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Abstract

A Gaussian process regression model for estimating the creep rupture stress of single crystal nickel-based superalloys is
constructed. It is built and validated on data disclosed in patents as well as scientific and technical reports. This model is
coupled with computational thermodynamics for the prediction of microstructural features, and a model for the estimation
of density. Using this combination, the key characteristics of a large number of potential alloys are systematically
computed as a function of their composition. Materials specifications targeted towards applications as turbine blades,
which none of the alloys from the creep database follow, narrow down the search from 300 000 000 to 180 000 alloys.
A large number of these candidates are predicted as featuring greater specific properties than existing single crystal
nickel-based superalloys. The selection criteria used to isolate alloys for experimental validation are discussed, and lead
to several alloys displaying good agreement between their predicted microstructure and estimated properties.
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1. Introduction

The design of new nickel-based superalloys, while
stimulated by the need for competitive high-temperature
materials in the aerospace and power generation indus-
tries, is hindered by its complexity. The exceptional high-
temperature properties of these materials arise from the
combination of numerous alloying elements in possibly
large concentrations, meaning a gigantic number of alloys
can be enumerated. As an example of this combinatorial
complexity, consider a popular single crystal nickel-based
superalloy designed for use in the hot sections of gas tur-
bines such as CMSX-4+ [1]. This alloy contains up to 9
alloying elements whose maximal concentration can reach
10 wt.%. Varying its alloying content solely within the
boundaries of its patent generates roughly 106 alloys using
an accuracy of 0.1 wt.%!

To avoid the tedious trial-and-error design process,
methods have been proposed to design superalloys that
rely on models describing properties as a function of com-
position and processing [2–7]. For instance, the method
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of computer-coupling of phase diagrams and thermochem-
istry (CALPHAD) has notably made it possible to estimate
an alloy constitution at high-temperature equilibrium (i.e.
stable phases proportion and composition) as a function of
its nominal composition. The method has been employed
in a number of works [6–14].

Yet, with regards to alloy design, predicting consti-
tution is insufficient as it only partially prefigures of the
actual material behaviour. In the case of the nickel-based
superalloys, more precise information is needed regarding
their thermomechanical properties. Such properties relate
in non-linear ways to composition making the construction
of holistic physical models still beyond reach. Data mining-
based statistical modelling has been shown to be able to
provide these correlations between composition and prop-
erties. Tools such as artificial neural networks or Gaussian
processes can indeed quantify the influence of variations of
input variables (e.g. alloying elements) on an output (e.g.
yield stress) provided sufficient data which comprises the
boundaries of said variations has been gathered. The min-
ing of relationships encoded in existing data using these
techniques has been widely executed in the past twenty
years to model a variety of macroscopic properties as a
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function of composition with the goal of designing super-
alloys with improved performance [2, 4, 7, 12, 15–25].

Whereas, in this context, the modelling of creep de-
formation behaviour of the polycrystalline nickel-based
superalloys using data mining has already been success-
fully exploited [3, 7, 12, 22], that of the single crystal
nickel-based superalloys has received less attention until
then. Physical models have been devised but these are
generally either based or validated on a limited set of data
points thus seeing their extrapolation capabilities only loc-
ally challenged [6, 9, 26]. However, such models should
explicitly account for the dependency of creep deformation
on composition if they are to be used for compositional
optimisation. A recent significant contribution towards this
objective is found in the work of Sulzer and Reed [27]
who have yet to exploit their composition-dependent creep
merit index.

It is the purpose of this work to report both on the de-
velopment of a Gaussian process model for the prediction
of creep rupture stress and on its exploitation, together with
physicochemical models, with the aim of designing single
crystal nickel-based superalloys. This work is motivated
by the significant probability of finding superalloys with
improved properties (or combinations thereof) as the space
of all possible alloys has only been scarcely explored to
date. The paper first introduces the metallurgy of these
materials before delving into the different models used to
design new ones. The design specifications and the results
of the exploitation are then presented, and a discussion of
the most important results is proposed.

2. Background

The single crystal nickel-based superalloys are widely
used for the manufacture of blades and vanes for the hot
sections of gas turbines. Their service conditions are
harsh: they are exposed to the high temperatures of the gas
stream, with blades being subjected to significant centrifu-
gal stresses generated by large rotational speeds. Alloying
with numerous elements has proven to be effective at slow-
ing down the rate of mechanical and chemical degradation.

High temperature mechanical resistance of mainstream
single crystal nickel-based superalloys is primarily con-
ferred by a dual phase microstructure with Ni3Al-type γ′

precipitates embedded in a disordered face-centered cu-
bic matrix (γ). This allows the use of both solid solution
strengthening and precipitation hardening effects. Signific-
ant solid solution strengthening occurs when substituting
base elements in both phases with elements such as molyb-
denum, niobium, rhenium, tantalum or tungsten, which pin

the dislocations and decrease the rate of creep damaging.
The precipitation of γ′ particles further contributes to this
dislocation impairment at higher temperature because its
softening is limited compared to that of the matrix. The
resistance to creep is also enhanced when the γ′ content
is capped at around 70 mol.% [28] and when the γ and γ′

phases are coherent, i.e. the relative difference between
their lattice parameters (termed lattice misfit) is limited
[29]. This misfit is notably dependent on the partitioning
of alloying elements between the two phases.

This microstructure is controlled via heat treatments
generally involving a solution treatment followed by aging
in the γ/γ′ phase field to achieve the targeted γ′ precipit-
ates size. In this regard, the γ′ content and that of various
elements are key in ensuring that a window of solution-
ising exists below the alloy solidus and that the alloy is
thus processable.

Better mechanical resistance of blades can also be
achieved by lowering the superalloy volumetric mass dens-
ity because it factors in the calculation of centrifugal stresses.
This goes against adding heavy elements, i.e. an effective
compromise between weight and strength must be found
in addition to the aforementioned criteria.

Single crystal nickel-based superalloys can operate
either uncoated or coated. In the former case, resistance
to corrosion and oxidation is imparted most notably by
additions of aluminium and chromium which, together
with reactive elements such as hafnium, manganese and
silicon, contribute to the formation and adherence of con-
tinuous protective oxide layers at the interface between
the alloy and its environment. Most oxidation-resistant
single crystal nickel-based superalloys are in fact alumina-
formers, naturally forming a layer of Al-rich oxides. This
assumes enough “free” aluminium remains in the (γ) mat-
rix to diffuse outward, a freedom possibly contested by
the precipitation of the Al-rich γ′ phase. When the service
temperature is such that the resistance of uncoated blades
is compromised, Thermal Barrier Coatings (TBC) are ad-
ded. These barriers effectively reduce the temperature at
the surface of the blades. However, the TBC may over time
be subject to spallation; it is thus crucial the resistance to
corrosion of the superalloy itself be sufficient.

Alloying also impacts castability, i.e. the ability of
the material to be manufactured through investment cast-
ing without defect. Localised growth of equiaxed grains,
termed freckles, is one of these defects degrading creep
endurance. It is linked to high amounts of rhenium and
tungsten which uneven the density balance between the
liquid and solid phases during cooling.

Excessive alloying can be detrimental as it exacer-
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bates the risk of promoting the formation of deleterious
phases. Most notably, high contents of chromium and mo-
lybdenum favours the precipitation of the brittle Topologic-
ally Closed-Packed (TCP) phases. Large amounts of TCP
phases negate the potential solid solution strengthening
effect of these elements and lessen the overall mechanical
strength by providing preferential cracking sites.

It is apparent from these considerations that a careful
crafting of the composition and microstructure is mandat-
ory to reach an optimal combination of properties.

3. Models and design criteria

The following subsections offer insights into the mod-
els and criteria which are to provide estimates of key char-
acteristics of the single crystal nickel-based superalloys.

3.1. Creep resistance

Gaussian processes regression (also known as “kri-
ging”) is used to model the dependencies of the creep
rupture stress of superalloys on their composition.

Gaussian processes are a supervised learning method
allowing regression over an output as a function of multiple
inputs. Such model is learnt from data, i.e. it assumes a
consistent aggregation of data in the form of databases has
been conducted. At the core of Gaussian processes lies the
covariance function, which incorporates a measure of the
distance between data points in the input space, and is used
to estimate the value of an output given a new input by
interpolation. Due to the flexible nature of the covariance
function [30], Gaussian processes are able to capture non-
linear relationships in the data. Furthermore, predictions
from Gaussian processes are tied to uncertainty estimates
indicating the model confidence. The inner workings of
Gaussian processes are exposed in details in the work of
Rasmussen and Williams [31].

The use of Gaussian processes to model thermomech-
anical properties of the nickel-based polycrystalline su-
peralloys, such as the yield strength, the ultimate tensile
stress and the creep rupture stress has been known for two
decades [3, 12, 32]. The predictions of such models have
displayed good agreement with actual data from experi-
mental validations [33, 34].

In this work, a Gaussian process-based model is gen-
erated to provide estimates of creep rupture stresses of
the single crystal nickel-based superalloys as a function
of their composition, the temperature and the envisioned
time to rupture. To this end, data are gathered from the
scientific and technical literature, including more than 300

Table 1: Nature and range of variables in the creep rupture stress
database.

Input Unit Minimum Maximum

Al

wt.%

0.39 9
Co 0 17
Cr 0 16
Fe 0 5
Hf 0 2

Mo 0 13
Nb 0 4
Re 0 11.5
Ru 0 9.7
Ta 0 12.1
Ti 0 5
V 0 4
W 0 18.6

Temperature ◦C 650 1204
Time to rupture log h −0.90 4.32

Creep rupture stress log MPa 1.15 2.99

patents. The resulting database is 1963 line long and con-
tains the composition of 612 alloys as well as their creep
testing settings and results (temperature, time and stress).
The nature and boundaries of these inputs are detailed in
Table 1. Both time to rupture and creep rupture stress are
expressed in logarithmic units so that the distribution of
data points is more uniform. The model is built using the
Netlab library [35]. Compositions and properties were nor-
malised between 0 and 1. A squared exponential kernel
was employed [31], with its hyperparameters optimised
using scaled conjugate gradients based on the logarithm of
the likelihood.

Of note is the absence of heat treatments in the data-
base. Instead, all alloys are considered to have an optimal
microstructure when their creep lives are reported. Only
when identical alloys were found in different sources is
a choice made in favour of that displaying the highest
resistance. This avoids the additional burden of dealing
with incomplete reporting of heat treatment parameters
or the difficulty of modelling the heat treatment effects.
This indirect consideration is reasonable in that finding
the right heat treatments for an alloy is easier than tuning
its composition, as fewer variables are involved. Besides,
as the proposed design procedure exploits to their best
the conventional metallurgical routes, heat treating should
closely resemble that of existing single crystal nickel-based
superalloys.

Validation of the model is performed through five-fold
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cross-validation, which consists in randomly splitting the
database in five subsets of identical length, using four
subsets to train the model and the fifth to test its predictive
capabilities. The process iterates so that each of the subset
is used for validation. The whole operation is repeated ten
times over which three metrics are averaged: the Mean
Absolute Error (MAE, Equation 1), the Mean Absolute
Percentage Error (MAPE, Equation 2) and the Root Mean
Square Error (RMSE, Equation 3). These metrics are based
on the difference ei = yi − y∗i between the actual expected
value yi of the creep rupture stress and the corresponding
prediction y∗i .

MAE =
1
N

N∑
i=1

|ei| (1)

MAPE =
100
N

N∑
i=1

∣∣∣∣∣ei

yi

∣∣∣∣∣ (2)

RMSE =

√√√
1
N

N∑
i=1

e2
i (3)

with N the length of the database. While mathemat-
ically different, these metrics all provide insights into the
generalisation capability of the model, i.e. its ability to
correctly interpolate to unknown inputs which were not in
the database used for training. Without loss of generality,
the smaller their values, the better the predictive capability.

Five-fold cross-validation results in a MAE of 0.0280 log MPa
(equivalent to an error of ±19 MPa on a estimate of 300
MPa), a MAPE of 1.26 % (±22 MPa) and a RMSE of
0.0548 log MPa (±38 MPa), which highlights a reasonable
generalisation capability of the model.

Creep rupture stresses are evaluated at four temperat-
ures and times representative of expected turbine loads:
1100 h at 950 ◦C, 110 h at 1050 ◦C, 550 h at 1050 ◦C and
510 h at 1200 ◦C.

3.2. Microstructure suitability

The CALPHAD method is used to evaluate the per-
formance of the screened alloys on the basis of their con-
stitution. The Thermo-Calc software [36] coupled with
the thermodynamic databases TTNI8 [37] and TCNI9 [38]
dedicated to nickel-based alloys is employed to estimate
the equilibrium fractions of γ′ and TCP phases and the
composition of the (γ) matrix and γ′ phase, which in turn
serves in the computation of the γ/γ′ lattice misfit.

The maximum allowed content of TCP phases is de-
termined after computing the TCP content of actual alloys
(listed in Figure 6) and comparing it with values reported

Table 2: Coefficients ai
γ and ai

γ′ used for the calculation of the lattice
misfit according to Caron [39] or Kablov [40].

γ phase (Å) γ′ phase (Å)
Caron Kablov Caron Kablov

c 3.524 3.5219 3.57 3.5691

Al 0.179 0.221 0 0
Co 0.0196 0.059 −0.0042 −0.002
Cr 0.110 0.122 −0.004 0.014
Hf 1 1.559 0.7 1.339
Mo 0.478 0.412 0.208 0.097
Nb 0.7 0.595 0.46 0.275
Re 0.441 0.382 0.262 −0.504
Ru 0.3125 0.303 0.1335 0.083
Ta 0.7 0.693 0.5 0.398
Ti 0.422 0.302 0.258 0.149
W 0.444 0.435 0.194 0.151

in the literature. It is observed that a calculated content
of 6 mol.% would lead to a much lower actual TCP phases
fraction after long-time exposure at the same temperature,
which is deemed adequate for long-term stability. Alloys
featuring a calculated TCP phases content greater than
6 mol.% (whichever database is used) are thus rejected.

3.2.1. Lattice misfit
The lattice parameters of the γ and γ′ phases are com-

puted following the methodology of Caron [39] and that
of Kablov [40]:

a j = c j +
∑

i

ai
jx

i
j (4)

where c j is a constant and ai
j and xi

j are respectively
the atomic fraction and the Vegard coefficient of element i
in phase j (Table 2). The former is estimated with the help
of Thermo-Calc. The lattice misfit δ is then calculated as

δ = 2
aγ′ − aγ
aγ′ + aγ

(5)

A slightly negative misfit is said to enhance the creep
resistance [29].

3.2.2. Corrosion resistance
The resistance to corrosion of the single crystal nickel-

based superalloys is typically imparted by additions of
aluminium and chromium in quantities such that a pro-
tective layer of mixed oxides (including aluminium and
chromium sesquioxides) can form. Its growth is impeded
by possible depletion of both elements: aluminium in γ′
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Figure 1: Equilibrium chromium content in γ at 1200 ◦C as a function
of that of aluminium. Results from TTNI8 and TCNI9 are respectively
drawn as circles and triangles.

precipitates and chromium in TCP phases. Environmental
resistance can then be naively considered a direct function
of the amount of these elements that remains free to diffuse
outward, i.e. whose mobility is not mostly disabled by the
formation of Al- and Cr-rich phases in the alloy. We thus
relate corrosion resistance to the content of aluminium and
chromium in the (γ) matrix.

Alloys from the creep rupture stress database are used
to tune the minimal thresholds of aluminium and chromium
by computing their equilibrium constitution at 1200 ◦C
(Figure 1), at which the harshest rate of degradation by
corrosion is expected. Following the composition of the
(γ) matrix of CMSX-4, an alloy with satisfactory corrosion
resistance currently used in commercial gas turbines, min-
ima of 9.5 at.% Al and 7.5 at.% Cr are set. These minima
are quite restrictive: if the alloys from the database were
to be screened, 53 % (TTNI8) or 60 % (TCNI9) of them
would be rejected (Figure 1).

3.2.3. Processability
Multiple heat treatments are used to control the size

and distribution of γ′ precipitates in the single crystal
nickel-based superalloys. The success of these treatments
ultimately depends on the possibility to solutionise the γ′

phase while still in solid state, i.e. at a temperature lower
than the alloy solidus. Equilibrium calculations are em-
ployed to ensure a difference ∆S of at least 10 K between
the solidus and the solutionising temperature.

Table 3: Coefficients of the volumetric mass density model (Equation 7).

Element ai × 103

Ni −1.49
Al 61.83
Co 3.66
Cr 1.21
Hf 86.33
Mo −18.35
Nb 53.27
Re 1.60
Ru 12.64
Ta 10.81
Ti 48.58
W 4.57

3.3. Castability: freckles resistance
The susceptibility to Freckles Resistance (FR), a com-

mon casting defect, is estimated following the approach
of Konter et al. [41]. Provided the relation described in
Equation 6 is followed, the alloy is considered immune to
freckling.

1.5wHf + 0.5wMo + wTa − 0.5wTi

1.2wRe + wW
≥ 0.7 (6)

wi being the nominal content of element i in wt.%.

3.4. Volumetric mass density
The reduction of volumetric mass density (ρ) increases

the life of turbine blades by lowering the stresses induced
by centrifugal forces.

The density is modelled following the approach of Hull
[42] based on data previously gathered from the same liter-
ature search as the creep rupture stress (Equation 7). The
database contains 210 measurements on 189 alloys, from
single crystal, directionally solidified and polycrystalline
cast or wrought families.

ρ =
100∑

i
wi
ρi

+
∑

i

aiwi (7)

with ρ the alloy density in g.cm−3 provided wi is the
nominal content of element i in wt.% and ρi its density in
g.cm−3. The regression coefficients ai are given in Table 3.

The density of alloys to be designed is limited in or-
der to match that of common single crystal nickel-based
superalloys such as CMSX-4+ and CMSX-10K. Given the
model predictive error estimated by leave-one-out cross-
validation is 0.05 g.cm−3, a limit of 9.05 g.cm−3 is set;
thus no alloy with an actual density between 8.95 and
9.00 g.cm−3 should be excluded.
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Table 4: Boundaries of the explored space (wt.%).

Element Minimum Maximum

Al 4 8
Co 0 14
Cr 4 15
Hf 0 0.5
Mo 0 3
Nb 0 3
Re 0 6
Ru 0 2
Ta 5 15
Ti 0 3
W 0 10
C 0.02

4. Results

This section exposes both the methodology and results
of the models exploitation.

4.1. Search specifications
A systematic grid-search in the space defined in Table 4

is conducted. Each element is varied by steps of 1 wt.%
with the exception of hafnium (0.5 wt.%). Nickel remains
the balance element of every alloy. A 200 ppm carbon con-
tent is imposed to take into account its effect as a potential
trace. The resulting search space contains about 293 mil-
lion alloys (combinations). The explored area fits within
the space covered in the CRS database, and the boundaries
of alloying elements place the search space in the most
densely populated area of the database.

The systematic screening allows for a more complete
mapping of the compositional space than advanced meth-
ods such as genetic algorithms [2, 11, 32] or sequential
quadratic programming [6] which by nature only partially
sample it and hence do not provide an overall view of it.
It also guarantees to find the optimal compositions in said
space. Besides, the number of combinations in the present
problem is such that the whole operation takes a reasonable
amount of time.

The sequence of calculations is represented on Figure 2.
Compared to Gaussian processes or empirical models, equi-
librium calculations are time-consuming, taking up to 200
ms. The number of equilibria to compute is thus limited by
pruning as much alloys from the search space as possible
using the cheapest models first. The creep resistance is
first evaluated using the Gaussian process-based model.
Creep Rupture Stresses (CRS) are computed at four dif-
ferent temperatures and times: 950 ◦C / 1100 h, 1050 ◦C

/ 110 h, 1050 ◦C / 550 h and 1200 ◦C / 510 h. During the
search, the alloys are judged based on the optimistic pre-
dictions, i.e. CRS nominal predictions augmented by one
standard deviation (termed “augmented CRS” thereafter).
That way, a larger number of alloys are kept than if the
selection was done based on nominal predictions. This
gives a measure of severity of the thresholds, and allows
for a later fine-tuning of their value to study compromises
required to select candidates with balanced properties. For
every temperature-time couple, a threshold is set on this
augmented CRS, accounting for specific applications of
turbine blades: 300, 200, 150 and 55 MPa respectively. In
total, 69 millions of the 293 million initial alloys pass this
step.

The density is then computed, with 44 million al-
loys having a predicted density less than or equal to 9.05
g.cm−3.

A first thermodynamic equilibrium calculation at 900
◦C is done for every remaining alloys. Alloys featuring any
phases besides γ, γ′, carbides and TCP phases, or a TCP
phases content exceeding 6 mol.%, are rejected. These cal-
culations use the single equilibrium mode of Thermo-Calc,
and result in about 40 million alloys being rejected, leaving
approximately four million alloys for further evaluation.

The freckles resistance criterion disqualifies a further
500 000 alloys. The remaining alloys are screened for their
corrosion resistance at 1200 ◦C (based on both Al and Cr
content in their matrix) and then for their processability.
To this end, equilibria are computed between 1300 ◦C and
the solidus by steps of 10 K, with alloys still featuring γ′

10 K below the solidus being rejected.
At every temperature, the lattice misfits according to

Caron and Kablov are calculated. In fact, no selection is ne-
cessary on their basis since their values are systematically
below nought, whichever model is used.

The calculations use the TC Matlab Toolbox and are
performed in parallel on all cores of a dual Xeon E5620 HP
Z800 workstation. The whole exploration lasted 50 days.
Both the TTNI8 and TCNI9 thermodynamic databases are
used concurrently for all equilibrium computations.

4.2. Results

A total of 182 772 alloys out of 293 millions are found
that follow the specifications laid in the previous section.
These are termed “candidates” in the following discussion.
According to predictions, these candidates should feature
limited densities, good creep endurance, a dual phase γ/γ′

microstructure with a negative lattice misfit, a limited TCP
phases content, a good resistance to corrosion, a low sus-
ceptibility to freckling during casting and a window of
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Figure 2: Sequence of calculation steps. Each box represents a calcula-
tion (see text for details). The approximate time taken to perform each
calculation is associated with their respective box, with the number of
alloys that pass the previous criterion indicated between each step.
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Figure 3: Number of families (filled bars) and corresponding number
of alloys (crosshatched bars) classified according to the number of
constitutive alloying elements.

solutionising of sufficient width.
These candidates belong to 222 alloy families (i.e.

groups of alloys sharing identical alloying elements) of
three to ten elements (Figure 3), which represent 11 %
of the families that could be enumerated in the search
space. Most alloys (81 %) possess seven to nine alloying
elements.

Most used for alloying are aluminium, chromium and
tantalum whose lower bounds are non-null (Figure 4). If
one only considers the alloys with Al, Cr and Ta contents
greater than their respective lower bounds, the first two
elements remains the most used while significant additions
of tantalum are only made in half the candidates. This be-
haviour is expected: Al is essential for the formation of
γ′ precipitates and higher Cr contents are mandatory to
achieve the required content of this element in the γ matrix.
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Figure 4: Number of families (filled bars) and corresponding number of
alloys (crosshatched and dotted bars) containing the alloying element
indicated on the abscissa. The dotted bar does not take into account the
non-null lower bound of tantalum (see text for details).

Cobalt, tungsten, rhenium and molybdenum are present in
at least 74 % of candidates. This contrasts with niobium
and titanium whose representation in term of number of
alloys is low despite their presence in a relatively high
number of families and their ability to contribute to the
formation of strengthening precipitates.

Whereas the search was conducted using augmented
CRS predictions, the following sections make use of the
“lowered CRS”. The estimated CRS are lowered by one
predictive standard deviation to ensure the robustness of
the design procedure (i.e. minimise the risk of an alloy
displaying lower than predicted properties). The distribu-
tion of predicted properties plotted on the side and bottom
graphs of Figure 5 shows that the ranges of the lowered
creep rupture stresses are large, spanning from tens to hun-
dreds of megapascals, and that the density of candidates
mostly lies between 8.4 and 8.7 g.cm−3.

4.3. Comparison with existing alloys

It is important to note that, among the alloys from the
creep rupture stress database (the “competitors”), none
follows the microstructural specifications forced upon se-
lected candidates, so that any direct comparison would be
biased in favour of the competitors. Nevertheless, such a
comparison is here attempted to illustrate the interest of
the present alloy design strategy since, as will be shown,
many candidates actually possess higher specific properties
than competitors. In this aim, both populations are plotted
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Figure 5: Lowered creep rupture stresses of candidates, competitors
(pink dots) and candidates later selected (cyan squares) at 950, 1050
and 1200 ◦C as a function of their density. On the right side and bottom,
the distribution of data points is given along the respective vertical and
horizontal axis. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

on Figure 5 as a function of their predicted density and
predicted lowered creep rupture stresses. All plots share
the same abscissa. Since the existing alloys were used to
train the model, their predicted properties are close to their
actual values.

As individual marks would make any plot difficult to in-
terpret, the 182 772 candidates are regrouped in hexagons
whose colour depends on the number of candidates lying
within their boundaries (see left colour bars). Competitors
are symbolised by pink dots. For each graph, the distri-
bution of data points on the vertical axis (lowered creep
rupture stresses) is given on the right hand side of the figure
for the candidates. The same representation is available
at the bottom of the figure, where the distribution of data
points is given for the volumetric mass density. On each of
the distribution plots, a black line symbolises the threshold
from the search specifications (cf. subsection 4.1). It is
interesting to note that, with the exception of the 1050C /

110h creep conditions, there are candidates whose lowered
resistances surpass the thresholds that were specified for
augmented CRS during screening.

The range of lowered CRS for candidates and that
of competitors largely overlap. However, subtracting one
standard deviation from nominal CRS predictions reduces
the CRS of candidates more than that of competitors: the
predictive error is indeed smaller for the latter, which were
used to train the models. This means there is a possibility
of finding candidates with higher nominal CRS compared
to competitors.

The population of candidates in the low-to-intermedi-
ate densities domain (between 8.0 and 8.5g/cm3) is sig-
nificantly larger than that of competitors. The fact that,
whatever the investigated temperatures and creep rupture
times, candidates exhibit the highest lowered CRS in this
domain is an achievement: since this domain is of particu-
lar interest for gas turbines, such alloys can be regarded as
possessing optimal combinations of properties. This shift
towards alloys displaying optimal sets of characteristics
hints at the successful exploration of the design space.

A small number of competitors display higher lowered
CRS at densities lower than 8g/cm3. These are however
incomparable because none of them fulfills the relatively
severe microstructural constraints enforced on candidates.
Enforcing some of these specifications goes against the
improvement of properties, but such limitations are not
forced upon the competitors. As a matter of fact, none of
them follow the combination of all specifications of section
3. This should make it more difficult to design new alloys
respecting such constraints while possessing better prop-
erties than competitors. It is thus quite remarkable to find
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candidates with similar or even higher predicted properties
than competitors. It highlights that possibilities remain to
improve the composition and microstructure of existing
superalloys.

4.4. Selection of alloys for fabrication

Several alloys are selected in order to validate the
design methodology. Suboptimal candidates are first ruled
out: only alloys which are Pareto-optimal in terms of volu-
metric mass density and creep rupture stresses at all tem-
perature are kept. By virtue of Pareto-optimality, no other
alloy is stronger for a given density or lighter for a given
resistance. Of the 182 772 candidates, 324 remain.

Fifteen candidates are then hand-picked according to
the following criteria, linked to specifications in gas tur-
bine design: (i) their calculated γ′ content at 950 ◦C is
between 60 and 80 mol.% and (ii) the ratio between their
predicted creep rupture stresslowered CRS at 1200 ◦C and
their density is greater than 7 MPa.cm3.g−1.

The selection rely on predictions from both thermody-
namics (for physical criteria) and Gaussian process regres-
sion (statistical) so as to ensure the consistency between
the estimated microstructure and the estimated resistance
to creep. This is to avoid the pitfall of selecting alloys
with unrealistic microstructures when relying solely on a
statistical model [22].

It was observed that CALPHAD predictions of TCP
content using TTNI8 and TCNI9 were not equivalent, with
difference ranging from 1mol.% to 40mol.%. These two
computational thermodynamics databases mainly rely on
the fitting of experimental data (as most CALPHAD data-
bases do). It is thus not surprising to observe differences
between their predictions for identical compositions. The
selection process required an agreement between both (for
all quantities computed using CALPHAD); having two
databases with corroborating results minimises the risk of
inadequate microstructure in the cast candidates.

The location of these fifteen candidates in comparison
to competitors is shown on Figure 5 as cyan squares. They
mostly do not overlap with competitors in these spaces of
density and lowered creep resistance or are at the edges of
their areas.

The major characteristics of one of the chosen candid-
ates are graphically summarised on Figure 6. They are
compared to the properties of some widely-used first- to
fourth-generation single crystal nickel-based superalloys.
For comparison purposes, the properties of the latter are
computed using the models exposed in this paper.

The selected alloy displays the highest predicted creep
rupture stresslowered CRS at 1200 ◦C while those at 950

Volumetric mass
density (g.cm−3) 8.3 8.4 8.5 8.6 8.7 8.8 8.9

Lowered creep rupture stress
after 1100 h at 950 ◦C (MPa) 150 175 200 225 250

Lowered creep rupture stress
after 110 h at 1050 ◦C (MPa) 150 160 170 180 190 200 210

Lowered creep rupture stress
after 550 h at 1050 ◦C (MPa) 120 130 140 150 160

Lowered creep rupture stress
after 510 h at 1200 ◦C (MPa) 40 45 50 55 60 65 70

Solidus – Solvus γ′ (◦C)
10 20 30 40 50

Aluminium content
in (γ) at 1200 ◦C (at.%) 10 10.5 11 11.5 12 12.5

Chromium content
in (γ) at 1200 ◦C (at.%) 2 4 6 8 10

γ′ contentat 1200 ◦C
(TCNI9, mol.%) 20 30 40 50

Solvus γ′ (TCNI9, ◦C)
1,280 1,300 1,320 1,340 1,360

AM1

PWA1484

CMSX-4

CMSX-4+

CMSX-10K

René N6

TMS-138

Selected alloy

Figure 6: Comparison of the properties of the selected alloy (red disc)
with those of popular alternatives.

and 1050 ◦C remains excellent compared to the competi-
tion. This is however achieved at a much lower density: as
much as 7 % is gained on CMSX-4+ and CMSX-10K, 5 %
on CMSX-4 and 3 % on AM1. Its resistance to oxidation
and corrosion should be better thanks to greater content
of aluminium and chromium in its (γ) matrix, while its
processability should be in-line with that of CMSX-4+ and
CMSX-10K.

The experimental characterisation of the selected al-
loys is on-going.

5. Conclusion

The combination of data mining models and computa-
tional thermodynamics brought to light the existence, in
the large uncharted space of all superalloys, of a margin of
improvement of the single crystal nickel-based superalloys.
The search formed the basis of the isolation of thousands
of superalloys which resulted in a 99.9999 % reduction of
the space of possibilities. It led to the design of optim-
ised alloys of higher predicted specific creep resistance
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than current competitors. This is all the more remarkable
that the search specifications included harsh microstruc-
tural constraints, which once more highlights the potential
of such screening method to guide alloy design towards
desirable compositional regions.

6. Data availability

The processed data required to reproduce these find-
ings cannot be shared at this time due to legal or ethical
reasons.
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