
HAL Id: hal-02281945
https://hal.science/hal-02281945v1

Submitted on 9 Sep 2019 (v1), last revised 27 Apr 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Synthesis for Monotone Transition Systems and
Directed Safety Specifications

Adnane Saoud, Elena Ivanova, Antoine Girard

To cite this version:
Adnane Saoud, Elena Ivanova, Antoine Girard. Efficient Synthesis for Monotone Transition Systems
and Directed Safety Specifications. IEEE Conference on Decision and Control, Dec 2019, Nice, France.
�10.1109/CDC40024.2019.9029784�. �hal-02281945v1�

https://hal.science/hal-02281945v1
https://hal.archives-ouvertes.fr


Efficient Synthesis for Monotone Transition Systems and Directed
Safety Specifications*.

Adnane Saoud1,2, Elena Ivanova1 and Antoine Girard1

Abstract— In this paper, we introduce an efficient algorithm
for control policy synthesis for monotone transition systems and
lower (upper) safety specifications. For a monotone transition
system the sets of states and inputs are equipped with partial
orders, moreover, the transitions preserve the ordering on the
states. We propose a lazy algorithm that exploits priorities
on the states and inputs. To compute the maximal controlled
invariant set, only inputs with the lowest priorities are used.
Then, starting from the states with the highest priorities,
transitions are computed on-the-fly and only when a particular
region of the state space needs to be explored. Once this
set is computed, controller synthesis is straightforward by
exploring different inputs and using their priorities. We prove
the completeness of our algorithm w.r.t the classical safety
algorithm. Finally, we illustrate the advantages of the proposed
approach on a vehicle platooning problem.

I. INTRODUCTION

Abstraction-based synthesis techniques have been an on-
going research area in the last decade (see e.g. [1], [2] and
the references therein). In symbolic control approaches, a dis-
crete abstraction is constructed from the original dynamical
system. When the concrete and abstract systems are related
by some behavioral relation such as simulation, alternating
simulation or their approximate or directed versions, the dis-
crete controller synthesized for the abstraction can be refined
into a controller for the original system. The description
of a dynamical system as a discrete abstraction principally
enables the use of various techniques developed in the area
of supervisory control of discrete event systems.

Symbolic models are often obtained through discretization
of the state and input spaces. Due to those discretizations,
most symbolic approaches do not scale well.

To tackle this problem different approaches have been
proposed. In [3], [4], abstractions were computed using
multi-scale state-space discretization. In [5], [6] optimal
abstraction parameters were derived to minimize the size of
symbolic models. The authors in [7], [8], [9], [10] used lazy
synthesis algorithm by exploiting priorities on the inputs.

*This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 725144). This research was partially sup-
ported by Labex DigiCosme (project ANR-11-LABEX-0045-DIGICOSME)
operated by ANR as part of the program ”Investissement d’Avenir” Idex
Paris Saclay (ANR-11-IDEX-0003-02).

1Laboratoire des Signaux et Systèmes (L2S), CNRS,
CentraleSupélec, Université Paris-Sud, Université Paris-Saclay,
3, rue Joliot-Curie, 91192 Gif-sur-Yvette, cedex, France.
adnane.saoud,elena.ivanova,antoine.girard@l2s.
centralesupelec.fr

2LSV, CNRS, ENS Paris-Saclay, 61, avenue du Président Wilson, 94235
Cachan Cedex, France.

Other approaches have been developed by using composi-
tional methods for abstraction or for controller synthesis [11],
[12], [13], [14].

While existing lazy approaches in the literature exploit
only priorities on the inputs, in this paper, we also use the
priorities1 on the states to present an efficient synthesis algo-
rithm for monotone transition systems (which are a subclass
of transition systems that preserve priorities on the states)
and directed safety specifications. The class of monotone
transition systems is of practical interest since it arises from
monotone dynamical systems, which frequently appears in
engineering applications such as traffic networks [15], bio-
logical networks [16] and power systems [17]. We show that
for the considered problem the maximal controlled invariant
is a lower closed set and that it can be computed using only
inputs with lower priorities. Then we present an efficient
approach to compute the domain of the controller using the
concept of basis, which serves as a simpler representation
of lower closed sets. Once the maximal controlled invariant
is found, we exploit priorities on the inputs to compute
the maximal safety controller. Finally, we demonstrate the
practicality of our approach on a vehicle platooning problem.

In spirit, the closest works in the literature are [15], [18].
In [15], sparse abstractions were proposed for monotone dy-
namical systems and directed specifications. We complement
their idea by providing an efficient synthesis algorithm for
directed safety specifications. In [18], the authors compute
controlled invariants for monotone systems using constraint
programming. Their notion of s-sequence is relatively close
to the characterization of lower closed controlled invariants
presented in our work. In this paper, we only focus on
lower safety specification, but the results for upper safety
specifications can be obtained using the same approach.

The paper is organized as follows. In Section II, some
required preliminaries are provided. In Section III, we in-
troduce the class of monotone transition systems. In Section
IV, we present an efficient synthesis algorithm for monotone
transition systems and lower safety specifications. Finally, in
Section V, an illustrative example is proposed in order to
show the efficiency of the proposed approach.

1Given a partially ordered set X , we say that a state x1 ∈ X has a
highest priority than a state x2 ∈ X if the state x1 is bigger than x2 with
respect to the given partial order on the states. The notion of priority is
defined similarly for a partially ordred set of inputs.



II. PRELIMINARIES

A. Partial orders

A binary relation ≤L⊆ L × L is a partial order if and
only if for all l1, l2, l3 ∈ L we have: (i) l1 ≤L l1, (ii) if
l1 ≤L l2 and l2 ≤L l1 then l1 = l2 and, (iii) if l1 ≤L l2
and l2 ≤L l3 then l1 ≤L l3. If neither l1 ≤L l2 nor l2 ≤L l1
holds, we say that l1 and l2 are incomparable. The set of all
incomparable couples in L is denoted by IncL. We define
≥L so that l1 ≥L l2 if and only if l2 ≤L l1.

For a partially ordered set L, half closed-open intervals
are (x, y]L = {z | x <L z ≤L y}. Given a partially ordered
set L, for a ∈ L let ↓ a = {x ∈ L | x ≤L a} and ↑ a =
{x ∈ L | a ≤L x}. When A ⊆ L then its lower closure is
↓ A =

⋃
a∈A ↓ a. A subset A ⊆ L is said to be lower closed

if ↓ A = A.

B. Transition systems

Definition 1: A transition system is a tuple S =
(X,X0, U,∆, Y,H) where X is a set of states, X0 ⊆ X is a
set of initial states, U is a set of inputs, ∆ ⊆ X ×U ×X is
a transition relation, Y is a set of outputs, and H : X → Y
is an injective output map.

A transition system is said to be finite if X and U are
finite. We introduce notation x′ ∈ ∆(x, u) as an alternative
representation for a transition (x, u, x′) ∈ ∆, where state x′

is called a u-successor of state x, for input u ∈ U . This
notion could be generalized toward sets in the natural way:
for A ⊆ X and W ⊆ U , ∆(A,W ) =

⋃
a∈A

⋃
u∈W ∆(a, u).

Similarly we define Pre(A,W ) = {x ∈ X | ∃u ∈
W, ∆(x, u) ⊆ A}. For the transition system S, we assume
that for all x ∈ X and for all u ∈ U , ∆(x, u) 6= ∅. This
means that for any state all the inputs are admissible.

III. MONOTONE TRANSITION SYSTEMS

A. Monotone transition systems

Let a transition system S = (X,X0, U,∆, Y,H) where
the set of outputs is equipped with a partial order ≤Y . Using
the injectivity of the output map H , a partial order ≤X can
be defined on the state space X as follows: for x1, x2 ∈ X ,
x1 ≤X x2 if and only if H(x1) ≤Y H(x2).

In the paper, we consider a class of transition systems
for which transitions (and then trajectories) preserve some
partial order on the states.

Definition 2: A transition system S = (X,X0, U,∆, Y,H)

is said to be monotone if for all x1, x2 ∈ X and for all
u1, u2 ∈ U , if x1 ≤X x2 and u1 ≤U u2, then for any x′1 ∈
∆(x1, u1), there exists x′2 ∈ ∆(x2, u2) satisfying x′1 ≤X x′2.

Now, let us give some characterizations of monotone
transition systems. We first introduce an auxiliary lemma.

Lemma 1: Let a partially ordered set X , and let subsets
A,B ⊆ X . The set A is included in lower closure of the set
B (i.e. A ⊆↓ B) if and only if for any a ∈ A, there exists
b ∈ B such that a ≤X b.

Proposition 1: For a transition system S =
(X,X0, U,∆, Y,H) the following statements are equivalent:
(i) S is a monotone transition system;

(ii) for all x1, x2 ∈ X and u1, u2 ∈ U , if x1 ≤X x2 and
u1 ≤U u2 then ∆(x1, u1) ⊆↓ ∆(x2, u2);

(iii) for all x ∈ X, u ∈ U we have: ∆(↓ x, ↓ u) ⊆↓ ∆(x, u).

B. Abstraction of a monotone control system

Let a monotone discrete-time control system Σ of the
form:

x(k + 1) = f(x(k), u(k), d(k)), x(0) ∈ X0.

where x(k) ∈ X is a state, u(k) ∈ U is a control input and
d(k) ∈ D is a disturbance input. It was shown in [15] how
to construct a sparse abstraction S related to the original
system Σ by an upper alternating simulation relation. This
relation is useful for controller refinement when dealing
with lower closed specifications. Moreover, the abstraction
S satisfies the monotonicity property given in Definition 2.
In the following, we provide an efficient synthesis algorithm
allowing to deal with monotone transition systems and lower
closed safety specifications.

IV. CONTROLLER SYNTHESIS FOR SAFETY
SPECIFICATIONS

A. Maximal safety controller

Consider a transition system S and a safety specification
XS ⊆ X (which can be easily obtained from a subset
Y S ⊆ Y of safe outputs, XS = H−1(Y S)). We consider
a synthesis problem that consists in determining a controller
that keeps the trajectories of the system inside a safe set XS .
Let us remark that if a controller keeps the trajectories of the
system S into XS , the output specification Y S = H(XS) is
satisfied by construction. The safety specification is said to
be lower closed if XS is a lower closed set (which can be
obtained from a lower closed set of outputs Y S).

Given a transition system S = (X,X0, U,∆, Y,H), a con-
troller for S is a set-valued map C : X ⇒ U . We define the
domain of the controller as dom(C) = {x ∈ X | C(x) 6= ∅}.

Definition 3: A safety controller C for the transition sys-
tem S and the safe set XS satisfies:
• dom(C) ⊆ XS ;
• ∀x ∈ dom(C) and ∀u ∈ C(x), ∆(x, u) ⊆ dom(C).
There are in general several controllers that solve the

safety problem. A suitable solution is a controller that
enables as many actions as possible. This controller C∗ is
said to be a maximal safety controller, in the sense that
for any other controller C and for all x ∈ X , we have
C(x) ⊆ C∗(x).

Definition 4: Given a transition system S and a safety
specification XS ⊆ X . A subset A ⊆ XS is said to be
a controlled invariant if for all x ∈ A there exists u ∈ U
such that ∆(x, u) ⊆ A.

It was shown in [1] that there exists a maximal controlled
invariant given by Z∗ = dom(C∗), which is the union of all
controlled invariants.

In this part, we give some characterizations of the maximal
safety controller for monotone transition systems and lower
closed safety specifications XS ⊆ X . We first introduce the
following instrumental lemma.



(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2) (2, 3)

(3, 1) (3, 2) (3, 3)

Fig. 1: Illustration of the partitioning of the input set U = {1, 2, 3}2.
The input set U is equipped with the partial order ≤ defined on R2. The
input set U is partitioned as follows: U1 = Umin = {(1, 1)}, U2 =
{(1, 2), (2, 1)}, U3 = {(1, 3), (2, 2), (3, 1)}, U4 = {(2, 3), (3, 2)}, U5 =
{(3, 3)}.

Lemma 2: Let the monotone transition system S =
(X,X0, U,∆, Y,H). Let C∗ the maximal safety controller
for the system S and the lower closed safety specification
XS ⊆ X . Let the controller C : X ⇒ U defined for x ∈ X
by: C(x) =

⋃
x′∈(↑x) C

∗(x′). We have:
(i) ↓ dom(C∗) = dom(C);

(ii) dom(C) = dom(C∗).
Proposition 2: Consider a monotone transition system

S = (X,X0, U,∆, Y,H). Let C∗ be the maximal safety
controller enforcing the lower closed safety specification
XS ⊆ X . The following properties hold:
(i) dom(C∗) is a lower closed set;

(ii) ∀x1, x2 ∈ X , if x1 ≤X x2 then C∗(x2) ⊆ C∗(x1);
(iii) ∀x ∈ X , C∗(x) is a lower closed set.

B. Control synthesis for monotone transition systems and
directed safety specifications

In this section, we propose an efficient safety algorithm
which exploits priorities on states and inputs. The synthesis
of the maximal safety controller is done in two steps: first
we use only inputs with lower priorities to compute the
maximal controlled invariant set Z∗. We then synthesize the
maximal controller by exploring different inputs and using
their priorities. In the rest of the paper, we only consider
finite monotone transition systems. Let us remind that a state
x1 ∈ X (a control u1 ∈ U ) has a higher priority than a
state x2 ∈ X (a control u2 ∈ U ) if and only if x2 ≤X x1
(u2 ≤U u1).

1) Domain of the controller: Given the partial order on
the inputs ≤U , we can introduce for U ′ ⊆ U , the operator
min(U ′) = {u ∈ U ′ | ∀u1 ∈ U ′, u ≤U u1 or (u, u1) ∈
IncU}. Using this operator the input set U can be partitioned
into finite number of sets U = ∪Ni=1Ui defined as follows:
Umin = U1 = min(U) and Ui+1 = min(U \ Ui), i ∈
{1, . . . , N − 1}, where Ui = ∪ij=1Uj . An illustration of the
input partioning technique is given in Figure 1.

For a monotone transition system S =
(X,X0, U,∆, Y,H) we define its reduced transition
system by Sr = (X,X0, U1,∆, Y,H), where U1 ⊆ U is
the set of minimal inputs.

Proposition 3: Let the transition system S =
(X,X0, U,∆, Y,H). Let C∗ be the maximal safety

B

s1

s2

s3

s4

Fig. 2: Illustration of Definition 5. A lower closed set B and its basis
Bas(B) = {s1, s2, s3, s4}.

controller for the system S and the lower closed safety
specification XS ⊆ X . Let the reduced transition
system Sr = (X,X0, U1,∆, Y,H) and C∗r the maximal
safety controller for the transition system Sr and safety
specification XS . We have dom(C∗) = dom(C∗r ).

The previous result states that to compute the maximal
controlled invariant set Z∗ = dom(C∗), it is sufficient to
use inputs with lower priorities.

In the sequel, we define the notion of a basis which is
adapted from [19]. Indeed the concept of basis serves as a
simpler representation of lower closed sets.

Definition 5: Let A be a finite partially ordered set. Let
Z ⊆ A be a lower closed set. A set B = {s1, . . . , sN} ⊆
A is said to be the basis of Z, denoted B = Bas(Z), if
Z =

⋃
i=1,...,N ↓ si and for all si, sj ∈ B, if si 6= sj then

(si, sj) ∈ IncA.
The existence and uniqueness of a finite basis of a lower

closed set follows from the fact that the relation ≤A is a
well-quasi-order [19], [20]. An illustration of the concept of
basis is given in Figure 2. In the following result, we give
a characterization of lower closed controlled invariant sets
based on the notion of basis.

Proposition 4: Let the reduced transition system Sr =
(X,X0, U1,∆, Y,H) and the lower closed safety specifica-
tion XS ⊆ X . Let Z ⊆ XS be a lower closed set. Z is a
controlled invariant for the system Sr and the safe set XS

if and only if the following property holds:

∀x ∈ Bas(Z), ∃u ∈ U1 s.t ∆(x, u) ⊆ Z (1)
We now give the main result of the paper, which states

that the maximal controlled invariant set is the maximal by
inclusion lower closed set satisfying condition (1).

Theorem 1: Let the reduced transition system Sr =
(X,X0, U1,∆, Y,H) and the lower closed safety specifica-
tion XS ⊆ X . The maximal controlled invariant set for the
system Sr and the specification XS is the maximal lower
closed Z ⊆ XS satisfying (1).

Intuitively, the previous result means that the computation
of the maximal controlled invariant for monotone transition
systems and lower safety specifications can be efficiently
done using Proposition 4. Indeed, the invariance condition
for a set Z ⊆ XS needs to be checked only on the elements



of the basis (see equation (1)), instead of all the elements of
the set Z (see Definition 4), in the case of classical safety
synthesis.

2) Computation of the maximal controlled invariant set:
In this section, we propose a lazy fixed-point algorithm to
compute the maximal controlled invariant. The algorithm is
based on condition (1) and deals only with the elements
of the basis in each iteration. To compute the maximal
controlled invariant, the inputs to Algorithm 1 are S = Sr

which represents the reduced transition system, Zex = XS

is the safety specification and Zc = ∅ (this input to the
algorithm will not be used for the computation of the
maximal controlled invariant set Z∗ but for the computation
of the maximal controller, as it will be shown in the next
section). Algorithm 1 works as follows: the for loop in line
5 iterates over all elements of the basis B. Initially, this is
the basis of the set XS . Once an element s ∈ B satisfies
condition (1) for a given control input u ∈ U1 (which is
equivalent to the condition given in line 9 since Zc = ∅),
we move to the next element of B, without exploring other
inputs. If all control inputs have been explored but none leads
to the acceptance condition, the element s is removed and
the basis B is updated (lines 14 and 16). Once all elements
in B satisfy condition (1) in line 7, the algorithm terminates
and the maximal controlled invariant set Z∗ is returned. One
can check that this maximal controlled invariant is lower
closed by construction Z∗ =↓ B. The maximality comes
from the fact that we start from the elements with the highest
priority (elements of the basis of XS) and keep removing
elements that did not satisfy condition (1) until the fixed-
point is reached.

Let us remark that the abstraction is computed on the fly
during the synthesis algorithm. Therefore, the elements with
lower priorities are only explored when necessary.

3) Maximal safety controller: In this section, we pro-
pose an approach that lazily computes the maximal safety
controller by exploiting priorities on the inputs. First we
introduce some notations: for i ∈ {1, . . . , N}, we define the
set Zi = Pre(Z∗, Ui) ∩ Z∗ = {x ∈ Z∗ | ∃u ∈ Ui, ∆(x, u) ⊆
Z∗}. Let us remark that Z1 = Z∗. Similarly, we define the
set Zi = Pre(Z∗, Ui) ∩ Z∗, where Ui =

⋃
j=i:N Uj .

Lemma 3: For any i ∈ {1, . . . , N} the set Zi defined
above is a lower closed set.

Now, similarly to the result of Proposition 4, we will
characterize the set Zi using its basis.

Proposition 5: Let the set Zi defined above. For a lower
closed set Z ⊆ Z∗, we have Z ⊆ Zi if and only if the
following property holds:

∀x ∈ Bas(Z), ∃u ∈ Ui s.t ∆(x, u) ⊆ Z∗ (2)

We have from Lemma 3 that Zi is lower closed set. Then,
from Proposition ??, Zi is the maximal set in Z∗ satisfying
condition (2). Hence, to compute the set Zi, i ∈ {2, . . . , N},
we rely on Algorithm 1, where the used inputs to the
algorithm are Si = (X,X0, Ui,∆, Y,H), Zex = Z∗ and
Zc = Z∗.

Algorithm 1: Z = InvariantSet(S,Zex, Zc)
Input: Transition system S = (X,X0, U,∆, Y,H),

explored set Zex, controllable set Zc.
Output: Invariant set Z

1 begin
2 B := Bas(Zex);
3 Bpr = ∅;
4 while Bpr 6= B do
5 for all s ∈ B do
6 Bus := ∅;
7 for all u ∈ U do
8 Uint = ∅;
9 if ∆ (s, u) ⊆ (↓ B) ∪ Zc then

10 break;
11 else
12 Uint = Uint ∪ {u};

13 if Uint = U then
14 Bus := Bus ∪ {s};

15 Bpr := B;
16 B := Bas (↓ (B) \Bus) ;

17 return ↓ B;

Remark 1: Since we start the computation from the set
Z∗, all the basis B generated by the algorithm satisfies ↓
B ⊆ Z∗. Then, the condition in line 7 of Algorithm 1 can
be written as: there exits u ∈ Ui such that ∆(x, u) ⊆ Z∗,
which is equivalent to condition (2) of Proposition ??.

We now present the key result for the efficient computation
of the maximal safety controller C∗.

Proposition 6: Let the sets Zi, i ∈ {1, . . . , N}, defined
above, the following properties holds:
(i) for all i ∈ {2, . . . , N}, Zi ⊆ Zi−1;

(ii) for all i ∈ {1, . . . , N}, Zi = Zi.
To compute the maximal safety controller, Algorithm 2

works as follows: the sets Zi, i ∈ {2, . . . , N} are computed
iteratively, starting from Z∗. At each step i ∈ {2, . . . , N},
the algorithm starts from the set Zi−1 and firstly computes
the set Zi (line 5), (Initially, the algorithm starts from the
set Z∗ = Z1 and computes the set Z2). Once this set is
computed, for all x ∈ Zi−1 \Zi the algorithm selects all the
inputs u ∈ Ui−1 satisfying ∆(x, u) ⊆ Z∗ (line 7). Hence,
the controller given by Algorithm 2 can be defined for all
x ∈ Zi−1 \ Zi by:

C(x) = {u ∈ Ui−1 | ∆(x, u) ⊆ Z∗}. (3)

and for all x ∈ dom(ZN ) by

C(x) = {u ∈ UN | ∆(x, u) ⊆ Z∗}. (4)

Remark 2: We can remark from (i) in Proposition 6 that
to compute the set Zi, i ∈ {2, . . . , N}, the explored set Zex

in Algorithm 1 can be given by Zex = Zi−1, instead of
Zex = Z∗ (see line 5 in Algorithm 2), which allows the
synthesis to be more efficient.



Algorithm 2: Maximal Safety Controller
Input: Transition system S = (X,X0, U,∆, Y,H),

Safety specification XS

Output: Controller C
1 begin
2 C(X) := ∅;
3 Z∗ := InvariantSet(S1, X

S , ∅);
4 for i = 2: N do
5 Zi := InvariantSet(Si, Zi−1, Z

∗);
6 for s ∈ Zi−1 \ Zi do
7 C(s) := {u ∈ Ui−1 | ∆ (s, u) ⊆ Z∗};

8 for s ∈ ZN do
9 C(s) := {u ∈ UN | ∆ (s, u) ⊆ Z∗};

10 return C;

We are now ready to show the completeness of the
controller given by Algorithm 2 w.r.t the maximal safety
controller C∗.

Proposition 7: Let the transition system S =
(X,X0, U,∆, Y,H) and the lower closed safety specification
XS ⊆ X . Let C∗ be the maximal safety controller for the
system S and specification XS , and let C defined as in (3)
and (4). We have that C∗(x) = C(x) for all x ∈ Z∗.

Remark 3: Let us emphasis that when the partial order
on the inputs ≤U satisfies the following property: for all
i ∈ {2, . . . , N} and for any (ui−1, ui) ∈ Ui−1 × Ui, we
have ui ≤ ui−1. The synthesis is more efficient. Indeed, for
all x ∈ Zi−1 \ Zi, we have the existence of u ∈ Ui−1 such
that ∆(x, u) ⊆ Z∗. Hence, from (iii) in Proposition 2 and
since Ui−2 ⊆↓ u, we have that Ui−2 ⊆ C∗(x). Then, at each
step i ∈ {1, . . . , N}, only the set of inputs Ui needs to be
explored, instead of Ui in the general case, which allows to
speedup the synthesis of the maximal safety controller.

V. NUMERICAL EXAMPLE

A. Model description and control objective

We consider a vehicle modeled as a point mass m moving
along a straight road. The dynamics of the vehicle is adapted
from [21] and given by:

mv̇ = α(u, v) =

{
u− f0 − f1v − f2v2 if v > 0
max(u− f0, 0) if v = 0

(5)
where v ≥ 0 represents the velocity of the vehicle, m > 0
its mass, u is the net engine torque applied to the wheels
and the term f0 + f1v + f2v

2 include the rolling resistance
and aerodynamics (f0, f1, f2 ∈ R+). In this equation, u
is the control input and satisfies u ∈ [Umin, Umax], where
Umin < 0 < Umax. Moreover, we include a lead vehicle
w ∈W (considered as a bounded disturbance) in the system
description, the dynamics of the global system is given by:{

ḋ = w − v
mv̇ = α(u, v).

(6)

TABLE I: Vehicle and safety parameters

Parameter Value Unit
M 1370 Kg
f0 51.0709 N
f1 0.3494 Ns/m
f2 0.4161 Ns2/m2

Umin −4031.9 mKg/s2

Umax 2687.9 mKg/s2

dmin 10 m
d′ 70 m

vmax 15 m/s

70 60 50 40 30 20 10

d, m

0

5

10

15

v
, 
m

/s

-4000

-3000

-2000

-1000

0

1000

2000

Fig. 3: Maximal safety controller C∗

Remark 4: Let us remark that the system can be easily
transformed to a monotone one by using the following
change of coordinates: h = −d and z = −w.

The objective is to synthesize a controller for the follower
vehicle, giving values of input u such that the velocity
remains between 0 and vmax, and the relative distance
between the leader and the follower remains larger than
dmin ≥ 0, while assuming that the velocity of the leader
w belongs to the set W = [0, vmax]. One can check that
since the constraint v ≥ 0 is directly satisfied from (5), the
safety specification is a lower closed set.

From this continuous-time system, we generate a discrete-
time model using the sampling period τ = 0.5s, while
conserving the monotonicity property of the system.

For the construction of the symbolic abstraction, we use
the same partitioning technique presented in [22] with nx
and nu as state and input discretization parameters.

B. Numerical results

In this section, we numerically illustrates the benefit of the
proposed approach. The values shown in Table I are taken
from [22]. The implementations has been done in MATLAB,
Processor Intel Core i7-8700, 3.20 Hg, RAM 16 GB.

We compute the maximal controlled invariant Z∗ using
Algorithm 1 and synthesize the maximal safety controller C∗

using Algorithm 2. Figure 3 represents the resulting maximal
safety controller C∗ using the following values of abstraction
parameters: nu = 500 for the input discretization and
nx = (300, 150) for the state-space discretization. The color
bar represent the given input set U = [Umin, Umax] where
the blue color corresponds to the minimal input Umin =



TABLE II: Runtime comparison when varying the state-space
discretization parameter

Number of states Tla (s) Tcl (s) Tcl/Tla

(61,31) 0.41s 6.84s 16.79s
(122,62) 1.04s 26.85s 25.85s

(244,124) 3.71s 107.55s 28.98s
(488,248) 14.11s 432.22s 30.64s
(976,496) 54.58s 1695.00s 31.05s

TABLE III: Runtime comparison when varying the input dis-
cretization parameter

Number of inputs Tla (s) Tcl (s) Tcl/Tla

10 0.48s 7.17s 14.8s
20 0.49s 13.87s 29.19s
40 0.64s 27.47s 43.2s
80 0.98s 54.81s 56.06s
160 1.66s 109.47s 65.85s

−4031.9 mKg/s2 and the yellow color corresponds to the
maximal input Umax = 2687.9 mKg/s2. For a given state
(d, v) of the vehicle, Figure 3 shows the maximal allowed
control input. Let us mention that following Remark 3, if
an input u ∈ U is allowed by the maximal safety controller
C∗, then all inputs satisfying u′ ≤U u are allowed by C∗.
Let us also mention that for each state, the controller has
only to save the basis of the enabled inputs, which allows to
reduce the size of the controller when implementing it in an
embedded platform.

We evaluate the performance of the proposed approach
w.r.t the classical safety synthesis using two different sce-
narios. In the first case we vary the state-space discretiza-
tion parameter nx while keeping the input discretization
parameter as a constant nu = 10. The results of run time
comparison are represented in Table II. In the second case we
fix nx = (61, 31) and vary the input discretization parameter
nu. The computational results are given in Table III. In
Tables II and III, Tcl and Tla represent the time needed
to compute the maximal safety controller C∗, in seconds.
The last column Tcl/Tla represents the ratio between the
classical and lazy synthesis approaches. Tables II and III
highlight the practical speedups that can be attained using the
lazy approach, while ensuring completeness w.r.t the classical
safety algorithm.

VI. CONCLUSION

In this paper, we have presented an efficient approach
to controller synthesis for monotone transition systems and
directed safety specifications. The synthesis of the maximal
safety controller is done in two steps: first we use only inputs
with lower priorities to compute the maximal controlled
invariant set. Once this set is computed, we use a lazy ap-
proach to efficiently explore different inputs while using their
priorities. Numerical results highlight the practical speedups
that can be attained using the proposed approach, while
ensuring completeness w.r.t the classical safety algorithm.

In future work we will develop more general algorithms
allowing to extend the approach to other types of directed

specifications, such as reachability, stability or more general
properties described by temporal logic formula.

REFERENCES

[1] P. Tabuada, Verification and control of hybrid systems: a symbolic
approach. Springer Science & Business Media, 2009.

[2] C. Belta, B. Yordanov, and E. Gol, Formal methods for discrete-time
dynamical systems. Springer, 2017.

[3] A. Girard, G. Gössler, and S. Mouelhi, “Safety controller synthesis
for incrementally stable switched systems using multiscale symbolic
models,” IEEE Transactions on Automatic Control, vol. 61, no. 6,
pp. 1537–1549, 2016.

[4] K. Hsu, R. Majumdar, K. Mallik, and A.-K. Schmuck, “Multi-layered
abstraction-based controller synthesis for continuous-time systems,”
in International Conference on Hybrid Systems: Computation and
Control, pp. 120–129, 2018.

[5] A. Weber, M. Rungger, and G. Reissig, “Optimized state space grids
for abstractions,” IEEE Transactions on Automatic Control, vol. 62,
no. 11, pp. 5816–5821, 2017.

[6] A. Saoud and A. Girard, “Optimal multirate sampling in sym-
bolic models for incrementally stable switched systems,” Automatica,
vol. 98, pp. 58–65, 2018.

[7] J. Camara, A. Girard, and G. Gössler, “Safety controller synthesis for
switched systems using multi-scale symbolic models,” in IEEE Con-
ference on Decision and Control and European Control Conference,
pp. 520–525, 2011.

[8] K. Hsu, R. Majumdar, K. Mallik, and A.-K. Schmuck, “Lazy
abstraction-based control for safety specifications,” in IEEE Confer-
ence on Decision and Control, pp. 4902–4907, 2018.

[9] O. Hussien and P. Tabuada, “Lazy controller synthesis using three-
valued abstractions for safety and reachability specifications,” in IEEE
Conference on Decision and Control, pp. 3567–3572, 2018.

[10] A. Kader, A. Saoud, and A. Girard, “Safety controller design for
incrementally stable switched systems using event-based symbolic
models,” in European Control Conference, pp. 1269–1274, 2019.

[11] A. Swikir, A. Girard, and M. Zamani, “From dissipativity theory
to compositional synthesis of symbolic models,” in Indian Control
Conference, pp. 30–35, 2018.

[12] E. S. Kim, M. Arcak, and M. Zamani, “Constructing control system
abstractions from modular components,” in International Conference
on Hybrid Systems: Computation and Control, pp. 137–146, 2018.

[13] P.-J. Meyer, A. Girard, and E. Witrant, “Safety control with perfor-
mance guarantees of cooperative systems using compositional abstrac-
tions,” in IFAC Conference on Analysis and Design of Hyrbid Systems,
pp. 317–322, 2015.

[14] A. Saoud, P. Jagtap, M. Zamani, and A. Girard, “Compositional
abstraction-based synthesis for cascade discrete-time control systems,”
in IFAC Conference on Analysis and Design of Hybrid Systems,
pp. 13–18, 2018.

[15] E. S. Kim, M. Arcak, and S. A. Seshia, “Symbolic control design for
monotone systems with directed specifications,” Automatica, vol. 83,
pp. 10–19, 2017.

[16] D. Angeli and E. D. Sontag, “Monotone control systems,” IEEE
Transactions on automatic control, vol. 48, no. 10, pp. 1684–1698,
2003.

[17] D. Zonetti, A. Saoud, A. Girard, and L. Fribourg, “A symbolic
approach to voltage stability and power sharing in time-varying DC
microgrids,” in European Control Conference, pp. 903–909, 2019.

[18] S. Sadraddini and C. Belta, “Safety control of monotone systems with
bounded uncertainties,” in IEEE Conference on Decision and Control,
pp. 4874–4879, 2016.

[19] A. Finkel and P. Schnoebelen, “Well-structured transition systems
everywhere!,” Theoretical Computer Science, vol. 256, no. 1-2, pp. 63–
92, 2001.

[20] G. Higman, “Ordering by divisibility in abstract algebras,” Proceed-
ings of the London Mathematical Society, vol. 3, no. 1, pp. 326–336,
1952.

[21] P. Ioannou and C.-C. Chien, “Autonomous intelligent cruise control,”
IEEE Transactions on Vehicular Technology, vol. 42, no. 4, pp. 657–
672, 1993.

[22] A. Saoud, A. Girard, and L. Fribourg, “Contract based design of
symbolic controllers for interconnected multiperiodic sampled-data
systems,” in IEEE Conference on Decision and Control, pp. 773–779,
2018.



APPENDIX

Proof of Proposition 1

Proof: (i) ⇐⇒ (ii): Let x1, x2 ∈ X and u1, u2 ∈ U
with x1 ≤X x2 and u1 ≤U u2. From Lemma 1, we have that
∆(x1, u1) ⊆↓ ∆(x2, u2) iff for any x′1 ∈ ∆(x1, u1), there
exists x′2 ∈ ∆(x2, u2) with x′1 ≤X x′2. Hence, (i)⇐⇒ (ii).

(ii) =⇒ (iii): Let x ∈ X , u ∈ U , x1 ∈ (↓ x) and
u1 ∈ (↓ u). We have x1 ≤X x and u1 ≤U u. Hence, from
(ii) we have that ∆(x1, u1) ⊆↓ ∆(x, u), for any x1 ∈ (↓ x)
and any u1 ∈ (↓ u). Then, ∆(↓ x, ↓ u)) ⊆↓ ∆(x, u).

(iii) =⇒ (ii): Let x1, x2 ∈ X and u1, u2 ∈ U with
x1 ≤X x2 and u1 ≤U u2. We have that x1 ∈ (↓ x2) and
u1 ∈ (↓ u2). Hence, from (iii), we have that ∆(x1, u1) ⊆
∆(↓ x2, ↓ u2) ⊆↓ ∆(x2, u2).

Proof of Lemma 2

Proof: From construction of the controller C, it follows
immediately that ↓ dom(C∗) = dom(C). Let us prove that
dom(C∗) = dom(C). Let x ∈ X , since x ∈ (↑ x) we have
that dom(C∗) ⊆ dom(C). To prove the second inclusion,
it is sufficient to show that C is a safety controller for the
transition system S and the safety specification XS . We have
that dom(C) =↓ dom(C∗) ⊆↓ XS = XS , where the first
equality comes from (i), the second inclusion comes from the
fact that C∗ is a safety controller and the last equality comes
from the lower closedness of XS . Hence, the first condition
of Definition 3 is satisfied. Now let x ∈ dom(C) and u ∈
C(x). From construction of the controller C, we have the
existence of x′ ∈ X such that x ≤X x′, x′ ∈ dom(C∗) and
u ∈ C∗(x′). Then, we have that ∆(x, u) ⊆↓ ∆(x′, u) ⊆↓
dom(C∗) = dom(C), where the first inclusion comes from
(ii) in Proposition 1 and the second inclusion comes from
the fact that C∗ is a safety controller. Then, condition (ii) in
Definition 3 is satisfied and C is safety controller. Since C∗

is the maximal controller we have that dom(C) ⊆ dom(C∗).

Proof of Proposition 2

Proof: (i) We have from (ii) in Lemma 2 that
dom(C∗) = dom(C). Then, ↓ dom(C∗) =↓ dom(C) =
dom(C∗), where the last equality comes from (i) in
Lemma 2. Hence, dom(C∗) is a lower closed set.

(ii) Let x1, x2 ∈ X with x1 ≤X x2. Let u ∈
C∗(x2). Then, ∆(x2, u) ⊆ dom(C∗). Hence, we have that
∆(x1, u) ⊆↓ ∆(x2, u) ⊆↓ dom(C∗) = dom(C∗), where
the first inclusion comes from the fact that S is a monotone
transition system and the last equality comes from (i). Hence,
by maximality of C∗, we have that u ∈ C∗(x1). Then,
C∗(x2) ⊆ C∗(x1).

(iii) Let x ∈ X , u ∈ C∗(x) and u′ ∈↓ u. We have that
∆(x, u′) ⊆↓ ∆(x, u) ⊆↓ dom(C∗) = dom(C∗), where the
first inclusion comes from the monotonicity of the transition
system S, the second inclusion comes from the fact that C∗

is a safety controller and the last equality comes from the

lower closedeness of dom(C∗). Hence, we have ∆(x, u′) ⊆
dom(C∗). Then, by maximality of C∗, u′ ∈ C∗(x).

Proof of Proposition 3

Proof: Let us define the controller Cr of the reduced
transition system Sr and the safe set XS as follows: for
x ∈ X , Cr(x) = C∗(x) ∩ U1. First let us prove that
dom(Cr) = dom(C∗). The inclusion dom(Cr) ⊆ dom(C∗)
follows immediately from the construction of the controller
Cr. Now let x ∈ dom(C∗) and let u ∈ C(x). From (iii) in
Proposition 2 we have that ↓ u ⊆ C∗(x), then there exists
u′ ∈ U1 such that u′ ∈ C∗(x). Then, u′ ∈ Cr(x). Hence
x ∈ dom(Cr) and dom(Cr) = dom(C∗). Now let us prove
that for all x ∈ X , Cr(x) = C∗r (x). The first inclusion
Cr(x) ⊆ C∗r (x) follows from maximality of the controller
C∗r . For the second inclusion, we have from maximality of
C∗ and since U1 ⊆ U that C∗r (x) ⊆ C∗(x) for all x ∈ X .
Moreover, by construction of C∗r , we have that C∗r (x) ⊆ U1

for all x ∈ X . Then, Cr(x) = C∗r (x) for all x ∈ X . Since
dom(Cr) = dom(C∗), we have that dom(C∗r ) = dom(C∗).

Proof of Proposition 4

Proof: Let Z =↓ Z, we first assume that Z is
a controlled invariant. Using the fact that Bas(Z) ⊆ Z,
condition (1) is directly satisfied. Now let us prove the second
implication. Assume that condition (1) is satisfied, and let us
prove that Z is a controlled invariant. For x ∈ Z, there exists
x′ ∈ Bas(Z) such that x ≤X x′. Since x′ ∈ Bas(Z), we have
from (1) the existence of u ∈ U1 such that ∆(x′, u) ⊆ Z.
From monotonicity of the transition system S and since
x ≤X x′, we have that ∆(x, u) ⊆↓ ∆(x′, u) ⊆↓ Z = Z.
Hence, Z is a controlled invariant.

Proof of Theorem 1

Proof: Given the transition system Sr and the lower
closed safety specification XS . We have from (i) in Propo-
sition 2 that the maximal controlled invariant for Sr and
the safe set XS , Z∗ = dom(C∗) is a lower closed set.
Hence, from Proposition 4, it follows immediately that the
maximal controlled invariant set for the system Sr and the
specification XS is the maximal lower closed set Z ⊆ XS

satisfying (1).

Proof of Lemma 3

Proof: Let i ∈ {1, . . . , N}, x ∈ Zi and x′ ≤X x.
From definition of Zi we have the existence of u ∈ Ui

such that ∆(x, u) ⊆ Z∗. Then, we have ∆(x′, u) ⊆↓
∆(x, u) ⊆↓ Z∗ = Z∗, where the first inclusion comes
from the monotonicity of the transition system S, the second
inclusion comes the construction of the set Zi and the last
inclusion comes from (i) in Proposition 2 (Z∗ = dom(C∗)
is a lower closed set). Then, Zi is a lower closed set.



Proof of Proposition 5

The proof is similar to the one of Proposition 4 and then
omitted.

Proof of Proposition 6

Proof: (i) Let i ∈ {2, . . . , N} and x ∈ Zi. Hence,
x ∈ Z∗ and the exists u ∈ Ui such that ∆(x, u) ⊆ Z∗.
Since Ui−1 ≤U Ui, we have the existence of u′ ∈ Ui−1
such that u′ ≤U u. Then, ∆(x, u′) ⊆↓ ∆(x, u) ⊆↓ Z∗ =
Z∗, where the first inclusion comes from the monotonicity
of the transition system S, the second inclusion comes the
construction of the set Zi and the last inclusion comes from
(i) in Proposition 2. Hence, x ∈ Zi−1.

(ii) For i ∈ {1, . . . , N}, the proof follows immediately
from (i) and the fact that Zi = ∪j=i:NZj .

Proof of Proposition 7

Proof: From the construction of C in (3) and (4) we
have that C(x) ⊆ C∗(x) for all x ∈ Z∗. Let Zi be defined
as above, We have from (i) in Proposition 6 that:

Z∗ = Z1∪Z2∪. . .∪ZN = (Z1\Z2)∪. . .∪(ZN−1\ZN )∪ZN ,

Let x ∈ Z∗ and u ∈ C∗(x). If x ∈ ZN , then using the fact
that UN = U , it follows from (4) that u ∈ C(x). Now if there
exists i ∈ {2, . . . , N} such that x ∈ Zi−1 \ Zi = Zi−1 \ Zi,
where the last equality comes from (ii) in Proposition 6.
Hence, we have that u /∈ Ui. Then, u ∈ Ui−1. Moreover,
C∗ is the maximal safety controller, then using the fact that
∆(x, u) ⊆ Z∗, we have from construction of the controller
C in (3) that u ∈ C(x). Then, C∗(x) = C(x) for all x ∈ Z∗.


