)

First-Order Conditions with respect to kt (i):

−
λtQt

Pt
+ ϑt (kt (i))−1+α α ztlt (i) (ztlt (i))−α = 0 (21)

First-Order Conditions with respect to Pt (i):

(22)

−
λtyt

Ptπ2 (Pt−1 (i))2

(

π2 (Pt−1 (i))2 (ν − 1)

(

Pt (i)

Pt

)−ν

− PtφP (πPt−1 (i) − Pt (i))

)

+
ϑtν yt

Pt (i)

(

Pt (i)

Pt

)−ν

+ Et

(

βλt+1φP (−πPt (i) + Pt+1 (i)) yt+1Pt+1 (i)

π2 (Pt (i))3

)

= 0
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First-Order Conditions with respect to ϑt:

−

(

Pt (i)

Pt

)−ν

yt + (kt (i))α (ztlt (i))1−α
= 0 (23)

2.3 Government

The Government (Fiscal Authority) runs a balanced budget in each period. That is, we

have:

τt = gt (24)

Where τt are the lump-sum taxes and gt are the General Government final consump-

tion expenditures. The Government consumes in each period, a stochastic share of

output. Thus, we have:

gt = ξtyt (25)

Where yt is output and ξt is the shock to Government expenditures given by the

following equation:

ln (ξt) =
(

1 − ρξ
)

ln (ξ) + ρξ ln (ξt−1) + εξ,t (26)

In this last equation, the following conditions stand for the parameters and the remain-

ing variables: 0 < ξ; 0 < ρξ < 1; εξ,t ∼ N
(

0, σ2
ξ

)

. Although, there is no Fiscal Authority

for the Euro Area as a hole, we use the setting above as an approximate representation of

the Stability and Growth Pact (SGP) Agreement in Europe. This assumption of budget

equilibrium has also been used by Adolfson, Laséen, Lindé and Villani (2007) in a DSGE

model for the Euro Area albeit with a different specification.

2.4 Monetary Authority

In this section, we set the two Monetary Policy Rules that we will compare: a modified

Taylor Rule, as in Roehe (2012) and the references therein, and a Nominal GDP Level

Targeting Rule. The Nominal GDP Level Targeting Rule specification has not been used
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before and represents one of the contributions of the current paper. The modified Taylor

Rule is given by the following equations:

ln
(

rt

r

)

= ρrtr ln
(

rt−1

r

)

+
(

1 − ρrtr
)

(

φπtr ln
(

πt

π

)

+ φytr ln

(

yt

y

))

+ ln
(

µtr,t
)

(27)

ln
(

µtr,t
)

= ρµtr ln
(

µtr,t−1
)

+ εµtr,t (28)

Equation (27), says that the Central Bank progressively changes the short-run nominal

gross interest rate rt in reaction to deviations of current gross inflation πt and output yt

from their respective steady state amounts. Equality (28) is the Taylor Rule Monetary

Policy shock process. In these two equations above, we have the following conditions for

the parameters and the remaining variables: 0 < ρrtr < 1; 0 < φπtr; 0 ≤ φytr; 0 < ρµtr < 1;

εµtr,t ∼ N
(

0, σ2
µtr

)

. The Nominal GDP Level Targeting Rule is provided by the following

equations:

ln
(

rt

r

)

= ρrng ln
(

rt−1

r

)

+
(

1 − ρrng

)

φfng ln
(

Ft

F

)

+ ln
(

µng,t

)

(29)

ln
(

µng,t

)

= ρµng ln
(

µng,t−1

)

+ εµng,t (30)

Ft = Ptyt (31)

Equation (29), says that the Central Bank progressively changes the short-run nominal

gross interest rate rt in reaction to deviations of current Nominal GDP Ft from its steady

state amount. Equality (30) is the Nominal GDP Targeting Rule Monetary Policy shock

process. Equation (31) defines the Nominal GDP Level Ft as the product of the GDP

Deflator Pt and Real GDP yt. In these equations above, we have the following conditions

for the parameters and the remaining variables: 0 < ρrng < 1; 0 < φfng; 0 < ρµng < 1;

εµng,t ∼ N
(

0, σ2
µng

)

.

2.5 Equilibrium Conditions of the Models

To find the equilibrium conditions of the two models, we first invoke the symmetric

equilibrium statement in which all Intermediate Goods Firms make similar choices.

Then, we apply the market clearing hypothesis on the goods and bond markets. Finally,

we express all nominal quantities in real terms by dividing by the appropriate price.

10



After this, we compute the steady states of the models3 and log-linearize the models. The

log-linearized equations of the two models are given in appendix A for completeness

purposes.

3 Empirical Investigations

This section presents the estimation methods, the data and variables, and the econometric

results.

3.1 Estimation Methods

Following Koop (2003), we will briefly summarize the concepts of Bayesian Estimation

and Bayesian Model Comparison. The Bayesian estimation of our DSGE model can be

written as:

p(θ|y) =
p(y|θ)p(θ)

p(y)
(32)

Where θ are the parameters of our DSGE model; y are the data; p(θ|y) is the posterior

density; p(y|θ) is the likelihood function; p(θ) is the prior density and p(y) is the marginal

distribution of y. Since p(y) is not a function of the parameters θ, we can express equation

(32) as:

p(θ|y) ∝ p(y|θ)p(θ) (33)

Equation (33) is essential in Bayesian estimation. It says that the posterior distribution

of model parameters is proportional to the likelihood function times the prior probability

distribution.

For Bayesian Model Comparison, suppose that we want to compare r models Mi

with parameters θi, i = 1, . . . , r. Using Bayes’s rule, we can write the posterior model

probability as:

p
(

Mi| y
)

=
p
(

y |Mi
)

p (Mi)

p(y)
(34)

3The steady states of the models are available upon request.
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Where p
(

Mi| y
)

is the posterior model probability; p
(

y |Mi
)

is the marginal likelihood

or the marginal density or the marginal data density; p (Mi) is the prior model probability

and p(y) is the marginal distribution of y. Given that p(y) is tedious to compute, we can

usually compare two models, Mi and M j, by calculating the ratio of their posterior model

probabilities which gives us the posterior odds ratio POij, defined as:

POij =
p
(

Mi| y
)

p
(

M j

∣

∣

∣ y
) =

p
(

y |Mi
)

p (Mi)

p
(

y
∣

∣

∣M j

)

p
(

M j

) (35)

If
p(Mi)

p(M j)
= 1 or if p (Mi) = p

(

M j

)

, the posterior odds ratio reduces to the ratio of

marginal likelihoods. It then takes a specific designation called the Bayes factor or the

Bayes ratio BFij, as described by the following formula:

BFij =
p
(

y |Mi
)

p
(

y
∣

∣

∣M j

) (36)

Bayesian computation of DSGE models involves calculating integrals. In most cases,

these integrals do not have a closed-form analytical solution. To solve this problem, we

turn to simulation methods like the Markov Chain Monte Carlo (MCMC) Metropolis-

Hastings (MH) Algorithm to get random draws from the posterior distribution. To

perform the Bayesian computations of our DSGE models, we employ the software Dynare

as described in Adjemian, Bastani, Juillard, Karamé, Maih, Mihoubi, Perendia, Pfeifer,

Ratto and Villemot (2011).

3.2 Data and Variables

For our estimations and models comparison exercises, we employ seasonally adjusted

quarterly Euro Area data from 1987Q1 to 2007Q4. We focus on the Great Moderation

Period in the Euro Area to avoid complications arising from the other high volatility peri-

ods of the business cycle. All the data come from the Area-Wide Model (AWM) database

(Fagan, Henry and Mestre (2005)). The parameters that characterize the steady-sates of

the two models are calibrated and taken from the literature. The remaining parame-

ters are estimated with their prior values also taken from the literature. Following the

tradition of DSGE model estimation in Dynare, the priors for the estimated parameters
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are selected according to the subsequent guidelines: gamma distribution for parameters

that are required to be positive; inverse gamma distribution for the standard deviation

of the shocks; beta distribution for parameters that must be between 0 and 1, and normal

distribution for all the remaining parameters. We have five observed endogenous vari-

ables: real GDP, real investment, inflation, short-term interest rate and real wages. Real

GDP and real investment are computed in per capita values. All variables are logged

using the natural logarithm and filtered utilizing the Hamilton Filter (Hamilton (2018)).

Hamilton (2018) gives the criticisms of the Hodrick-Prescott Filter and explains why the

Hamilton Filter is a superior alternative. The use of the Hamilton Filter is one of the

main contributions of the current paper because it has not been employed before in all

the literature of DSGE modeling. The issue of stochastic singularity is circumvented in

our case because the number of observed variables is equal to the number of structural

shocks in our DSGE models.

3.3 Bayesian Estimation Results

In this part, we will present the main estimation results, the Bayesian DSGE model

comparison results, the impulse response functions study and the robustness analysis.

3.3.1 Main Estimation Results

Figures 1 and 2 show the multivariate convergence diagnostic of the MH sampling

algorithm for the Taylor Rule and the Nominal GDP Targeting Rule respectively4. The

results are synthesized in three graphics panels, where each panel exhibits a particular

convergence measurement and containing two different lines representing the results

within and between chains. These measurements are associated to the investigation

of the parameters first central moments (indicated by interval), the parameters second

central moments (indicated by m2) and the parameters third central moments (indicated

by m3). In each of the three graphics panels, in order to obtain good results, the two

lines ought to stabilize horizontally and must be near to each other. For the two figures

representing the two Monetary Policy Rules, we observe that general convergence is

4Univariate convergence diagnostics are available upon request, but are not reported due to space con-
straints.
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accomplished, for all the three moments under examination, both within and between

chains. But we notice that the MH sampling algorithm for the Nominal GDP Targeting

Rule have converged more than the Taylor Rule. This, because the Taylor Rule takes

longer to converge than the Nominal GDP Targeting Rule.

Figures 3, 4 and 5 display the priors and posteriors for the parameters of the Taylor

Rule while Figures 6 and 7 exhibit the priors and posteriors for the parameters of the

Nominal GDP Targeting Rule. In each of these graphics, the green vertical line designates

the posterior mode resulting from the maximization of the posterior kernel. The black line

specifies the posterior distribution whereas the grey line represents the prior probability

density function. For the two Monetary Policy Rules, except few parameters, we observe

that for most of the parameters, the mode resulting from maximization coincides with

the mode of the posterior distribution obtained from the MH algorithm. For the majority

of parameters, we notice that the shapes of the prior and posterior distributions are not

excessively distant from each other, for the two Monetary Policy Rules. For these latter

Rules, we see that the outcomes are not exclusively prior driven, because the prior and

posterior distributions are practically different for most parameters. This put forward that

the observed data do offer supplementary information in updating the prior information

in our Bayesian estimations. The patterns of the posterior distributions are nearly normal,

conforming with the asymptotic properties of Bayesian estimation.

Table 1 gives the Bayesian estimation results for the Taylor Rule. The first column

of the table gives the parameters, the second big column exhibits the information on the

prior distribution: type, mean and standard deviation. The third big column provides

the information on the posterior distribution: mode, standard deviation, mean and 90%

highest posterior density (HPD) interval. The bottom of the table exposes information

about additional statistics. We performed 100000 draws to ensure convergence of the MH

Algorithm. We obtained a Log Marginal Data Density of 499.949. The Acceptance Rate

per chain are also reasonable because they both do not exceed 50% and are not too small.

In addition, we checked that the rank condition is verified. All coefficients are statistically

significant, are in the intervals in which they were supposed to be as set in the theoretical

model, are plausible and moreover keep their expected signs. Most of the parameters

are estimated with a high degree of precision because the standard deviations of their
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posterior distributions are very small. The output elasticity of capital α is greater than the

value of 0.333 typically used in calibrated DSGE models. This suggests that α is bigger in

the Euro Area. The implied Frisch intertemporal elasticity of substitution in labor supply

1/η = 2.031 is greater than 1. Real wages are mildly rigid in the Euro Area according to

the Taylor Rule model as illustrated by the value of γ. The implied constant intertemporal

elasticity of substitution in consumption 1/θ = 0.405 is smaller than 1 and is closer to the

value employed in the Economic Growth literature. The value of the price adjustment

cost parameter φP suggests that nominal prices are rigid in the Euro Area and this result

is near to what have been found in the DSGE models literature. Turning to Monetary

Policy parameters, we observe that the smoothing parameter of the nominal interest rate

ρrtr is very small. We notice that the European Central Bank respond aggressively to an

increase in output and inflation relative to their steady state values as suggested by the

quantities of φytr and φπtr respectively. The value of the investment adjustment costs

parameter φk indicates that there are investment adjustment costs in the Euro Area. The

autocorrelation parameters for the shock processes of the Monetary Policy Rule shock

ρµtr, the intertemporal preference shock ρa, the shock to Government expenditures share

ρξ and the technology shock ρz are all very high, illustrating that the corresponding shock

processes are very persistent. Contrarily, the shock process to the marginal efficiency of

investment is not persistent as shown by the value of ρx. The previous results for the

autocorrelation parameters also demonstrate a sign of the nonexistence of unit roots in

these processes. Finishing with the estimated standard deviations, we observe that none

of the shocks processes are too volatile.

Table 2 gives the Bayesian estimation results for the Nominal GDP Targeting Rule.

The first column of the table gives the parameters, the second big column exhibits the

information on the prior distribution: type, mean and standard deviation. The third

big column provides the information on the posterior distribution: mode, standard

deviation, mean and 90% highest posterior density (HPD) interval. The bottom of the

table exposes information about additional statistics. We performed 100000 draws to

ensure convergence of the MH Algorithm. We obtained a Log Marginal Data Density

of 643.176. The Acceptance Rate per chain are also reasonable because they both do not

exceed 50% and are not too small. In addition, we checked that the rank condition is
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verified. All coefficients are statistically significant, are in the intervals in which they

were supposed to be as set in the theoretical model, are plausible and moreover keep

their expected signs. Most of the parameters are estimated with a high degree of precision

because the standard deviations of their posterior distributions are very small. The output

elasticity of capital α is greater than the value of 0.333 typically used in calibrated DSGE

models. This suggests that α is bigger in the Euro Area. The implied Frisch intertemporal

elasticity of substitution in labor supply 1/η = 2.134 is greater than 1. Real wages are rigid

in the Euro Area according to the Nominal GDP Targeting Rule model as illustrated by the

value of γ. The implied constant intertemporal elasticity of substitution in consumption

1/θ = 0.398 is smaller than 1 and is closer to the value employed in the Economic Growth

literature. The value of the price adjustment cost parameter φP suggests that nominal

prices are rigid in the Euro Area and this result is near to what have been found in the

DSGE models literature. Turning to Monetary Policy parameters, we observe that the

smoothing parameter of the nominal interest rate ρrng is very small. We notice that the

European Central Bank respond aggressively to an increase in Nominal GDP relative to

its steady state value as suggested by the quantity of φfng. The value of the investment

adjustment costs parameter φk indicates that there are investment adjustment costs in

the Euro Area. The autocorrelation parameters for the shock processes of the Monetary

Policy Rule shock ρµng, the intertemporal preference shock ρa, the shock to Government

expenditures share ρξ and the technology shock ρz are all very high, illustrating that

the corresponding shock processes are very persistent. Contrarily, the shock process

to the marginal efficiency of investment is not persistent as shown by the value of ρx.

The previous results for the autocorrelation parameters also demonstrate a sign of the

nonexistence of unit roots in these processes. Finishing with the estimated standard

deviations, we observe that none of the shocks processes are too volatile.

3.3.2 Bayesian DSGE Model Comparison Results

Table 3 gives the Bayesian model comparison results with equal prior probability distri-

bution to the two monetary policy rules models. The first column shows information on

the following statistics: Priors, Log Marginal Density, Bayes Ratio and Posterior Model

Probability. The second column displays the statistics for the Taylor Rule while the third
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column exhibits the statistics for the Nominal GDP Targeting Rule. In this table, we

have equal priors for the two competing models. The log marginal density or the log

marginal likelihood or the log marginal data density for the Nominal GDP Targeting

Rule is larger than that of the Taylor Rule. The Bayes ratio or the Bayes factor demon-

strates that there is extreme evidence for the Nominal GDP Targeting Rule. The posterior

model probability for the Nominal GDP Targeting Rule is 1.000 and the posterior model

probability for the Taylor Rule is 0.000. This illustrates that the Nominal GDP Targeting

Rule have more chance of occurring than the Taylor Rule. All these statistics previously

examined go in the same direction. They all show that the Nominal GDP Targeting Rule

is overwhelmingly preferred by the Euro Area data than the Taylor Rule.

Table 4 gives the Bayesian model comparison results with a bigger prior probability

attributed to the Taylor Rule than the Nominal GDP Targeting Rule. The first column

shows information on the following statistics: Priors, Log Marginal Density, Bayes Ratio

and Posterior Model Probability. The second column displays the statistics for the Taylor

Rule while the third column exhibits the statistics for the Nominal GDP Targeting Rule.

In this table, we have a bigger prior probability attributed to the Taylor Rule model than

the Nominal GDP Targeting Rule model. The log marginal density or the log marginal

likelihood or the log marginal data density for the Nominal GDP Targeting Rule is larger

than that of the Taylor Rule. The Bayes ratio or the Bayes factor demonstrates that there is

extreme evidence for the Nominal GDP Targeting Rule. The posterior model probability

for the Nominal GDP Targeting Rule is 1.000 and the posterior model probability for the

Taylor Rule is 0.000. This illustrates that the Nominal GDP Targeting Rule have more

chance of occurring than the Taylor Rule. All these statistics previously examined go in the

same direction. They all show that the Nominal GDP Targeting Rule is overwhelmingly

preferred by the Euro Area data than the Taylor Rule.

Table 5 gives the Bayesian model comparison results with a bigger prior probability

attributed to the Nominal GDP Targeting Rule than the Taylor Rule. The first column

shows information on the following statistics: Priors, Log Marginal Density, Bayes Ratio

and Posterior Model Probability. The second column displays the statistics for the Taylor

Rule while the third column exhibits the statistics for the Nominal GDP Targeting Rule.

In this table, we have a bigger prior probability attributed to the Nominal GDP Targeting
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Rule model than the Taylor Rule model. The log marginal density or the log marginal

likelihood or the log marginal data density for the Nominal GDP Targeting Rule is larger

than that of the Taylor Rule. The Bayes ratio or the Bayes factor demonstrates that there is

extreme evidence for the Nominal GDP Targeting Rule. The posterior model probability

for the Nominal GDP Targeting Rule is 1.000 and the posterior model probability for the

Taylor Rule is 0.000. This illustrates that the Nominal GDP Targeting Rule have more

chance of occurring than the Taylor Rule. All these statistics previously examined go in the

same direction. They all show that the Nominal GDP Targeting Rule is overwhelmingly

preferred by the Euro Area data than the Taylor Rule.

3.3.3 Impulse Response Functions Study

Figure 8 provides the impulse response functions to Monetary Policy Shocks where the

estimated parameters are updated to the posterior mean. The red line shows the x-axis,

the green dashed line represents the Taylor Rule and the blue solid line designates the

Nominal GDP Targeting Rule. We only exhibit the impact on the following variables

of interest: output, consumption, investment, labor, interest rate, inflation, real wage,

government spending and the shock processes for the two Monetary Policy Rules. A

positive temporary shock to Monetary Policy cause the Taylor Rule shock process to

increase more than that of the Nominal GDP Targeting Rule shock process. This is why

the impact on all the remaining variables of interest is larger for the Taylor Rule than the

Nominal GDP Targeting Rule. A positive Monetary Policy shock engenders a fall in all

the remaining variables of interest for both Rules. We observe that the effects of the two

Monetary Policy Rules go in the same directions, although the impact of the Taylor Rule is

more pronounced than that of the Nominal GDP Targeting Rule as previously mentioned.

This illustrates that our specification of the Nominal GDP Targeting Rule is not wrong

because our specification is capable of giving similar results as the already well established

Taylor Rule. All the variables of interest return to their steady state equilibrium after some

time for the two Monetary Policy Rules, strengthening the statement given by the rank

and the Blanchard-Kahn conditions that the models are definitely stable.
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3.3.4 Robustness Analysis

Table 6 gives the Robustness of the Bayesian model comparison results with equal prior

probability distribution to the two monetary policy rules models. To obtain these results,

we have changed the prior probability distribution of the parameter φfng from a Gamma

distribution to a Normal distribution. As in the main results tables, here also we observe

that all the statistics go in the same direction. They all show that the Nominal GDP

Targeting Rule is overwhelmingly preferred by the Euro Area data than the Taylor Rule.

Tables 7 and 8 provides the Robustness of the Bayesian model comparison results

with a bigger prior probability attributed to the Taylor Rule than the Nominal GDP

Targeting Rule and a bigger prior probability attributed to the Nominal GDP Targeting

Rule than the Taylor Rule respectively. In all the previous Bayesian model comparison

results tables, the calculations were based on the Laplace approximation. In tables 7

and 8, the computations are based on the Modified Harmonic Mean Estimator. As in the

main results tables, here also we observe that all the statistics go in the same direction for

tables 7 and 8. They all show that the Nominal GDP Targeting Rule is overwhelmingly

preferred by the Euro Area data than the Taylor Rule.
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4 Conclusion

In this paper, we carry out a comparison of the Taylor Rule and Nominal GDP Targeting

by estimating a DSGE model with Bayesian techniques. The theoretical part builds a

New Keynesian DSGE model with investment adjustment costs, prices and real wages

rigidities, a government sector, and imperfect competition, alongside various shocks.

The empirical part estimates and contrasts the models using Bayesian methods on Euro

Area data. Our Bayesian DSGE Model Comparison results attribute a Posterior Model

Probability of 0.00 to the Taylor Rule and a Posterior Model Probability of 1.00 to the

Nominal GDP Targeting Rule. Our estimation results also give a Bayes Ratio of 1.00 to

the Taylor Rule and a Bayes Ratio of 6.17×1098 to the Nominal GDP Targeting Rule. These

results demonstrate that the Nominal GDP Targeting Rule is overwhelmingly preferred

by the Euro Area data than the Taylor Rule. We also ran numerous robustness checks

that corroborate these results.

Though the results found were informative, some extensions could be made. First, we

compare only two models instead of many models. Second, it would be good to extend

our study using USA data in addition to Euro Area data. These avenues of research are

left for our future studies.

From economic policy perspectives, the results illustrate that Nominal GDP Targeting

is strongly supported by the data. Hence, it represents a viable and solid alternative to

the Taylor Rule and it should be considered by Central Bankers around the World.
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A The Log-Linearized Models Equations

Log-linearization is a mean of transforming the stochastic dynamic nonlinear equations

to stochastic dynamic linear equations. This makes the calculations and interpretations

easier. A hat over a variable approximately indicates percentage deviation of the variable

around the steady-state. The log-linearized equations of the two models are given by:

x̂t = ρxx̂t−1 + εx,t (37)

ât = ρaât−1 + εa,t (38)

ẑt = ρzẑt−1 + εz,t (39)

µ̂ng,t = ρµngµ̂ng,t−1 + εµng,t (40)

µ̂tr,t = ρµtrµ̂tr,t−1 + εµtr,t (41)

ξ̂t = ρξξ̂t−1 + εξ,t (42)

λ̂t = −θ ĉt + ât (43)

ŵt =
(

−ηγ + η
)

l̂t +
(

−γθ + θ
)

ĉt + γ ŵt−1 (44)

− λ̂t + r̂t + Et(λ̂t+1) − Et(π̂t+1) = 0 (45)

Et(λ̂t+1)
(

1 + (−1 + δ) β
)

β
+ δ2φkEt(îvt+1) − δ2φkk̂t+1

− (−1 + δ)Et(ψ̂t+1) +
Et(q̂t+1)

(

1 + (−1 + δ) β
)

β
−
ψ̂t

β
= 0

(46)

− δ îvtφk + δφkk̂t + ψ̂tx + x x̂t − λ̂t = 0 (47)

y ŷt = k δ îvt + c ĉt + g ĝt (48)

ĝt = ξ̂t + ŷt (49)

k̂t+1 = (1 − δ) k̂t + x δ îvt + x δ x̂t (50)

d d̂t = −k k̂tq − k q q̂t − l l̂tw − l w ŵt + y ŷt (51)
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− ϑ̂t − ŷt + l̂t + ŵt + λ̂t = 0 (52)

ϑ̂t + ŷt − q̂t − λ̂t − k̂t = 0 (53)

− φPπ̂t − λ̂t (ν − 1) + (ν − 1) ϑ̂t + βφPEt(π̂t+1) = 0 (54)

ŷt = α k̂t + (1 − α) l̂t + (1 − α) ẑt (55)

r̂t = −φytr
(

ρrtr − 1
)

ŷt − φπtr
(

ρrtr − 1
)

π̂t + ρrtrr̂t−1 + µ̂tr,t (56)

n̂t = ŷt − l̂t (57)

r̂t = −
(

−1 + ρrng

) (

ŷt + P̂t

)

φfng + ρrngr̂t−1 + µ̂ng,t (58)

P̂t = P̂t−1 + π̂t (59)

B Graphics and Tables of Results

Figure 1: Multivariate Convergence Diagnostic: Taylor Rule
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Figure 2: Multivariate Convergence Diagnostic: Nominal GDP Targeting Rule
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Figure 3: Priors and Posteriors for the Parameters: Taylor Rule, Part 1
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Figure 4: Priors and Posteriors for the Parameters: Taylor Rule, Part 2
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Figure 5: Priors and Posteriors for the Parameters: Taylor Rule, Part 3
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Figure 6: Priors and Posteriors for the Parameters: Nominal GDP Targeting Rule, Part 1
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Figure 7: Priors and Posteriors for the Parameters: Nominal GDP Targeting Rule, Part 2
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Table 1: Bayesian Estimation Results: Taylor Rule

Parameter
Prior Distribution Posterior Distribution

Type Mean S.D. Mode S.D. Mean HPD Interval

α Beta 0.300 0.050 0.441 0.032 0.429 0.379 0.480
η Normal 0.300 0.090 0.544 0.122 0.492 0.321 0.677
γ Beta 0.300 0.050 0.425 0.055 0.425 0.341 0.528
θ Normal 2.000 0.200 2.451 0.181 2.466 2.172 2.776
φP Gamma 50.000 10.000 56.496 4.007 71.920 65.659 79.107
φytr Normal 0.125 0.200 1.370 0.058 1.320 1.237 1.397
φπtr Normal 1.300 0.300 3.208 0.049 3.134 3.067 3.208
φk Gamma 4.000 1.000 2.472 0.604 2.524 1.544 3.505
ρµtr Beta 0.600 0.150 0.786 0.036 0.784 0.727 0.844
ρa Beta 0.750 0.150 0.878 0.048 0.845 0.771 0.922
ρrtr Beta 0.750 0.150 0.057 0.017 0.061 0.032 0.090
ρx Beta 0.750 0.150 0.130 0.052 0.153 0.071 0.236
ρξ Beta 0.850 0.050 0.803 0.058 0.792 0.704 0.874
ρz Beta 0.750 0.150 0.981 0.013 0.973 0.953 0.995
σx Inverse Gamma 0.010 0.500 0.501 0.043 0.513 0.441 0.582
σa Inverse Gamma 0.010 0.500 0.235 0.025 0.249 0.205 0.289
σz Inverse Gamma 0.010 0.500 0.013 0.002 0.013 0.010 0.017
σµtr Inverse Gamma 0.010 0.500 0.159 0.014 0.165 0.141 0.186
σξ Inverse Gamma 0.010 0.500 0.028 0.003 0.028 0.024 0.033

Draws 100000.000
Log D. D. 499.949

Acc. Rate Ch. 1 31.1%
Acc. Rate Ch. 2 30.2%

Table 2: Bayesian Estimation Results: Nominal GDP Targeting Rule

Parameter
Prior Distribution Posterior Distribution

Type Mean S.D. Mode S.D. Mean HPD Interval

α Beta 0.300 0.050 0.505 0.032 0.495 0.443 0.548
η Normal 0.300 0.090 0.476 0.082 0.469 0.333 0.605
γ Beta 0.300 0.050 0.620 0.038 0.590 0.536 0.643
θ Normal 2.000 0.200 2.519 0.175 2.514 2.216 2.790
φP Gamma 50.000 10.000 99.486 13.107 100.609 78.053 121.429
φfng Gamma 2.000 0.250 4.022 0.137 3.855 3.660 4.022
φk Gamma 4.000 1.000 3.140 0.854 3.434 2.085 4.837
ρµng Beta 0.600 0.150 0.937 0.026 0.928 0.886 0.971
ρa Beta 0.750 0.150 0.807 0.041 0.797 0.732 0.864
ρrng Beta 0.750 0.150 0.072 0.027 0.080 0.035 0.123
ρx Beta 0.750 0.150 0.093 0.043 0.113 0.045 0.181
ρξ Beta 0.850 0.050 0.812 0.045 0.808 0.735 0.883
ρz Beta 0.750 0.150 0.972 0.019 0.962 0.933 0.992
σx Inverse Gamma 0.010 0.500 0.473 0.038 0.485 0.425 0.547
σa Inverse Gamma 0.010 0.500 0.206 0.022 0.220 0.183 0.254
σz Inverse Gamma 0.010 0.500 0.020 0.002 0.021 0.017 0.025
σµng Inverse Gamma 0.010 0.500 0.141 0.011 0.145 0.125 0.162
σξ Inverse Gamma 0.010 0.500 0.032 0.003 0.032 0.027 0.037

Draws 100000.000
Log D. D. 643.176

Acc. Rate Ch. 1 30.3%
Acc. Rate Ch. 2 30.3%
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Table 3: Bayesian Model Comparison: Equal Prior Probability Distribution

Model Taylor Rule Nominal GDP Targeting Rule

Priors 0.500 0.500

Log Marginal Density 415.963 643.437

Bayes Ratio 1.000 6.175E+98

Posterior Model Probability 0.000 1.000

Note: Based on Laplace approximation

Table 4: Bayesian Model Comparison: Bigger Prior to the Taylor Rule

Model Taylor Rule Nominal GDP Targeting Rule

Priors 0.700 0.300

Log Marginal Density 415.963 643.437

Bayes Ratio 1.000 2.646E+98

Posterior Model Probability 0.000 1.000

Note: Based on Laplace approximation

Table 5: Bayesian Model Comparison: Bigger Prior to the Nominal GDP Targeting Rule

Model Taylor Rule Nominal GDP Targeting Rule

Priors 0.300 0.700

Log Marginal Density 415.963 643.437

Bayes Ratio 1.000 1.441E+99

Posterior Model Probability 0.000 1.000

Note: Based on Laplace approximation

Table 6: Bayesian Model Comparison: Robustness, Equal Prior Probability Distribution

Model Taylor Rule Nominal GDP Targeting Rule

Priors 0.500 0.500

Log Marginal Density 415.963 620.809

Bayes Ratio 1.000 9.196E+88

Posterior Model Probability 0.000 1.000

Note: Based on Laplace approximation
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Figure 8: Impulse Response Functions of Monetary Policy Shocks
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Table 7: Bayesian Model Comparison: Robustness, Bigger Prior to the Taylor Rule

Model Taylor Rule Nominal GDP Targeting Rule

Priors 0.700 0.300

Log Marginal Density 499.949 643.176

Bayes Ratio 1.000 6.835E+61

Posterior Model Probability 0.000 1.000

Note: Based on Modified Harmonic Mean Estimator

Table 8: Bayesian Model Comparison: Robustness, Bigger Prior to the Nominal GDP Target-
ing Rule

Model Taylor Rule Nominal GDP Targeting Rule

Priors 0.300 0.700

Log Marginal Density 499.949 643.176

Bayes Ratio 1.000 3.721E+62

Posterior Model Probability 0.000 1.000

Note: Based on Modified Harmonic Mean Estimator
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