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In this article, we study the stability of linear systems with multiple (incommensurate) delays, by extending
a recently proposed frequency-sweeping approach. First, we consider the case where only one delay
parameter is free while the others are fixed. The complete stability w.r.t. the free delay parameter can be
systematically investigated by proving an appropriate invariance property. Next, we propose an iterative
frequency-sweeping approach to study the stability under any given multiple delays. Moreover, we may
effectively analyse the asymptotic behaviour of the critical imaginary roots (if any) w.r.t. each delay
parameter, which provides a possibility for stabilizing the system through adjusting the delay parameters.
The approach is simple (graphical test) and can be applied systematically to the stability analysis of linear
systems including multiple delays. A deeper discussion on its implementation is also proposed. Finally,
various numerical examples complete the presentation.
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1. Introduction

In this article, we consider the following linear time-delay system with multiple delay parameters

ẋ(t) = Ax(t) +
L∑

�=1

B�x(t − τ�), (1.1)

where A and B� are constant matrices with compatible dimensions; τ� ≥ 0, � = 1, . . . , L, are independent
delay parameters (L denotes the number of delay parameters). The delay combination may be expressed
by a vector −→τ = (τ1, . . . , τL).

© The authors 2017. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

IMA Journal of Mathematical Control and Information (2019) 36, 379–398
doi: 10.1093/imamci/dnx050
Advance Access publication on November 22, 2017

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
ci/article-abstract/36/02/379/4653524 by N

ortheastern U
niversity user on 21 June 2019



380 X.-G. LI ET AL.

The stability of time-delay system (1.1) has been largely investigated in the literature, see e.g., a
survey paper Sipahi et al. (2011), or the books Michiels & Niculescu (2014) and Niculescu (2001), and
the references therein.

In the literature, in the framework of the so-called parameter-based approach, the stability problems
for time-delay systems may be roughly divided in two categories: the τ -decomposition problem (Lee &
Hsu, 1969) and the D-decomposition problem (Neimark, 1949). For the former the delays are treated as
free parameters, while for the latter some system/controller parameters are considered free (the delays
are all fixed). For further discussions on such topics, we refer to Michiels & Niculescu (2014) and
the references therein. The problem considered in this article belongs to the so-called τ -decomposition
problem.

We start by recalling some of the existing results for the systems with single delay parameter.
If L = 1, the system (1.1) reduces to the form

ẋ(t) = Ax(t) + Bx(t − τ), (1.2)

where B is a constant matrix and τ is the delay parameter. The characteristic function for the system
(1.2) is det(λI − A − Be−τλ), where I is the identity matrix of appropriate dimensions.

If the delay parameters of system (1.1) are commensurate, the system can be expressed in the form

ẋ(t) = Ax(t) +
L∑

�=1

B�x(t − �τ), (1.3)

with the single delay parameter τ . The characteristic function for system (1.3) writes as det(λI − A −
L∑

�=1
B�e−�τλ).

For the time-delay systems (1.2) and (1.3), the corresponding characteristic functions involve only
one delay parameter (this is a major distinction with the multiple-delay system (1.1)). In such a case,
the complete stability problem1 was systematically solved by the frequency-sweeping approach recently
proposed in Li et al. (2015). The core result lies in that the invariance property concerning the asymptotic
behaviour of the critical imaginary roots (CIRs) w.r.t. the infinitely many positive critical delays (CDs)
was proved. It is worth mentioning that one of the main difficulties in analysing the complete stability
lies in the characterization and the corresponding classification of the case with multiple characteristic
roots on the imaginary axis. In the case where the delays are not commensurate, further discussions on
characterizing multiple characteristic roots on the imaginary axis as well as related properties can be
found in Boussaada & Niculescu (2016a,b).

However, the stability problem for the multiple-delay system (1.1) is much more complicated and
may have some unexpected dynamic behaviour (for instance, the delay interference phenomenon, see
Michiels & Niculescu, 2007). Roughly speaking, to the best of the authors’ knowledge, the existing
studies for the multiple-delay system (1.1) can be categorized into two classes:

(i) One class of studies focus on finding the stability crossing set (SCS) in the delay parameter space.2

For a class of time-delay systems without cross-terms in the characteristic functions, the SCSs for the case

1 Roughly speaking, the complete stability problem refers to finding exhaustively the stability interval(s) for the delay parameter
τ along the whole τ -axis τ ∈ [0, ∞).

2 A system has CIRs iff the delay parameters lie in the SCS.
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L = 2 and for the case L = 3 are reported in Gu et al. (2005) and Gu & Naghnaeian (2011), respectively.
Moreover, the geometric structure of the corresponding two- and three-dimensional SCSs are studied
in detail. An extension to the two-delay case with one cross-term in the characteristic function was
reported later in Naghnaeian & Gu (2013). By using some different arguments (based on the properties
of the Rekasius transformation), another important series of results have been reported in, e.g., Sipahi
& Delice (2009), Sipahi & Delice (2011) and Sipahi & Olgac (2006) on obtaining the SCSs (also called
potential stability switching curves in these references). The methods are now applicable to general
linear time-delay systems.

In our opinion, the main advantage of the above class of studies is that the corresponding SCS in the
case L = 2 or 3 may be visualized by a two- or three-dimensional figure, from which we may intuitively
analyse the stability. If L > 3, a visualization of the SCS is difficult. In some cases (coupling small
with large delays), some visualization was also proposed in the case of four delays describing immune
dynamics in leukaemia (see e.g., Niculescu et al., 2010).

(ii) Another class of methods concentrate on counting the number of unstable roots under a given
delay vector −→τ . The idea lies in applying the argument principle to the corresponding characteristic
function. An advantage of this class of studies is that the number of the delays L is allowed to be any
large. A representative conclusion can be found in Stépán (1979, 1989), known as the Stépán’s formula.
Other interesting results in the same spirit can also be found in, e.g., Hassard (1997), Hu & Liu (2007)
and Vyhlı́dal & Zı́tek (2009).

However, when the system has CIRs, it is difficult to adopt the above two classes of methodologies
to analyse the asymptotic behaviour of the CIRs. The difficulty is mainly related to the treatment of
the case with multiple and/or degenerate CIRs. The asymptotic behaviour analysis is of practical and
theoretical importance, especially when L is large. When CIRs appear for a given −→τ , we usually want
to know if there is a delay vector near −→τ such that the system is asymptotically stable. If so, we will
further consider how to find such a delay vector.

From the above discussions, we see that there is still much room for the stability analysis of linear
systems with multiple (incommensurate) delays, which motivates the work of this article.

A straightforward idea is to extend the mathematical results for asymptotic behaviour analysis of the
single-delay problem (proposed in Li et al., 2015) to the multiple-delay problem. However, to the best
of the authors’ knowledge, such an extension is rather difficult as the asymptotic behaviour analysis for
multiple-parameter problems has remained open in mathematics.3

In this article, we will propose an ‘indirect’ yet effective approach, called the iterative frequency-
sweeping approach. The core of this approach is an important property to be proved in this article: If
the multiple-delay system (1.1) has only one free delay parameter (the other ones are fixed), the effect
of a CIR’s asymptotic behaviour on the stability w.r.t. its infinitely many positive CDs is invariant.
This invariance property is generalized from the one confirmed in Li et al. (2015) for the systems with
commensurate delays. To the best of the authors’ knowledge, such a result was not proposed in the open
literature and it gives insights in understanding the way multiple delays may affect the stability property.
As mentioned in the single-delay case, one of the main difficulties of the complete characterization of
the stability is related to the asymptotic behaviour analysis of the multiple and/or degenerate CIRs. The
invariance property is essential for overcoming this difficulty.

3 Some results for specific two-free-parameter problems can be found in, e.g., Section 6.2.1 of Arnold et al. (2012), Beringer
& Richard-Jung (2003) and Soto & Vicente (2011). For more general problems, the analysis will become much more complicated
and no general result has been reported so far.
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382 X.-G. LI ET AL.

With the invariance property, we may study the complete stability w.r.t. any delay parameter τ�

through some simple and quite effective frequency-sweeping test. Furthermore, for any given delay

combination
−→
τ # , we may accurately compute the number of unstable roots by using L times frequency-

sweeping tests in an appropriate iterative manner. Moreover, if the multiple-delay system (1.1) has
CIRs, we may easily analyse the asymptotic behaviour of the CIRs w.r.t. each delay parameter from
the frequency-sweeping curves (FSCs). As a consequence, we know if a stabilizing delay combination

exists near
−→
τ # and how to find it (if it exists).

Finally, we propose an algorithm for a class of multiple-delay systems such that the stability may
be automatically analysed by a single computer program. In our opinion, such an algorithm is easy to
understand, to implement, and to apply, as illustrated by some examples taken from the open literature.

The rest part of article is organized as follows. Some preliminaries are reviewed in Section 2. In
Section 3, the complete stability of a linear time-delay system including multiple delays with single free
delay is analysed. In Section 4, an approach is presented for computing the number of unstable roots
for a linear system with any combination of multiple delays. Numerical examples are given in Section
5. In Section 6, an algorithm for automatic stability analysis for a class of multiple-delay systems is
proposed. Finally, in Section 7, some concluding remarks end the article.

Notations: In the sequel, R (R+) denotes the set of (positive) real numbers and C is the set of
complex numbers; C− and C+ denote respectively the left half-plane and right half-plane in C; C0 is
the imaginary axis and ∂D is the unit circle in C; Z, N, and N+ are the sets of integers, non-negative
integers and positive integers, respectively. ε is a sufficiently small positive real number. Next, I is the

identity matrix and
−→
0 = (0, . . . , 0) of appropriate dimensions. For γ ∈ R, �γ � denotes the smallest

integer greater than or equal to γ . Finally, det(·) denotes the determinant of its argument.

2. Preliminaries

The characteristic function of time-system (1.1) is

f (λ, −→τ ) = det

(
λI − A −

L∑
�=1

B�e
−τ�λ

)
,

which is a quasipolynomial.
For a non-zero delay vector −→τ , the characteristic equation f (λ, −→τ ) = 0 has an infinite number of

roots, i.e., the time-system (1.1) has an infinite number of characteristic roots. Time-delay system (1.1) is
asymptotically stable if and only if all the characteristic roots lie in the open left half-plane C−, see e.g.,
Hale & Verduyn Lunel (1993) and Michiels & Niculescu (2014) for more comprehensive explanation.

Throughout this article, we denote by NU(−→τ ) the number of characteristic roots in the open right
half-plane C+ for system (1.1) in the presence of a delay vector −→τ . Clearly, the time-delay system (1.1)
is asymptotically stable if and only if NU(−→τ ) = 0 and the system has no CIRs.

If at
−→
τ ∗ = (τ ∗

1 , . . . , τ ∗
L ), f (jω∗,

−→
τ ∗ ) = 0 (ω∗ ∈ R+, j is the imaginary unit, and such a pair ( jω∗,

−→
τ ∗ )

is called a critical pair), then for all −→τ = −→
τ ∗ + (k1, . . . , kL)

2π

ω∗ (k� ∈ Z such that τ ∗
� + k�

2π

ω∗ ≥ 0,
� = 1, . . . , L), f ( jω∗, −→τ ) = 0. That is to say, a CIR jω∗ repeats infinitely many times as each τ�

increases, with a periodicity 2π

ω∗ .

Remark 2.1 It is a common assumption that λ = 0 is not a characteristic root, otherwise the system
can not be asymptotically stable for any −→τ .
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AN ITERATIVE FREQUENCY-SWEEPING APPROACH FOR STABILITY ANALYSIS OF LINEAR SYSTEMS 383

Owing to the conjugate symmetry of the spectrum, it suffices to consider only the CIRs with
nonnegative imaginary parts.

As mentioned in Section 1, the asymptotic behaviour analysis w.r.t. multiple free delay parameters
is rather complicated (corresponding to an open mathematical problem). We will propose an iterative
procedure: Analysing the asymptotic behaviour w.r.t. one free delay each time.

3. Complete stability w.r.t. one delay parameter

In this section, we study the case where L − 1 delay parameters among τ1, . . ., τL are fixed and the
remaining one is ‘free’. The objective is to study the complete stability of time-delay system (1) w.r.t.
the remaining free delay parameter.

For simplicity, we adopt the following notation δ(�) = (δ1(�), . . . , δL(�)) with

δi(�) =
{

0, if i 	= �,
1, if i = �.

Then, −→τ =
L∑

�=1
τ�δ(�).

Suppose τχ (χ ∈ {1, . . . , L}) is the free parameter and the other L − 1 fixed delay parameters are τ #
�

(� 	= χ ). In this scenario, −→τ can be expressed as −→τ = τχδ(χ) + Fχ , with Fχ = ∑
� 	=χ

τ #
� δ(�).

For instance, in the case L = 4, suppose τ1 = τ #
1 , τ3 = τ #

3 , and τ4 = τ #
4 are fixed, while τ2 is the free

delay parameter. We may express −→τ = (τ #
1 , τ2, τ #

3 , τ #
4 ) as −→τ = τ2δ(2) + F2 with F2 = (τ #

1 , 0, τ #
3 , τ #

4 )

and δ(2) = (0, 1, 0, 0).
We study the stability of time-delay system (1.1) w.r.t. τχ along the whole non-negative τχ -axis, i.e.,

the complete stability problem w.r.t. the delay parameter τχ . More precisely, we will keep track of the
number of unstable roots, denoted by NUFχ (τχ ), for τχ ∈ [0, +∞).

In this context, the characteristic function f (λ, −→τ ) can be rewritten as

f (λ, τχ , Fχ ) =
qχ∑
i=0

ãχ i(λ)e−iτχ λ, (3.1)

where ãχ i (i = 0, . . . , qχ ) are polynomials in λ and e−τ#
�

λ (� ∈ {1, . . . , L}, � 	= χ ) with real coefficients.
Furthermore, the expression (3.1) can be viewed as a polynomial of e−τχ λ where ãχ0(λ), . . . , ãχqχ (λ)

are treated as the coefficient functions. We introduce the following two-variable polynomial expression
of f (λ, τχ , Fχ ):

p(λ, zχ , Fχ ) =
qχ∑
i=0

ãχ i(λ)zi
χ , (3.2)

where

zχ = e−τχ λ.

Remark 3.1 The coefficient functions ãχ i(λ) (i = 1, . . . , qχ ) of (3.1) as well as (3.2) are independent
of τχ .
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384 X.-G. LI ET AL.

The detection of the CIRs and the CDs for f (λ, τχ , Fχ ) = 0 amounts in detecting the critical pairs
(λ, zχ ) (λ ∈ C0 and zχ ∈ ∂D) for p(λ, zχ , Fχ ) = 0.

Without any loss of generality, suppose that there exist u critical pairs for p(λ, zχ , Fχ ) = 0 denoted
by (λχ ,0 = jωχ ,0, zχ ,0), (λχ ,1 = jωχ ,1, zχ ,1), . . ., (λχ ,u−1 = jωχ ,u−1, zχ ,u−1) with 0 < ωχ ,0 ≤ ωχ ,1 ≤ · · · ≤
ωχ ,u−1.

Once all the critical pairs (λχ ,α , zχ ,α), α = 0, . . . , u − 1, are found, all the critical pairs (λ, τχ) for
f (λ, τχ , Fχ ) = 0 can be obtained: For each CIR λχ ,α , the corresponding (infinitely many) CDs are given

by τχ ,α,k
Δ= τχ ,α,0 + 2kπ

ωχ ,α
, k ∈ N, τχ ,α,0

Δ= min{τ ≥ 0 : e−τλχ ,α = zχ ,α}. The pairs (λχ ,α , τχ ,α,k), k ∈ N,
define a set of critical pairs associated with (λχ ,α , zχ ,α).

Remark 3.2 According to the root continuity argument, if the time-delay system (1.1) has no CIRs for
all τχ ≥ 0, NU(τχδ(χ) + Fχ ) = NU(Fχ ) for all τχ > 0.

3.1. Asymptotic behaviour of a critical pair

An essential step for the stability analysis is to address the asymptotic behaviour of a critical pair
(λχ ,α , τχ ,α,k). Since the CIR may be multiple and split as τχ increases near a positive CD, we now
introduce a general notation to describe the asymptotic behaviour for a critical pair (λχ ,α = jωχ ,α , τχ ,α,k)

(provided Fχ is given)

ΔNU
Fχ

λχ ,α
(τχ ,α,k)

Δ= NU((τχ ,α,k + ε)δ(χ) + Fχ ) − NU((τχ ,α,k − ε)δ(χ) + Fχ ),

which stands for the change in NU(−→τ ) caused by the variation of the CIR λχ ,α as τχ increases from
τχ ,α,k − ε to τχ ,α,k + ε, i.e., the asymptotic behaviour of the CIR λχ ,α at a positive CD τχ ,α,k .

The value of ΔNU
Fχ

λχ ,α
(τχ ,α,k) can be calculated by invoking the associated Puiseux series. One may

refer to Chapter 4 of Li et al. (2015) for a general algorithm for invoking the Puiseux series. At this
stage, it is interesting to see that the work of invoking the Puiseux series may be replaced by a graphical
(frequency-sweeping) test, which will be presented later in this article.

In order to analyse the complete stability, we need to specifically address the situation as τχ increases
from 0 to +ε. In other words, we need to know NU(Fχ + εδ(χ)). Similarly to Theorem 5.1 in Li et al.
(2015), we have the following:

Theorem 3.1 If the time-delay system (1.1) has no CIRs when τχ = 0, NU(Fχ + εδ(χ)) = NU(Fχ ).
Otherwise, NU(Fχ + εδ(χ)) − NU(Fχ ) equals to the number of the values in C+ of the Puiseux series
for all the corresponding CIRs when τχ = 0 with Δτχ = +ε.

Proof. If Fχ is zero vector, the system has finitely many characteristic roots when τχ = 0. As τχ increases
to a sufficiently small positive number +ε, infinitely many new characteristic roots appear at the far left
of the complex plane while the original (finitely many) characteristic roots change continuously w.r.t.
τχ . If Fχ is a non-zero vector, all the (infinitely many) characteristic roots change continuously as τχ

increases from 0 to +ε.
Thus, if the system has no CIRs when τχ = 0, it is trivial to know that NU(Fχ+εδ(χ))−NU(Fχ ) = 0.

Otherwise, the value of NU(Fχ + εδ(χ)) − NU(Fχ ) is determined by the asymptotic behaviour of
the corresponding CIRs, which can be explicitly analysed through the Puiseux series (as stated in
Theorem 3.1). �
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AN ITERATIVE FREQUENCY-SWEEPING APPROACH FOR STABILITY ANALYSIS OF LINEAR SYSTEMS 385

3.2. Frequency-sweeping curves (FSCs)

Under a given Fχ , the FSCs for time-delay system (1.1) are obtained by the following procedure.
Frequency-sweeping curves (FSCs): Sweep ω ≥ 0 and for each λ = jω we have qχ solutions of zχ

such that p(λ, zχ , Fχ ) = 0 (denoted by zχ ,1( jω), . . . , zχ ,qχ ( jω)). In this way, we obtain qχ FSCs Γχ ,i(ω) :∣∣zχ ,i( jω)
∣∣ vs. ω, i = 1, . . . , qχ . For simplicity, we denote by �1 the line parallel to the abscissa axis with

ordinate equal to 1. If (λχ ,α = jωχ ,α , τχ ,α,k) are a set of critical pairs, some FSCs intersect �1 at ω = ωχ ,α .
It is straightforward to see that all the CIRs and the CDs can be detected by the FSCs (more precisely,

the intersection of the FSCs and the line �1). We now address the asymptotic behaviour of the FSCs
(such an idea was proposed and largely discussed in Li et al., 2015).

For a set of critical pairs (λχ ,α = jωχ ,α , τχ ,α,k) (as usually assumed, λχ ,α 	= 0), there must exist some
FSCs such that zχ ,i( jωχ ,α) = zχ ,α = e−τχ ,α,0λχ ,α intersecting �1 when ω = ωχ ,α . Among these FSCs,
we denote the number of those above �1 when ω = ωχ ,α + ε (ω = ωχ ,α − ε) by NF

Fχ
zχ ,α (ωχ ,α + ε)

(NF
Fχ
zχ ,α (ωχ ,α − ε)).

We now introduce the notation ΔNF
Fχ
zχ ,α (ωχ ,α) as defined below

ΔNF
Fχ
zχ ,α (ωχ ,α)

Δ= NF
Fχ
zχ ,α (ωχ ,α + ε) − NF

Fχ
zχ ,α (ωχ ,α − ε).

Remark 3.3 It is a useful property that ΔNF
Fχ
zχ ,α (ωχ ,α) is invariant w.r.t. different CDs. Moreover, the

value of ΔNF
Fχ
zχ ,α (ωχ ,α) may be easily obtained graphically (by observing how the corresponding FSCs

intersect �1): it equals to the number change of the corresponding FSCs above �1 when ω = ωχ ,α + ε

and ω = ωχ ,α − ε. For instance, for a set of critical pairs (λχ ,α = jωχ ,α , τχ ,α,k), suppose that there exists
one and only one FSC such that zχ ,i( jωχ ,α) = zχ ,α = e−τχ ,α,0λχ ,α and that as ω increases near ωχ ,α the
FSC intersects �1 from above to below. Then, NF

Fχ
zχ ,α (ωχ ,α + ε) = 0, NF

Fχ
zχ ,α (ωχ ,α − ε) = 1 and hence

ΔNF
Fχ
zχ ,α (ωχ ,α)

Δ= NF
Fχ
zχ ,α (ωχ ,α + ε) − NF

Fχ
zχ ,α (ωχ ,α − ε) = 0 − 1 = −1. This is the case to be seen in

Example 5.1.

3.3. Invariance property

We are now in a position to present the result concerning the invariance property of the asymptotic
behaviour w.r.t. the free delay parameter τχ for time-delay system (1.1).

Theorem 3.2 For a CIR λχ ,α of time-delay system (1.1) with given Fχ , ΔNU
Fχ

λχ ,α
(τχ ,α,k) is a constant

ΔNF
Fχ
zχ ,α (ωχ ,α) for all τχ ,α,k > 0.

The proof is given in the Appendix.

3.4. Ultimate stability

With the above invariance property, we now address the ultimate stability issue (i.e., the system stability
as τχ → ∞).

Property 3.1 For all i = 1, . . . , qχ , it follows that
∣∣zχ ,i( jω)

∣∣ → ∞ as ω → ∞.
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386 X.-G. LI ET AL.

Proof. As the time-system (1.1) is of retarded type and |eι| = 1 for any purely imaginary number ι, we
have

lim
ω→∞

ãχ i( jω)

ãχ0( jω)
= 0, i = 1, . . . , qχ .

The proof is now complete according to (3.2). �
A critical frequency ωχ ,α is called a crossing (touching) frequency for an FSC Γχ ,i(ω), if Γχ ,i(ω)

crosses (touches without crossing) �1 as ω increases near ω = ωχ ,α .
With the notions above, we have the following results.

Theorem 3.3 If the FSCs Γχ ,i(ω), i = 1, . . . , qχ , have a crossing frequency, there exists a τ ∗
χ such that

the time-delay system (1.1) is unstable for all τχ > τ ∗
χ and lim

τχ →∞ NU(τχδ(χ) + Fχ ) = ∞.

Theorem 3.4 A time-delay system (1.1) with given Fχ must belong to the following three types:
Type 1: The system has a crossing frequency and lim

τχ →∞ NU(τχδ(χ) + Fχ ) = ∞;

Type 2: The system has neither crossing frequencies nor touching frequencies and NU(τχδ(χ) +
Fχ ) = NU(Fχ ) for all τχ > 0;

Type 3: The system has touching frequencies but no crossing frequencies and NU(τχδ(χ) + Fχ ) is
a constant for all τχ other than the CDs.

Following the line of Theorems 9.1 and 9.2 in Li et al. (2015), we may prove Theorems 3.3 and 3.4
in light of Property 3.1.

3.5. Explicit computation of number of unstable roots

Assume that NU(Fχ ) is known (this value can be obtained by the procedure to be given in the next
section). We now show that NU(τχδ(χ) + Fχ ) can be expressed as an explicit function of τχ .

For each CIR λχ ,α , we may choose any positive CD τχ ,α,k to compute ΔNU
Fχ

λχ ,α
(τχ ,α,k) (the value

is denoted by Uλχ ,α ), through invoking the Puiseux series. Alternatively, we may directly have that

Uλχ ,α = ΔNF
Fχ
zχ ,α (ωχ ,α) from the FSCs, according to Theorem 3.2.

In the light of the invariance property, the explicit expression of NU(τχδ(χ) + Fχ ) is as follows:

Theorem 3.5 For time-delay system (1.1) and for any τχ which is not a CD, it follows that

NU(τχδ(χ) + Fχ ) = NU(εδ(χ) + Fχ ) +
u−1∑
α=0

NUχ ,α(τχ ),

where NUχ ,α(τχ ) =
{

0, τ < τχ ,α,0,

2Uλχ ,α

⌈
τχ −τχ ,α,0
2π/ωχ ,α

⌉
, τ > τχ ,α,0,

if τχ ,α,0 	= 0,

{
0, τ < τχ ,α,1,

2Uλχ ,α

⌈
τχ −τχ ,α,1
2π/ωχ ,α

⌉
, τ > τχ ,α,1,

if τχ ,α,0 = 0.
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We can now systematically solve the complete stability w.r.t. the free delay parameter τχ . The system
is asymptotically stable if and only if τχ lies in the interval(s) with NU(τχδ(χ) + Fχ ) = 0 excluding
the CDs. The ultimate stability is known according to Theorems 3.3 and 3.4.

4. Stability analysis for any given delay vector

We now study the stability of time-delay system (1.1) for any given delay vector
−→
τ # = (τ #

1 , . . . , τ #
L ).

Based on the results of Section 3, an iterative frequency-sweeping approach is given below.

An Iterative Frequency-Sweeping Approach

Step 0: Set χ = 1 and F1 = (0, . . . , 0).
Step 1: Compute NU(Fχ + εδ(χ)) by Theorem 3.1.
Step 2: Generate the FSCs corresponding to p(λ, τχ , Fχ ) = 0, denoted by Γχ ,i(ω), i = 1, . . . , qχ .

Following the results in Section 3, we can know NU(Fχ + τ #
χ δ(χ)) and detect the CIRs (if any!).

Step 3: If χ < L, let χ = χ + 1 and Fχ = Fχ−1 + τ #
χ−1δ(χ − 1). Return to Step 1.

(After running Steps 1–3 for the last time (i.e., when χ = L), we know the value of NU(
−→
τ # ) and

whether the system (1.1) has CIRs when −→τ = −→
τ # ).

Step 4: If the system has no CIRs when −→τ = −→
τ # , skip to Step 5. Otherwise, generate the FSCs

corresponding to p(λ, τ�, F#
� ) = 0 with F#

� = ∑
κ 	=�

τ #
κ δ(κ), denoted by Γ #

�,i(ω), i = 1′, . . . , q�, � =
1, . . . , L.4

(We may analyse the asymptotic behaviour of the CIRs when −→τ = −→
τ # w.r.t. each delay parameter τ�,

� = 1, . . . , L, from the FSCs Γ #
�,i(ω), i = 1, . . . , q�. To be more precise, we can determine if increasing

or decreasing a delay parameter τ� sufficiently near τ #
� may stabilize the system, according to Theorem

3.2. As a result, we know if there exists a −→τ in a small neighbourhood of
−→
τ # , at which the system is

asymptotically stable.)
Step 5: The procedure ends.

Proposition 4.1 For time-delay system (1.1) and for any given delay vector
−→
τ # = (τ #

1 , . . . , τ #
L ), the

iterative frequency-sweeping approach allows to calculate NU(−→τ ) with −→τ = −→
τ # .

Proof. It is worth to mention that the invariance property guarantees that the stability characterization
is complete w.r.t. any free delay parameter. After the first iteration (Steps 1–3 for the first time), we
know the stability property for τ = (τ #

1 , 0, . . . , 0). Next, after the second iteration (Steps 1–3 for
the second time), we know the stability property for τ = (τ #

1 , τ #
2 , 0, . . . , 0). In this iterative manner,

we are able to examine the stability properties for the delay vectors (τ #
1 , 0, . . . , 0), (τ #

1 , τ #
2 , 0, . . . , 0),

(τ #
1 , τ #

2 , τ #
3 , 0, . . . , 0), . . . The iterative frequency-sweeping approach requires totally L iterations (one

per independent delay parameter). Finally, as expected, after the last iteration (i.e., Steps 1–3 for the

L-th time), we can determine the stability property for τ = −→
τ # = (τ #

1 , . . . , τ #
L ). �

4 We do not need to specifically generate the FSCs Γ #
L,i(ω) since they are exactly the FSCs obtained by Step 3 when χ = L.
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Fig. 1. FSC for Example 5.1.

Remark 4.1 The above asymptotic behaviour analysis (by means of Step 4) is simple and effective. The
effect of each delay parameter’s asymptotic behaviour can be explicitly known. It should be pointed out
that the asymptotic behaviour analysis w.r.t. all the L delay parameters (simultaneously) is very difficult
(theoretically, it corresponds to some Puiseux series for Δλ w.r.t. Δτ1, . . . , ΔτL), especially when L is
large. However, as mentioned in Section 1, to the best of the authors’ knowledge, no general tool has
been reported for the multiple-parameter asymptotic behaviour analysis so far.

5. Numerical examples

We now give some illustrative examples concerning the properties as well as the results presented in
this article.

Example 5.1 (Invariance property) Consider a time-delay system involving two delay parameters τ1

and τ2 with the characteristic function

f (λ, −→τ ) = e−(τ1+τ2)λ − (λ6 − λ4 + λ2)e−τ2λ − (λ10 − λ8 + λ6)e−τ1λ + λ12.

Suppose τ2 is fixed as τ #
2 = 2π and τ1 is the free delay parameter. We here illustrate the invariance

property.
The corresponding characteristic function can be expressed as f (λ, τ1, F1) = ã10(λ) + ã11(λ)e−τ1λ

with ã10(λ) = λ12 − (λ6 − λ4 + λ2)e−τ#
2 λ and ã11(λ) = e−τ#

2 λ − (λ10 − λ8 + λ6).
At τ1 = (2k + 1)π , λ = j is a CIR and, in particular, λ = j is a triple CIR at τ1 = π (it is simple at

all τ1 = (2k + 1)π , k ∈ N+). According to Theorem 3.2, ΔNUF1
j ((2k + 1)π) = ΔNFF1

−1(1) = −1 for

all k ∈ N, where ΔNFF1
−1(1) can be obtained from the FSC Γ1,1 shown in Fig. 1.
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To verify the result, we give the Puiseux series for the critical pair ( j, π):

Δλ = (0.2978 + 0.1019j)(Δτ1)
1
3 + o((Δτ1)

1
3 )

and the Taylor series for the critical pairs ( j, (2k + 1)π) (due to the limited space, we only give the
results for k = 1 and k = 2):

Δλ = −0.1592jΔτ1 + 0.0253j(Δτ1)
2 + (−0.0113 + 0.0132j)(Δτ1)

3 + o((Δτ1)
3), k = 1,

Δλ = −0.0796jΔτ1 + 0.0063j(Δτ1)
2 + (−0.0007 + 0.0006j)(Δτ1)

3 + o((Δτ1)
3), k = 2.

It is worth mentioning that our result is consistent with the above series analysis. �

Example 5.2 (Complete stability) Consider a time-delay system with the characteristic function

f (λ, −→τ ) = λ4 + 2λ2 + 3e−τ1λ − 3e−τ2λ + e−(τ1+τ2)λ.

We study the complete stability w.r.t. τ2 when τ1 is fixed as τ #
1 = 0.5. First, when −→τ = −→

0 , the system
has four CIRs (both +j and −j are double CIRs). Owing to the conjugate symmetry of the spectrum, it
suffices to consider the asymptotic behaviour of the CIR +j. Applying the method in Chapter 4 of Li

et al. (2015), we have that the asymptotic behaviour of the CIR +j w.r.t. τ1 at −→τ = −→
0 corresponds to

the Puiseux series Δλ = (−jΔτ1)
1
2 +o((Δτ1)

1
2 ). Thus, in the light of Theorem 3.1, NU((+ε, 0)) = +2.

Next, through the FSC Γ1,1 with F1 = (0, 0) (Fig. 2a), we have that NU((0.5, 0)) = +2 (two sets
of critical pairs are obtained from Fig. 2(a): (λ1,0 = j, τ1,0,k = 2kπ) and (λ1,1 = 1.9566j, τ1,1,k =
1.6056 + 2kπ

1.9566 )). Finally, we generate the FSC Γ2,1 with F2 = (0.5, 0) (Fig. 2(b)) and we have that the
system has only one set of critical pairs: (λ2,0 = j, τ2,0,k = 0.9443 + 2kπ). According to Theorem 3.2,
each time τ2 increases near τ2,0,k , ΔNUF2

λ2,0
(τ2,0,k) = 0. Thus, NU((0.5, τ2)) = +2 for all τ2 ≥ 0 except

at τ2 = τ2,0,k .
Finally, it is worth mentioning that the above analysis is consistent with the SCS, shown in Fig. 3. It

is interesting to see that, in the three regions partitioned by the SCS in Fig. 3, the system has the same
number of unstable roots. �

Example 5.3 (Stability analysis for a given delay vector) Consider the time-delay system in VII.B of
Gu & Naghnaeian (2011) including three delays, with the characteristic function

f (λ, −→τ ) = λ3 + 3λ + 7 + (λ2 + 3λ + 1)e−τ1λ + (4λ + 3)e−τ2λ + (λ2 + λ + 0.1)e−τ3λ.

In the sequel, our objective is to analyse the stability for a given delay vector
−→
τ # =

(0.3041, 1.7, 0.0504). As seen from Fig. 14 in Gu & Naghnaeian (2011), this
−→
τ # corresponds to an

intersecting point of the SCS. We now apply the procedure proposed in Section 4.
The first iteration (for χ = 1, after Step 0) ⇒

Step 1: NU((+ε, 0, 0)) = 0 according to Theorem 3.1 (when −→τ = −→
0 , the characteristic roots are

−0.4457 ± 3.1326j and −1.1087).
Step 2: We generate the FSC Γ1,1 (Fig. 4(a)), from which we obtain two sets of critical pairs:
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(a) (b)

Fig. 2. FSCs for Example 5.2. (a) Γ1,1. (b) Γ2,1.

Fig. 3. Stability crossing set for Example 5.2.

(λ1,0 = 2.2819j, τ1,0,k = 1.9052 + 2kπ

2.2819 ) and (λ1,1 = 3.5160j, τ1,1,k = 0.2756 + 2kπ

3.5160 ). We have
that NU((0.3041, 0, 0)) = +2 and the system has no CIRs at −→τ = (0.3041, 0, 0).
Step 3: Let χ = 2 and go to Step 1.

The second iteration (for χ = 2) ⇒
Step 1: NU((0.3041, +ε, 0)) = +2 according to Theorem 3.1.
Step 2: We generate the FSC Γ2,1 (Fig. 4(b)), from which we obtain two sets of critical pairs:
(λ2,0 = 1.9073j, τ2,0,k = 1.7471 + 2kπ

1.9073 ) and (λ2,1 = 3.5133j, τ2,1,k = 1.7577 + 2kπ

3.5133 ). We have
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(a) (b)

Fig. 4. FSCs (a) Γ1,1 and (b) Γ2,1 for Example 5.3.

that NU((0.3041, 1.7, 0)) = +2 and the system has no CIRs at −→τ = (0.3041, 1.7, 0).
Step 3: Let χ = 3 and go to Step 1.

The third iteration (for χ = 3) ⇒
Step 1: NU((0.3041, 1.7, +ε)) = +2 according to Theorem 3.1.
Step 2: We generate the FSC Γ3,1 (Fig. 5(a)), from which we obtain two sets of critical pairs: (λ3,0 =
1.9594j, τ3,0,k = 0.0504 + 2kπ

1.9594 ) and (λ3,1 = 3.6118j, τ3,1,k = 0.0504 + 2kπ

3.6118 ). In light of Γ3,1, each time
τ3 increases from τ3,0,k − ε to τ3,0,k + ε (τ3,1,k − ε to τ3,1,k + ε), λ3,0 (λ3,1) crosses C0 from C+ to C− (from
C− to C+). The complete stability w.r.t. τ3 can be studied. We may accurately calculate NU((τ #

1 , τ #
2 , τ3))

as a function of τ3, as shown in Fig. 5(b). In particular, near τ #
3 = 0.0504, the variation of τ3 does not

change NU((τ #
1 , τ #

2 , τ3)) since it causes opposite crossing directions (w.r.t. the imaginary axis C0) for
λ3,0 and λ3,1.

From the above iterations, we know that at
−→
τ # the system has two CIRs (1.9594j and 3.6118j),

without characteristic roots in C+. We next study the asymptotic behaviour of the CIRs w.r.t. τ1 and τ2,

respectively, in order to see if there is a stabilizing point near
−→
τ # .

Step 4 ⇒
The asymptotic behaviour w.r.t. τ1 can be studied from the FSC Γ #

1,1 (Fig. 6(a)), i.e., Γ1,1 when
F1 = (0, 1.7, 0.0504) as defined in the procedure. From Fig. 6(a), we have that as τ1 increases from
0.3041 − ε to 0.3041 + ε both the CIRs (1.9594j and 3.6118j) cross C0 from C− to C+. Therefore,

decreasing τ1 appropriately near
−→
τ # may stabilize the system. Next, the asymptotic behaviour w.r.t. τ2

can be studied from the FSC Γ #
2,1 (Fig. 6(b)), i.e., Γ2,1 when F2 = (0.3041, 0, 0.0504). Similar to the

asymptotic behaviour w.r.t. τ3, the variation of τ2 near τ #
2 dose not change NU((τ #

1 , τ2, τ #
3 )). Thus, there

exists a stabilizing −→τ sufficiently near
−→
τ # with τ1 > τ #

1 . �

Finally, at the end of this section, we give some additional discussions and comments. As mentioned
and as seen above, the frequency-sweeping test proposed in this article is iterative. In this context, one
natural question may arise: How about a direct approach (through the complete stability analysis along
an appropriate ray) in the corresponding delay parameter space?
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(a) (b)

Fig. 5. (a) Γ3,1 and (b) NU((τ #
1 , τ #

2 , τ3)) vs. τ3 for Example 5.3.

(a) (b)

Fig. 6. (a) Γ #
1,1 and (b) Γ #

2,1 for Example 5.3.

For instance, consider the stability for Example 5.2 when τ #
1 = 0.5, τ #

2 = 1.5. We may try to study
the complete stability w.r.t the ray τ · (1, 3), τ ∈ [0, ∞). Here, τ is the only free parameter. Obviously,
the point (τ #

1 = 0.5, τ #
2 = 1.5) corresponds to the case τ · (1, 3) with τ = 0.5. The characteristic function

is λ4 + 2λ2 + 3z − 3z3 + z4 (z = e−τλ). There are totally four FSCs, as shown in Fig. 7(a).
If we consider the point (τ #

1 = 0.5, τ #
2 = 1.4) similarly to the previous case study, we shall address

the ray τ · (5, 14), τ ∈ [0, ∞). The corresponding characteristic function is λ4 + 2λ2 + 3z5 − 3z14 + z19

(z = e−τλ). As shown in Fig. 7(b), there are totally 19 FSCs! Apparently, the analysis appears to be quite
involved with some (significant) increasing complexity.
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(a) (b)

Fig. 7. FSCs for complete stability analysis along a ray. (a) Ray τ · (1, 3). (b) Ray τ · (5, 14).

As seen above, if there exists a common factor among all the delay parameters, the complete stability
analysis along a ray is possible in theory. However, this is not necessarily simple or practical. For instance,
if we try to address Example 5.3, the number of the FSCs is 17000 (the largest common factor among
the three delays is 0.0001).

The above analysis is consistent with the delay interference phenomenon (Michiels & Niculescu,
2007) and we are able to link it with the number of FSCs. More precisely, a very small perturbation on
the delay ratio may result in an increase in the number of FSCs. This will tend to bring more CIRs and
hence an increase in NU(τ ) for a sufficiently large τ , according to the invariance property.

6. Algorithm implementation

The effectiveness and advantage of the iterative frequency-sweeping approach are illustrated and dis-
cussed in the previous sections. In this section, we will try to implement all the steps by a single program.
In this way, the stability can be automatically treated.

In this section, we consider the following characteristic function involving L independent delay
parameters (τ1, . . . , τL)

f (λ, τ1, . . . , τL) = p0(λ) +
L∑

�=1

p�(λ)e−τ�λ, (6.1)

where p0(λ), . . . , pL(λ) are real-coefficient polynomials of λ such that

deg(p0(λ)) > max{deg(p1(λ)), . . . , deg(pL(λ))}.

The characteristic function (6.1) corresponds to a class of multiple-delay systems of retarded type
without cross terms in the characteristic functions. As earlier mentioned, the stability of such multiple-
delay systems have been largely studied in the literature (see e.g., Gu et al., 2005 for the case L = 2 and
Gu & Naghnaeian, 2011 for the case L = 3.
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Based on the approach proposed in this article, we now present an algorithm to automatically

determine NU(
−→
τ # ) for a given

−→
τ # = (τ #

1 , . . . , τ #
L ).

Algorithm for automatic implementation of iterative frequency-sweeping approach

Step 0: Choose a step-length Δω. Set χ = 1 and F1 = (0, . . . , 0).
Step 1: Compute NU(Fχ + εδ(χ)) by Theorem 3.1.
(Step 1 usually may be automatically performed by computer, through solving the polynomial

equation f (λ,
−→
0 ). Only when the spectrum contains CIRs, we need to additionally invoke the Puiseux

series.)
Step 2: Sweep ω with the step-length Δω and solve zχ for the equation p(λ, zχ , Fχ ) = 0. Detect the

signs of
∣∣zχ

∣∣−1. If a sign change is found at two adjacent ω, say ω′ and ω′′, a CIR is detected as (ω′+ω′′)
2 j.

For any critical pair (λ, τ ) detected in this way, we have that ΔNUλ(τ ) = +1 (−1) if the corresponding
sign change is from negative to positive (from positive to negative). Then, we know NU(Fχ + τ #

χ δ(χ))

and detect the CIRs (if any).
(The case ΔNUλ(τ ) = 0 may be later examined from the FSCs. Note that such a case usually does

not affect the value of NU(
−→
τ # )).

Step 4: If χ < L, let χ = χ + 1 and Fχ = Fχ−1 + τ #
χ−1δ(χ − 1). Return to Step 1.

Step 5: We obtain the value of NU(
−→
τ # ) and plot the FSCs Γχ ,1, χ = 1, . . . , L. The FSCs may be used

to determine if there is the case with ΔNUλ(τ ) = 0 in Step 2. Also, the FSCs may verify the results of
Step 2. The algorithm stops.

If there are CIRs at
−→
τ # , we may further generate the FSCs Γ #

�,1 as in Step 4 of the iterative frequency-
sweeping approach, to analyse the asymptotic behaviour.

Remark 6.1 By using the above algorithm, the calculation error for CIRs is kept within ±Δω

2 j.

Example 6.1 Consider the three-delay system in Example 5.3. We now compute NU(−→τ ) at some
points, by using a MATLAB program (based on the algorithm proposed in this section). The step-length
is chosen as Δω = 0.01. In Table 1, we list the results and the computation time (on a Laptop with an
Intel Core 2.50 GHz CPU with 8 G RAM). For these points, the analysis is automatically performed by
computer.

The results listed in Table 1 may be verified by Fig. 14 in Gu & Naghnaeian (2011) (see also Fig.
8(a) in this article).

With some slight modifications of the program mentioned above, we may obtain the SCS for the
three-delay system. Here, we generate the SCS for the case τ2 = 1.7, see Fig. 8(a). Figure 8(a) obtained
here is same as Fig. 14 of Gu & Naghnaeian (2011), which is generated by a different approach using
some geometric arguments. The computation time to generate the data for Fig. 8(a) by our algorithm is
2.566361 s (on the same Laptop). It is worth to mention that the NU(−→τ ) distribution is directly obtained
by our program (without extra calculation), since the asymptotic behaviour analysis for CIRs is covered
by the approach in this article.

Moreover, we can further determine the 3-D SCS in the (τ1, τ2, τ3)-space. For a clear illustration,
we here give the SCS for a domain (τ1, τ2, τ3) ∈ [1.5, 2.5] × [0, 3] × [0, 3]. The 3-D SCS is shown in
Fig. 8(b). The computation time to obtain the data for Fig. 8(b) is 35.552933 s (on the same Laptop). �
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Table 1 NU((τ #
1 , τ #

2 , τ #
3 )) calculation for some representa-

tive points (τ #
1 = 0.01 and τ #

2 = 1.7)

NU((τ #
1 , τ #

2 , τ #
3 )) Computation time (s)

τ #
3 = 0.1 2 0.009605

τ #
3 = 0.3 0 0.009712

τ #
3 = 0.6 2 0.009579

τ #
3 = 0.9 0 0.009573

τ #
3 = 1.5 2 0.009616

τ #
3 = 2.5 4 0.009555

τ #
3 = 3.0 2 0.009604

τ #
3 = 3.7 0 0.009571

τ #
3 = 3.77 2 0.009547
τ #

3 = 3.8 4 0.009589

(a) (b)

Fig. 8. Stability crossing set for Example 6.1. (a) Cross section with τ2 = 1.7. (b) In (τ1, τ2, τ3)-space.

Remark 6.2 As seen in Gu & Naghnaeian (2011), it is not trivial to determine the SCS for the multiple-
delay system (6.1). In this section, we propose a different approach for this task. As illustrated, the
asymptotic behaviour analysis for CIRs is included by our algorithm and hence the distribution of
NU(τ ) can be directly examined. In our opinion, this is one of the advantages of the approach proposed
in our article. We think that this observation will open some new perspectives for further research. For
instance, we may study how to obtain the SCSs for more general multiple-delay systems (e.g., when
cross terms e−(τ1+τ2)λ, e−(τ1+τ3)λ, e−(τ2+τ3)λ, e−(τ1+τ2+τ3)λ, . . ., are added in (6.1)) in the future. But this
scope is out of our purposes in this article.
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7. Conclusion

We analyse the stability for linear systems with multiple (incommensurate) delay parameters. As the
asymptotic behaviour analysis of the CIRs w.r.t multiple delay parameters corresponds to an open
problem, we propose an indirect yet effective methodology called the iterative frequency-sweeping
approach.

We first study the complete stability in the case where only one delay parameter is free while the
others are fixed. The invariance property (regarding the asymptotic behaviour of the CIRs) in this case
is confirmed by extending the frequency-sweeping framework recently proposed for studying linear
systems with single delay parameter. As a result, the complete stability problem can be easily studied
by employing a frequency-sweeping test.

Based on the above results, we next present an iterative frequency-sweeping approach to analyse the
stability for any given combination of multiple delays. Using this approach, we may accurately compute
the number of unstable characteristic roots. Furthermore, if the system has CIRs, we may analyse the
asymptotic behaviour of the CIRs w.r.t each delay parameter. Consequently, we may determine if there
exists a stabilizing combination of multiple delays sufficiently close to the given one, at which the system
is asymptotically stable.

Finally, we develop an algorithm with which the stability for a class of multiple-delay systems may
be easily implemented. This work opens some new perspectives for further research.
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Appendix: Proof of Theorem 3.2

Consider the following characteristic function

f (λ, τ) = a0(λ) + a1(λ)e−τλ + · · · + aq(λ)e−qτλ, (A.1)

where the coefficient functions a0(λ), . . . , aq(λ) are only required to be analytic in C0\{0} (have in mind
that usually we preclude the trivial case where λ = 0 is a characteristic root).

The above characteristic function (A.1) is called a general quasipolynomial, corresponding to a broad
class of time-delay systems. Note that the characteristic function (A.1) reduces to the widely-studied
quasipolynomials, corresponding to the retarded-type and the neutral-type time-delay systems, if the
coefficient functions a0(λ), . . . , aq(λ) are restricted to be polynomials of λ.

Recently, the invariance property of the CIRs for the general quasipolynomial (A.1) was confirmed
in Li et al. (2017).
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Clearly, the characteristic function f (λ, τχ , Fχ ) (3.1) is in the form of (A.1) as

ãχ0(λ) + ãχ1(λ)e−τχ λ + · · · + ãχqχ (λ)e−qχ τχ λ,

where the coefficient functions ãχ0(λ), . . . , ãχqχ (λ) are polynomials in λ and e−τ#
�

λ (� ∈ {1, . . . , L},
� 	= χ ).

We may now prove Theorem 3.2 as the characteristic function f (λ, τχ , Fχ ) falls in the class of general
quasipolynomial (A.1), since the coefficient functions ãχ0(λ), . . . , ãχqχ (λ) are analytic in C.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
ci/article-abstract/36/02/379/4653524 by N

ortheastern U
niversity user on 21 June 2019




