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FUNCTIONAL INEQUALITIES FOR TWO-LEVEL
CONCENTRATION

FRANCK BARTHE AND MICHAŁ STRZELECKI

Abstract. Probability measures satisfying a Poincaré inequality are known
to enjoy a dimension free concentration inequality with exponential rate. A
celebrated result of Bobkov and Ledoux shows that a Poincaré inequality auto-
matically implies a modified logarithmic Sobolev inequality. As a consequence
the Poincaré inequality ensures a stronger dimension free concentration prop-
erty, known as two-level concentration. We show that a similar phenomenon
occurs for the Latała–Oleszkiewicz inequalities, which were devised to uncover
dimension free concentration with rate between exponential and Gaussian.
Motivated by the search for counter-examples to related questions, we also
develop analytic techniques to study functional inequalities for probability
measures on the line with wild potentials.

1. Introduction

This article is a contribution to the functional approach to concentration inequali-
ties, see, e.g., [18]. We work in the setting of Euclidean spaces

(
Rd, 〈·, ·〉, |·|

)
, although

most of the results extend to more general settings as Riemannian manifolds.
First we recall the main functional inequalities which allow to establish concen-

tration properties. A probability measure µ on Rd satisfies a logarithmic Sobolev
inequality if there is a constant CLS < ∞ such that for all smooth functions
f : Rd → R,

(1.1) Entµ(f2) ≤ CLS
∫
Rd
|∇f |2dµ,

where Entµ(g) =
∫
g log g dµ−

(∫
g dµ

)
log
(∫
g dµ

)
is the entropy of a nonnegative

function. It is convenient to denote by CLS(µ) the smallest possible constant CLS
in (1.1). Classically the inequality tensorizes, meaning CLS(µ⊗n) = CLS(µ) for all
n, and the standard Gaussian measure satisfies a logarithmic Sobolev inequality.
Conversely, measures with a log-Sobolev inequality enjoy a dimension-free concen-
tration inequality with Gaussian rate: for all n ≥ 1 and for all measurable A ⊂ Rnd
with µ⊗n(A) ≥ 1

2 , it holds for all t > 0

µ⊗n
(
A+ tB2

)
≥ 1− e−K

t2

CLS ,

where K is a numerical constant and B2 = Bnd2 denotes the Euclidean unit ball (of
Rnd). This concentration property can also be formulated in terms of deviations of
functions, as we will mention later.

The other main property in the field is the Poincaré inequality. A probability
measure µ on Rd enjoys a Poincaré inequality if there exists a constant CP < ∞
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such that for all smooth f : Rd → R,

(1.2) Varµ(f) ≤ CP
∫
Rd
|∇f |2dµ

where Varµ(f) =
∫
f2dµ−

(∫
f dµ

)
is the variance of f with respect to µ. Again

CP (µ) denotes the minimal constant for which the inequality holds. The Poincaré
inequality tensorizes (CP (µ⊗n) = CP (µ)) and ensures dimension-free concentration
properties with exponential rate: for all n and all A ⊂ Rnd with µ⊗n(A) ≥ 1

2 , and
for all t > 0,

(1.3) µ⊗n
(
A+ tB2

)
≥ 1− e

−K t√
CP ,

where K is a numerical constant. The symmetric exponential distribution dν(t) =
e−|t|dt/2 on R satisfies a Poincaré inequality, but not the log-Sobolev inequality. In
[22], Talagrand proved a stronger concentration property than the above one: if
ν⊗n(A) ≥ 1

2 then for all t > 0,

(1.4) ν⊗n
(
A+
√
tB2 + tB1

)
≥ 1− e−t/C ,

for some universal constant C, where Bp = Bnp = {x ∈ Rn;
∑n
i=1 |xi|p ≤ 1}.

Talagrand’s two-scale concentration inequality (1.4) is doubly sharp: for A =
(−∞, 0]× Rn−1 it captures the exponential behaviour of coordinates marginals of
ν⊗n, while for A = {x;

∑
i xi ≤ 0} using that Bn1 ⊂ {x ∈ Rn;

∑
i xi ≤ 1} and

Bn2 ⊂ {x ∈ Rn;
∑
i xi ≤

√
n}, one gets

ν⊗n
({

x ∈ Rn;

∑n
i=1 xi√
n

≤
√
t+

t√
n

})
≥ 1− e−t/C ,

which is asymptotically of the right order in t when n→∞, according to the Central
Limit Theorem.

Talagrand’s two-scale concentration phenomenon was incorporated in the func-
tional approach by Bobkov and Ledoux: they introduced a modified log-Sobolev
inequalities which implies concentration of the type (1.4). More importantly, they
showed that it is implied by the Poincaré inequality (which means that the concen-
tration consequences of that inequalities are stronger than (1.3)). More precisely,

Theorem 1.1 (Bobkov–Ledoux [8]). Let µ be a probability measure on Rd, which
satisfies a Poincaré inequality with constant CP . Then for any c ∈ (0, C

−1/2
P ), there

exists K(c, CP ) <∞ such that for all smooth f : Rd → (0,∞) such that pointwise∣∣∣∇ff ∣∣∣ ≤ c,
Entµ(f2) ≤ K(c, CP )

∫
Rd
|∇f |2dµ.

The Central Limit Theorem and an argument of Talagrand [22] roughly imply
that if dimension-free concentration in Euclidean spaces occurs, then the rate of
concentration cannot be faster that Gaussian, and the measure should be exponen-
tially integrable. In this sense, Poincaré and log-Sobolev inequalities describe the
extreme dimension-free properties. The functional approach to concentration with
intermediate rate (between exponential and Gaussian) was developed by Latała
and Oleszkiewicz [17]. We say that a probability measure µ on Rd satisfies the
Latała–Oleszkiewicz inequality with parameter r ∈ [1, 2], if there exists a constant
CLO(r) <∞ such that for every smooth f : Rd → R one has

(1.5) sup
θ∈(1,2)

∫
Rd f

2dµ−
(∫

Rd |f |
θdµ
)2/θ

(2− θ)2(1−1/r)
≤ CLO(r)

∫
Rd
|∇f |2dµ.
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Let us stress here that most of the information is encoded in the speed at which
(2 − θ)2(1−1/r) vanishes as θ → 2− (by omitting the supremum on the left-hand
side of (1.5) and only considering a fixed θ ∈ (1, 2) one gets a significantly weaker
inequality). We sometimes omit the dependence in r in the notation when there
is no ambiguity on the value of r. For r = 1 the inequality is equivalent to
Poincaré inequality. For r = 2 and the Gaussian measure, such inequalities were
first considered by Beckner [7]. Moreover, up to the constants, the inequality for
r = 2 is equivalent to the log-Sobolev inequality (note in particular that the limit as
θ → 2− of the ratio on the left-hand side is the entropy). Latała and Oleszkiewicz
proved that the above functional inequality tensorizes and implies dimension-free
concentration with rate exp(−tr): under (1.5), if µ⊗n(A) ≥ 1

2 then for t > 0,

µ⊗n(A+ tB2) ≥ 1− e−K(t/
√
CLO(r))

r

.

(their proof yields K = 1/3; see also [25] and Section 6 of [3] for an extension to a
more general setting). By µr we denote the probability measure on the real line
with density

dµr(t) =
e−|t|

r

dt

2Γ(1 + 1/r)
, t ∈ R.

For r ∈ (1, 2), Latała and Oleszkiewicz [17] showed that µr satisfies the inequal-
ity (1.5) with a uniformly bounded constant (in this case d = 1). For these measures,
one obtains a dimension free concentration inequality with a rate corresponding to
the tails.

Another approach was suggested by Gentil, Guillin, and Miclo [13], which we
present now. For r ∈ (1, 2], we say that a probability measure µ on Rd satisfies
the modified log-Sobolev inequality with parameter r if there exists a constant
CmLS(r) <∞ such that for every smooth function f : Rd → (0,∞) one has

(1.6) Entµ(f2) ≤ CmLS(r)

∫
Rd
Hr′

( |∇f |
f

)
f2dµ,

where Hr′(t) := max{t2, |t|q} for t ∈ R and r′ ≥ 2 is the dual exponent of r, defined
by 1

r + 1
r′ = 1. This is a natural extension of the modified log-Sobolev inequality

of Bobkov and Ledoux, see Theorem 1.1, which appears as the limit case r = 1.
Indeed, when r → 1+, r′ →∞ and

lim
r′→∞

Hr′(t/c) =

{
t2/c2 if |t| ≤ c,
∞ if |t| > c.

The modified log-Sobolev inequality tensorizes as follows: if µ satisfies (1.6), then
for any positive integer n and every smooth function f : Rdn → (0,∞) one has

Entµ⊗n(f2) ≤ CmLS(r)

∫
Rdn

n∑
i=1

Hr′

( |∇if |
f

)
f2dµ⊗n,

where ∇if denotes the partial gradient with respect to the i-th d-tuple of coordinates
of Rdn. It is proved in [13] that for each r ∈ (1, 2) the measure µr satisfies a
modified log-Sobolev inequality (1.6) with parameter r. This allows to recover a
two-scale concentration inequality of Talagrand [23], extending (1.4): for r ∈ (1, 2),
if µ⊗nr (A) ≥ 1

2 , then

µ⊗nr
(
A+
√
tB2 + t

1
rBr

)
≥ 1− e−t/Cr .

Remark 1.2. Alternatively, the concentration property can be formulated on func-
tions. The Latała–Oleszkiewicz inequality (1.5) implies that for any integer n ≥ 1
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and every 1-Lipschitz function f : Rdn → R, one has

(1.7) µ⊗n
(∣∣f − ∫

Rdn
f dµ⊗n

∣∣ ≥ t√CLO(r)

)
≤ 2 exp(−K min{t2, tr});

the modified log-Sobolev inequality (1.6) implies via a modification of Herbst’s
argument that for any f : Rdn → R,

µ⊗n
(∣∣f − ∫

Rdn
fdµ⊗n

∣∣ ≥ t)
≤ 2 exp

(
−K min

{ t2

CmLS sup |∇f(x)|2
,

tr

Cr−1
mLS sup ‖(|∇if(x)|)ni=1‖rr′

})(1.8)

Here ‖ · ‖p denotes the `p-norm of a vector in Rn and the suprema are taken
over all x ∈ Rdn. Inequality (1.8) is—up to constants—better than the inequal-
ity (1.7): tr is divided by a smaller number, i.e., supx∈Rdn |(|∇if(x)|)ni=1|rr′ instead
of supx∈Rdn |∇f(x)|r.

In view of Theorem 1.1, it is natural to conjecture, that similarly the Latała–
Oleszkiewicz inequality implies the modified log-Sobolev inequality (and therefore
improved two-level concentration), cf. Remark 21 in [6].

2. Main result and organization of the article

We are ready to state our main result. Let us emphasize that it is not restricted
to measures on the real line and that the dimension d does not enter into the
dependence of constants.

Theorem 2.1. Let r ∈ (1, 2). Let µ be a probability measure on Rd which satisfies
the Latała–Oleszkiewicz inequality (1.5) with parameter r and with constant CLO(r).
Then µ satisfies the modified log-Sobolev inequality (1.6) with parameter r and a
constant depending only on CLO(r) and r.

For x = (x1, . . . , xn) ∈ (Rd)n and p ∈ (1,∞) denote

‖x‖p,2 :=
( n∑
i=1

|xi|p
)1/p

(here | · | stands for the `2 norm on Rd; in the notation we suppress the roles of d
and n, but they will always be clear from the context).1

We immediately obtain the following corollary, which improves upon inequal-
ity (1.7), as explained during the discussion of Inequality (1.8).

Corollary 2.2. Let r ∈ (1, 2). Let µ be a probability measure on Rd which satisfies
the Latała–Oleszkiewicz inequality (1.5) with parameter r and with constant CLO.
Then there exists a constant K > 0, depending only on CLO and r, such that for
any positive integer n, any smooth f : Rdn → R, and all t > 0,

µ⊗n
(∣∣f − ∫

Rdn
fdµ⊗n

∣∣ ≥ t)
≤ 2 exp

(
−K min

{ t2

supx∈Rdn |∇f(x)|2
,

tr

supx∈(Rd)n ‖∇f(x)‖rr′,2

})
One can take K = 3

8 min{1/C, 1/Cr−1}, where C = C(CLO, r) is the constant in
the modified log-Sobolev inequality of parameter r provided by Theorem 2.1.

1While ‖ · ‖`p(`2) would be perhaps more self-explanatory (and would not have misleading
associations with Lorentz spaces), we favor this more compact notation.
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Using standard smoothing arguments one can also obtain a result for not neces-
sarily smooth functions, expressed in terms of their Lipschitz constants.

Corollary 2.3. Let r ∈ (1, 2). Let µ be a probability measure on Rd which satisfies
the Latała–Oleszkiewicz inequality (1.5) with parameter r and constant CLO. Then
there exists a constant K > 0, depending only on CLO and r, such that for any
positive integer n the following holds: if f : Rdn → R satisfies

|f(x)− f(y)| ≤ L2|x− y|,
|f(x)− f(y)| ≤ Lr,2‖x− y‖r,2,

for all x, y ∈ (Rd)n, then for all t > 0

µ⊗n
(∣∣f − ∫

Rdn
fdµ⊗n

∣∣ ≥ t) ≤ 2 exp
(
−K min

{ t2
L2

2

,
tr

Lrr,2

})
.

One can take K as in Corollary 2.2.

One can also express concentration in terms of enlargements of sets. Below Bdn2

and Bdnr stand for the unit balls in the `2 and `r-norms on Rdn, respectively. Also,
let

Bn,dr,2 :=
{

(x1, . . . , xn) ∈ (Rd)n :
( n∑
i=1

|xi|r
)1/r ≤ 1

}
be the unit ball in the norm ‖ · ‖r,2. Observe that for r ∈ (1, 2),

d1/2−1/rBn,dr,2 ⊂ Bdnr ⊂ B
n,d
r,2 ⊂ Bdn2 ⊂ n1/r−1/2Bn,dr,2 .

Corollary 2.4. Let µ be a probability measure on Rd which satisfies the Latała–
Oleszkiewicz inequality (1.5) with parameter r and constant CLO. Then there exists
a constant K̃ > 0, depending only on CLO and r, such that for any positive integer
n and any set A ⊂ Rdn with µ⊗n(A) ≥ 1/2,

µ⊗n
(
A+

{
(x1, . . . , xn) ∈ (Rd)n :

n∑
i=1

min{|xi|2, |xi|r} ≤ t
})
≥ 1− e−K̃t.

In particular,

(2.1) µ⊗n
(
A+
√
tBdn2 + t1/rBn,dr,2

)
≥ 1− e−K̃t.

One can take K̃ = K/16, where K is taken from Corollary 2.2.

This corollary should be compared with the results of Gozlan [14]. He proved that
if a probability measure µ on Rd satisfies the Latała–Oleszkiewicz inequality, then it
satisfies a Poincaré type inequality involving a non-standard length the gradient (see
Corollary 5.17 in [14]), which in turn implies a slightly different type of two-level
concentration (see Proposition 2.4 and Proposition 1.2 in [14]). However, unlike in
the above two corollaries, the constants which appear in his formulations do depend
on the dimension d of the underlying space (even though they do not depend on n).
Namely, if we denote xi = (x1

i , . . . , x
d
i ) ∈ Rd for i = 1, . . . , n, then [14] shows the

existence of a constant K > 0 (depending only on CLO and r) such that for any
positive integer n and any set A ⊂ Rdn with µ⊗n(A) ≥ 1/2,

µ⊗n
(
A+

{
(x1, . . . , xn) ∈ (Rd)n :

n∑
i=1

d∑
j=1

min
{∣∣∣xji

d

∣∣∣2, ∣∣∣xji
d

∣∣∣r} ≤ t})
≥ 1− e−Kt/d
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(the d in the denominator on the left-hand side comes from Corollary 5.17 of [14]
and the d on the right-hand side—from Proposition 2.4 therein). In particular, this
implies

µ⊗n
(
A+ d3/2

√
tBdn2 + d1+1/rt1/rBdnr

)
≥ 1− e−Kt.

In terms of the dependence on d this is weaker than (2.1), since

Bn,dr,2 ⊂ d1/r−1/2Bdnr ⊂ d1+1/rBdnr ,

with strict inclusions when d ≥ 2.

The organization of the rest of the article is the following. In Section 3 we
introduce two more functional inequalities. They will serve as intermediate steps
between the Latała-Oleszkiewicz and the modified log-Sobolev inequalities. In
Section 4 we prove the main result and Corollaries 2.2 and 2.4. The rest of the
paper deals with measures on the real line. One motivation is to make progress
on a question that we do not fully settle: our main theorem shows an implication
between two properties; are they actually equivalent? In Section 5, we recall the
known criteria. In Section 6 we consider the weighted log-Sobolev inequalities used
by [13] in order to derive (1.6). We show that the two properties are not equivalent.
Workable criteria are available for measures on R with strictly increasing potential
close to ∞. In the final section, we develop an elementary approach to deal with
potential with vanishing derivatives or even decreasing parts. We illustrate this
method on the functional inequalities of interest.

3. Preliminaries: a few more inequalities

We start with the following observation.

Lemma 3.1. Suppose that a probability measure µ on Rd satisfies the Latała–
Oleszkiewicz inequality (1.5) with constant CLO. Then it satisfies the Poincaré
inequality (1.2) with constant CP = CLO.

Proof. By taking θ → 1+ in (1.5) we see that (1.2) holds for all positive smooth
functions (with constant CLO). Since the variance is translation invariant, we
conclude that (1.2) holds for all smooth functions bounded from below. The general
case follows by approximation. �

Remark 3.2. Alternatively, one can deduce the Poincaré inequality from the fact
that Inequality (1.5) implies dimension-free concentration and the results of [16].

For r ∈ (1, 2) denote

Fr(t) = log2/r′(1 + t)− log2/r′(2), t ≥ 0.

We say that a probability measure µ on Rd satisfies an Fr-Sobolev inequality if there
exists C such that for every smooth g : Rd → R,

(3.1)
∫
Rd
g2Fr

( g2∫
Rd g

2dµ

)
dµ ≤ C

∫
Rd
|∇g|2dµ.

This inequality is tight, i.e., we have equality for constant functions (if f is constant
and equal to zero on its support, then the expression 0/0 should be interpreted as
0 here and in (3.3) below). We say that µ on Rd satisfies a defective Fr-Sobolev
inequality if there exists B and C such that for every smooth g : Rd → R,

(3.2)
∫
Rd
g2Fr

( g2∫
Rd g

2dµ

)
dµ ≤ B

∫
Rd
g2dµ+ C

∫
Rd
|∇g|2dµ.

In [3] Barthe, Cattiaux, and Roberto provided capacity criteria for, among others,
the Latała–Oleszkiewicz and Fr-Sobolev inequalities. We refer to Section 5 of [3]
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for a thorough overview of the topic, and in particular to the diagram on page 1041,
which we use as a road map. The following theorem is a direct corollary of the
results contained therein (and also in Wang’s independent paper [25]).

Theorem 3.3. Let r ∈ (1, 2), and let µ be an absolutely continuous probability
measure µ on Rd. Assume that µ satisfies the Latała–Oleszkiewicz inequality (1.5)
with parameter r ∈ (1, 2) and constant CLO. Then µ satisfies the (tight) Fr-Sobolev
inequality (3.1) with a constant C ≤ 1152CLO.

Proof. Denote T (s) := s2(1−1/r). Recall the following definition of capacity: for
Borel sets A ⊂ Ω ⊂ Rd, define

Capµ(A,Ω) := inf
{∫

Rd
|∇f |2dµ : f|A ≥ 1 and f|Ωc = 0

}
(the infimum is taken over all locally Lipschitz functions; the equality follows from
an easy truncation), and

Capµ(A) := inf
{

Capµ(A,Ω) : A ⊂ Ω and µ(Ω) ≤ 1/2
}
.

Theorem 18 and Lemma 19 of [3] imply that if µ satisfies the Latała–Oleszkiewicz
inequality (1.5) with some constant CLO, then

µ(A)
1

T ( 1
log(1+1/µ(A)) )

= µ(A) log2/r′
(
1 + 1/µ(A)

)
≤ 6CLO Capµ(A)

for every A ⊂ Rd with µ(A) < 1/2. Using 2 log(1 + t) ≥ log(1 + 2t), t ≥ 0 and
r ∈ (1, 2), we obtain that for all A as above,

µ(A) log2/r′
(
1 + 2/µ(A)

)
≤ 12CLO Capµ(A).

Theorem 28 of [3] then gives2 that for every smooth function f : Rd → R,∫
f2 log2/r′(1 + f2)dµ−

(∫
f2dµ

)
log2/r′

(
1 +

∫
f2dµ

)
≤ 1152CLO

∫
|∇f |2dµ.

It remains to substitute f2 = g2/
∫
Rd g

2dµ to reach the claimed Fr-Sobolev inequality
(3.1). �

Remark 3.4. The latter theorem remains valid even if µ is not absolutely continuous.
To see this we use an approximation argument. Let γε be the centered Gaussian
measure on Rd with covariance matrix ε Id. For small enough ε > 0, γε satisfies
the Latała–Oleszkiewicz inequality with the same constant as µ and hence, by
tensorization, so does µ ⊗ γε. Testing the inequality with the function (x, y) 7→
f(x+ y), we conclude that µ ∗ γε also satisfies the Latała–Oleszkiewicz inequality
(with a constant at most 2CLO(µ) when ε is small enough). Thus, by Theorem 3.3,
µ∗γε satisfies the Fr-Sobolev inequality. We fix a bounded smooth Lipschitz function,
take ε→ 0, and arrive at the conclusion that µ satisfies the Fr-Sobolev inequality
for all bounded smooth Lipschitz functions (we have pointwise convergence and
since the function is Lipschitz and bounded we can use the dominated convergence
theorem). Now if f is an arbitrary smooth function such that

∫
Rd |∇f |

2dµ < ∞,
then it suffices to consider functions fn = Ψn(f), where Ψn : R→ R is, say, an odd

2The assumption of absolute continuity of µ comes into play at this point. This is related to the
fact that the proof of Theorem 28 in [3] relies on a decomposition of Rd into level sets {f2 > ρk},
for some well chosen ρk (cf. proof of Theorem 20 in [3]), and one needs to know that the sets
{f2 = ρk} ∩ {|∇f | 6= 0} are negligible.
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and non-decreasing function defined by

Ψn(t) =


Ψn(−t) for t < 0,

t for t ∈ [0, n),

Ψn(t) = n+ ψ(t) for t ∈ [n, n+ 2],

Ψn(t) = n+ 1 for t > n+ 2,

and ψ : [0, 2] → [0, 1] is smooth and increasing on (0, 2), such that ψ(0) = 0,
ψ(2) = 1, ψ′(0+) = 1, ψ′(2−) = 0, ψ(t) ≤ t for t ∈ [0, 2]. We then use dominated
convergence on the right-hand side and monotone convergence on the left-hand side
(note that by the Poincaré inequality f is square-integrable).

We need another inequality introduced by Barthe and Kolesnikov in [4]. Let
τ ∈ (0, 1), one says that a probability measure µ on Rd satisfies the inequality I(τ)
if there exists constants B1 and C1 such that for every smooth f : Rd → R,

(3.3) Entµ(f2) ≤ B1

∫
Rd
f2dµ+ C1

∫
Rd
|∇f |2 log1−τ

(
e+

f2∫
Rd f

2dµ

)
dµ.

This inequality is related to the previous ones. The next statement is a quotation of
Theorem 4.1 in [4], with a stronger assumption (of a Poincaré inequality instead of
a local Poincaré inequality)

Theorem 3.5 (Barthe–Kolesnikov [4]). Let r ∈ (1, 2). Let µ be a probability measure
satisfying Inequality I(2/r′). Then µ satisfies a defective Fr-Sobolev inequality (3.2)
and a defective modified log-Sobolev inequality with parameter r.

If in addition µ satisfies a Poincaré inequality, then its satisfies an Fr-Sobolev
inequality (3.1) and a modified log-Sobolev inequality with parameter r, (1.6), with
constants depending only on the constants of the input inequalities.

We establish a partial converse to the above implication:

Theorem 3.6. Let r ∈ (1, 2). Assume that a probability measure µ on Rd satisfies
the defective Fr-Sobolev inequality (3.2) with constants B and C. Then µ satisfies
the I(2/r′) inequality (3.3) with some constants B1 and C1 which depend only on
B, C and r.

Proof. We reverse the reasoning from the proof of Theorem 4.1 in [4]. Fix a smooth
function f such that the right-hand side of (3.3) is finite. We may and do assume
that

∫
Rd f

2| ln(f2)|dµ <∞.3 Consider the function

Φ(x) = x2 log1−2/r′(e+ x2), x ∈ R,

(which is convex since the function t 7→ t log1−2/r′(e+ t) is convex and increasing
for t > 0. Recall that r′ > 2). Denote by L the Luxemburg norm of f related to Φ:

L = inf
{
λ > 0 :

∫
Rd

Φ(f/λ)dµ ≤ 1
}
.

Note that L < ∞,
∫
Rd Φ(f/L)dµ = 1 (by the definition of L), and L2 ≥

∫
Rd f

2dµ

(since Φ(x) ≥ x2).

3Indeed, like above let us define odd and non-decreasing functions Ψn : R → R by putting
Ψn(t) = t for t ∈ [0, n), Ψn(t) = n+ 1 for t > n+ 2; for t ∈ [n, n+ 2] let us take Ψn(t) = n+ ψ(t),
where ψ : [0, 2] → [0, 1] is smooth and increasing on (0, 2), and satisfies ψ(0) = 0, ψ(2) = 1,
ψ′(0+) = 1, ψ′(2−) = 0, ψ(t) ≤ t. Then the functions fn = Ψn(f) are smooth, bounded (and
hence

∫
Rd f

2
n| ln(f2n)|dµ < ∞) and converge to f pointwise. After proving that (3.3) holds for

fn, we obtain the assertion for f by taking n → ∞ and using monotone convergence on the
left-hand side and the Lebesgue dominated convergence theorem on the right-hand side (note that
we know that f and fn are square-integrable, |∇fn| is up to a constant smaller than |∇f |, fn = f
if |f | ∈ [0, n], |fn| ≤ |f | if |f | ∈ [n, n+ 2], and if |f | > n+ 2, then ∇fn = 0).
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Set g :=
√

Φ(f/L). We have
∫
Rd g

2dµ = 1 and (3.2) reads

(3.4)
∫
Rd
g2
(
log2/r′(1 + g2)− log2/r′(2)

)
dµ ≤ B

∫
Rd
g2dµ+ C

∫
Rd
|∇g|2dµ.

Let us first express the right-hand side of this inequality in terms of f . For x ∈ R
denote ϕ(x) := x log1/2−1/r′(e+ x2). Then

0 ≤ ϕ′(x) = log1/2−1/r′(e+ x2) + (1/2− 1/q)
2x2

e+ x2
log−1/2−1/r′(e+ x2)

≤ 2 log1/2−1/r′(e+ x2)

and thus

|∇g|2 =
|∇f |2

L2

(
ϕ′(f/L)

)2 ≤ 4
|∇f |2

L2
log1−2/r′(e+ f2/L2)

≤ 4
|∇f |2

L2
log1−2/r′

(
e+

f2∫
Rd f

2dµ

)
.

Hence

(3.5) B
∫
Rd
g2dµ+C

∫
Rd
|∇g|2dµ ≤ B+4C

∫
Rd

|∇f |2

L2
log1−2/r′

(
e+

f2∫
Rd f

2dµ

)
dµ.

As for the left-hand side of (3.4), it is easy to see that there exists κ1 = κ1(r) > 0
such that, for y > 0,

y log1−2/r′(e+ y)
(

log2/r′(1 + y log1−2/r′(e+ y))− log2/r′(2)
)
≥ y log(y)− κ1.

Applying this inequality with y = f2/L2, we arrive at∫
Rd
g2
(
log2/r′(1 + g2)− log2/r′(2)

)
dµ ≥

∫
Rd

f2

L2
log(f2/L2)dµ− κ1.

Together with (3.5) this yields∫
Rd
f2 log(f2/L2)dµ ≤ (B + κ1)L2 + 4C

∫
Rd
|∇f |2 log1−2/r′

(
e+

f2∫
Rd f

2dµ

)
dµ.

It remains to replace the expression on the left-hand side by Entµ(f2) and estimate
L2.

Since

Entµ(f2) = inf
t>0

∫
Rd

(
f2 log(f2/t)− f2 + t

)
dµ

≤
∫
Rd

(
f2 log(f2/L2)− f2 + L2

)
dµ,

we conclude that

(3.6) Entµ(f2) ≤ (B + κ1 + 1)L2 + 4C

∫
Rd
|∇f |2 log1−2/r′

(
e+

f2∫
Rd f

2dµ

)
dµ.

Finally, it is easy to see that for every ε > 0 there exist κ2 = κ2(ε, r) such that,
for y > 0,

y log1−2/r′(e+ y) ≤ εy log(y) + κ2
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Using first the definition of L and the fact that L2 ≥
∫
Rd f

2dµ, and then the above
bound (with y = f2/

∫
Rd f

2dµ) we can thus estimate

L2 =

∫
Rd
f2 log1−2/r′(e+ f2/L2)dµ ≤

∫
Rd
f2 log1−2/r′

(
e+

f2∫
Rd f

2dµ

)
dµ

≤ εEntµ(f2) + κ2

∫
Rd
f2dµ.

Eventually, for ε small enough we combine this bound with (3.6) and simplify the
entropy terms (recall that by our assumption Entµ(f2) <∞) in order to reach the
claim. �

4. Proof of the main result and its corollaries

Proof of Theorem 2.1. Our assumption is that µ satisfies a Latała–Oleszkiwicz
inequality with parameter r. Therefore by Lemma 3.1 it also satisfies a Poincaré
inequality, and by Theorem 3.3 (and Remark 3.4 if µ is not absolutely continuous) it
satisfies a (tight) Fr-Sobolev inequality. From Theorem 3.6, we deduce that µ enjoys
an I(2/r′)-inequality. Eventually Theorem 3.5 asserts that the I(2/r′), together
with the Poincaré inequality, implies a (tight) modified log-Sobolev inequality with
parameter r. �

Remark 4.1. Let us comment here that for d = 1 it is known that the inequalities
(1.5) and (1.6) hold if and only if they hold with the integration with respect to µ
on the right-hand side replaced by integration with respect to µac, the absolutely
continuous part of µ (cf. [9], Appendix of [19], Appendix of [15]).

For the proofs of the corollaries we need one more technical lemma. We denote
by H∗r′(t) := sups∈R{st−Hr′(s)}, t ∈ R, the Legendre transform of Hr′ (we refer
to the book [20] for more information on this topic).

Lemma 4.2. Let r ∈ (1, 2). The function H∗r′ is given by the formula

H∗r′(t) =


t2/4 if 0 ≤ |t| ≤ 2,

|t| − 1 if 2 ≤ |t| ≤ r′,
1
r−1 ( 1

r′ |t|)
r if |t| ≥ r′.

Moreover, H∗r′(t) ≥ 3
16 min{t2, |t|r}.

Sketch of the proof. The first part is a straightforward calculation. To prove the
second part, first notice that for every r ∈ (1, 2) there exists a unique t0 > 0 such
that t20/4 = 1

r−1 ( 1
r′ t0)r. A direct calculation shows that t0 ∈ (2, 4). Since

t0 − 1

t20/4
≥ inf
t∈(2,4)

t− 1

t2/4
= 3/4

and the functions t2 and |t|r are convex, we conclude that

H∗r′(t) ≥
3

4
min

{
t2/4,

1

r − 1

( 1

r′
|t|
)r}
≥ 3

16
min{t2, |t|r},

where we also used the fact that

inf
r∈(1,2)

1

r − 1

( 1

r′

)r
= 1/4. �

Proof of Corollary 2.2. A classical argument of Herbst (see, e.g., [18]) allows to
deduce concentration bounds from log-Sobolev inequalities. It was implemented
in [6] for modified log-Sobolev inequalities with energy terms H(∇f/f) involving
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general functions H. We rather follow the calculation of [1] which is more suited to
the case H = Hr′ . Take a function f : (Rd)n → R and denote

A = sup
x∈Rdn

|∇f(x)|, B = sup
x∈Rdn

‖∇f(x)‖r′,2.

Moreover, let F (λ) =
∫
Rdn e

λf(x)dµ⊗n. Then

λF ′(λ) =

∫
Rdn

λf(x)eλf(x)dµ⊗n

and hence, since µ satisfies the modified log-Sobolev inequality with some constant
C = C(CLO, r) (by Theorem 2.1) and by the tensorization property,

λF ′(λ)− F (λ) logF (λ) = Entµ⊗n(eλf )

≤ C
∫
Rdn

n∑
i=1

Hr′

(λ
2
|∇if |

)
eλfdµ⊗n

≤ 2C max
{

(Aλ/2)2, (Bλ/2)r
′}
F (λ),

where we used the inequality
∑
i max{a2

i , b
r′

i } ≤ 2 max{
∑
i a

2
i ,
∑
i b
r′

i }. After divid-
ing both sides by λ2F (λ) we can rewrite this as( 1

λ
logF (λ)

)′
≤ 2C max

{
(Aλ/2)2, (Bλ/2)r

′}
/λ2.

Since the right-hand side is an increasing function of λ > 0 and

lim
λ→0+

1

λ
logF (λ) =

∫
Rdn

fdµ⊗n,

we deduce from the last inequality that

1

λ
logF (λ) ≤

∫
Rdn

fdµ⊗n + 2C max
{

(Aλ/2)2, (Bλ/2)r
′}
/λ,

which is equivalent to∫
Rdn

eλfdµ⊗n ≤ exp
(
λ

∫
Rdn

fdµ⊗n + 2C max
{

(Aλ/2)2, (Bλ/2)r
′})

.

Therefore from Chebyshev’s inequality we get, for t > 0 and any λ > 0,

µ⊗n
(
f ≥

∫
Rdn

fdµ⊗n + t
)
≤

∫
Rdn e

2λfdµ⊗n

exp(2λ
∫
Rdn fdµ

⊗n + 2λt)

≤ exp
(
−2λt+ 2C max

{
(Aλ)2, (Bλ)r

′})
.

Now we can optimize the right-hand side with respect to λ. Let U and V be such
that A = U1/2V , B = U1/r′V . We have

max
{

(Aλ)2, (Bλ)r
′})

= U max{(V λ)2, (V λ)r
′
} = UHr′(V λ)

and hence

µ⊗n
(
f ≥

∫
Rdn

fdµ⊗n + t
)
≤ exp

(
−2CUH∗r′

( t

CUV

))
.

Using Lemma 4.2 and the definitions of U and V we get

µ⊗n
(
f ≥

∫
Rdn

fdµ⊗n + t
)
≤ exp

(
− 3

8
min

{ t2

CA2
,

tr

Cr−1Br

})
,

which yields the assertion of the corollary. �
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Proof of Corollary 2.3. Let fε be the convolution of f and a Gaussian kernel, i.e.,
fε(x) = E f(x +

√
εG), where G ∼ N (0, I). This function clearly inherits from f

the estimates of the Lipschitz constants. Since it is smooth, the `2-norm and the
norm ‖ · ‖r′,2 of its gradient can be estimated pointwise by L2 and Lr,2, respectively.
Therefore we can apply Corollary 2.2 to fε. Moreover, |fε(x)− f(x)| ≤ L2

√
εE |G|

and hence fε converges uniformly to f as ε tends to zero. This observation ends the
proof of the corollary. �

Proof of Corollary 2.4. We follow the approach of Bobkov and Ledoux from Section
2 of [8]. Take a set A ⊂ Rdn with µ⊗n(A) ≥ 1/2. For x = (x1, . . . , xn) ∈ (Rd)n,
denote

F (x) = FA(x) = inf
a∈A

n∑
i=1

min{|xi − ai|2, |xi − ai|r}

(note that here | · | is the `2-norm on Rd). Take any t > 0 and set f = min{F, t}.
We claim that for all x, y ∈ (Rd)n,

(4.1) |f(x)− f(y)| ≤ 2
√
t|x− y|, |f(x)− f(y)| ≤ 2t1/r

′
‖x− y‖r,2.

Suppose that we already know that this holds. Note that (2t1/r
′
)r = 2rtr−1 ≤

4tr−1. Also,
∫
Rdn fdµ

⊗n ≤ t/2 since F = 0 on A and µ⊗n(A) ≥ 1/2. Consequently,
by Corollary 2.3 and (4.1),

µ⊗n(FA ≥ t) ≤ µ⊗n(f ≥ t) ≤ µ⊗
(
f ≥

∫
Rdn

fdµ⊗n + t/2
)

≤ exp
(
−3K1

8
min

{ (t/2)2

4t
,

(t/2)r

4tr−1

})
≤ exp

(
−3K1

128
t
)

where K1 = min{1/C2
mLS , 1/C

r−1
mLS} and CmLS is the constant with which, by

Theorem 2.1, the modified log-Sobolev inequality holds for µ. Since clearly

{FA < t} ⊂ A+
{

(x1, . . . , xn) ∈ (Rd)n :

n∑
i=1

min{|xi|2, |xi|r} ≤ t
}
,

this yields the first assertion of the corollary. The second part follows by the inclusion{
(x1, . . . , xn) ∈ (Rd)n :

n∑
i=1

min{|xi|2, |xi|r} ≤ t
}
⊂
√
tBdn2 + t1/rBn,dr,2 .

It remains to prove the claim (4.1). To this end, consider the functions

G(x) =

n∑
i=1

min{|xi|2, |xi|r}

and g(x) = min{G, t}. Since g is locally Lipschitz it suffices to show that, a.e.,
n∑
i=1

|∇ig|2 ≤ 4t,

n∑
i=1

|∇ig|r
′
≤ 2r

′
t.

Indeed, this will imply that (4.1) holds with g in place of f (note that the norm
‖ · ‖r,2 is dual to the norm ‖ · ‖r′,2). Since f(x) = infa∈A g(x− a) (and the infimum
of Lipschitz functions is Lipschitz with the same constant), the same estimates will
be inherited by f .

On the open set {G > t} the estimates obviously hold, since g is constant. The
set {G = t} is Lebesgue negligible. Thus in what follows it suffices to consider the
set {G < t} on which g = G.
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If, for some i, |xi| < 1, then

|∇ig(x)|2 = 4|xi|2 = 4 min{|xi|2, |xi|r},

|∇ig(x)|r
′

= 2r
′
|xi|r

′
≤ 2r

′
|xi|2 = 2r

′
min{|xi|2, |xi|r}.

If on the other hand |xi| > 1, then

|∇ig(x)|2 = r2|xi|2(r−1) ≤ 4|xi|r = 4 min{|xi|2, |xi|r},

|∇ig(x)|r
′

= rr
′
|xi|r = rr

′
min{|xi|2, |xi|r}.

Thus, a.e. (the set where |xi| = 1 for some i is negligible),

|∇ig(x)|2 ≤ 4 min{|xi|2, |xi|r},

|∇ig(x)|r
′
≤ 2r

′
min{|xi|2, |xi|r}.

Consequently, on the set {G < t}, it holds a.e.
n∑
i=1

|∇ig(x)|2 ≤ 4G(x) ≤ 4t,

n∑
i=1

|∇ig(x)|r
′
≤ 2r

′
G(x) ≤ 2r

′
t.

Therefore the proof is complete. �

5. Criteria for measures on the real line

From now on we restrict to probability measures on the real line. In this setting,
more tools are available. For several functional inequalities, workable equivalent
criteria are available. They are based on Hardy type inequalities, of the form∫

R+

|f − f(0)|pdµ ≤ A
∫
R+

|f ′|pdν.

We refer to [2] for the history of the topic, from the original book of Hardy, Littlewood
and Pólya, to the general version by Muckenhoupt. The textbook [2] also mentions
that such Hardy inequalities yield the following criterion for Poincaré inequalities
on R (where we include a numerical improvement from [19]):

Let µ be a probability measure on R, with median m. Let ν be a probability
measure on R, and let n denote the density of its absolutely continuous part. Then
the (possibly infinite) best constant CP such that for all smooth f ,

Varµ(f) ≤ CP
∫
R

(f ′)2dν

verifies max(B+
P , B

−
P ) ≤ CP ≤ 4 max(B+

P , B
−
P ), with

(5.1) B+
P = sup

x>m
µ([x,+∞))

∫ x

m

1

n
, B−P = sup

x<m
µ((−∞, x])

∫ m

x

1

n
,

where by convention 0 · ∞ = 0.
Bobkov and Götze [9] extended the reach of these methods, by proving a similar

statement for log-Sobolev inequalities of the form

Entµ(f2) ≤ CLS
∫
R

(f ′)2dν.

Their result reads as the previous one, with different numerical constants and B+
P ,

B−P replaced by

(5.2) B+
LS = sup

x>m
µ([x,+∞)) log

(
1

µ([x,+∞))

)∫ x

m

1

n
,
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and B−LS defined similarly for x < m. This criterion was later extended to the
Latała–Oleszkiewicz inequality (1.5). Let µ be a probability measure on R. Denote
by m the median of µ and by n the density of its absolutely continuous part. Barthe
and Roberto [5] proved that µ satisfies the Latała–Oleszkiewicz inequality (1.5) if
and only if max{B+

LO(r), B
−
LO(r)} <∞, where

(5.3) B+
LO(r)

:= sup
x>m

µ([x,∞)) log2/r′
(

1 +
1

2µ([x,∞))

)∫ x

m

1

n(t)
dt

and B−LO(r) is defined similarly but with x < m. Moreover the best possible constant
CLO(r) in (1.5) is comparable to max{B+

LO(r), B
−
LO(r)}, up to numerical constants

which do not depend on r ∈ (1, 2).
In the subsequent paper [6], Barthe and Roberto provided a criterion for the

modified log-Sobolev inequality (1.6). However they did not reach a full equivalence.
Here is the outline of Theorem 10 in [6]. Let dµ(t) = n(t)dt be a probability measure
on R with median m. If µ satisfies the Poincaré inequality with constant CP and
max{B+

mLS(r), B
−
mLS(r)} <∞, where

(5.4) B+
mLS(r)

:= sup
x>m

µ([x,∞)) log
( 1

µ([x,∞))

)(∫ x

m

1

n(t)r−1
dt
)1/(r−1)

and B−mLS is defined similarly but with x < m, then µ satisfies the modified
log-Sobolev inequality (1.6) with constant

CmLS ≤ 235CP + 2r
′+1 max{B+

mLS(r), B
−
mLS(r)}.

The converse implication is, so far, known only under the following additional
assumption: there exists ε > 0 such that for all x 6= m

(5.5)
1

n(x)r−1
≥ ε

∫ max(m,x)

min(m,x)

1

nr−1
·

In this case, if µ satisfies the modified log-Sobolev inequality (1.6), then

max{B+
mLS(r), B

−
mLS(r)} <∞

and this quantity can be estimated in terms of the constant CmLS(r) up to constants
depending on r and ε. The Poincaré inequality is a classical consequence of modified
log-Sobolev inequality, exactly as in Lemma 3.1.

Even though the above criteria involve simple concrete quantities, it does not
seem easy to use them in order to reprove our main result Theorem 2.1 for measures
on R. However, if one assumes for example that dµ(x) = exp(−V (x))dx, x ∈ R,
where V is symmetric, of class C2, lim infx→∞ V ′(x) > 0, and

lim
x→∞

V ′′(x)

V ′(x)2
= 0,

then one can estimate the quantities B+
LO(r), B

+
mLS(r) and show that the Latała–

Oleszkiewicz inequality (1.5) is equivalent to the modified log-Sobolev inequality (1.6)
and furthermore to the condition

(5.6) lim sup
x→∞

V (x)

V ′(x)r′
<∞

(see Remark 21 in [6]).
In the rest of the paper we use and develop one-dimensional criteria in order to

study whether the modified log-Sobolev inequality is actually equivalent to other
inequalities which are known to imply it.
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6. Weighted vs. modified log-Sobolev inequality

It is known that if a probability measure µ on Rd satisfies a certain weighted log-
Sobolev inequality (and an integrability condition), then it also satisfies a modified
log-Sobolev inequality, see Theorem 3.4 in [12] (in the context of a specific measure
on the real line a similar argument appears already in the large entropy case of the
proof of Theorem 3.1 from [13]). The goal of this subsection is to show that the
converse implication does not hold in general, even for measures on the real line.

First we present a workable criterion for the weighted log-Sobolev inequality.

Proposition 6.1. Let dµ(x) = e−V (x)dx be a probability measure on the real line.
Let V : R→ R be even and locally bounded. Assume that in some neighborhood of
∞, the function V is of class C2, and that

(i) lim infx→∞ V ′(x) > 0,
(ii) limx→∞

V ′′(x)
V ′(x)2 = 0.

Then, there exists C < ∞ such that µ satisfies the following weighted log-Sobolev
inequality: for every f : R→ R,

(6.1) Entµ(f2) ≤ C
∫
R
f ′(x)2(1 + |x|2−r)dµ(x),

if and only if

lim sup
x→∞

V (x)

|x|2−rV ′(x)2
<∞.

Remark 6.2. Condition (i) can be weakened to lim supx→∞
|V ′′(x)|
V ′(x)2 < 1.

Proof of Proposition 6.1. Denote W (x) := V (x) − log(1 + |x|2−r), x ∈ R. By the
Bobkov–Götze criterion [9] (see (5.2)), µ satisfies the weighted log-Sobolev inequality
if and only if

(6.2) sup
x>0

µ((x,∞)) log
( 1

µ((x,∞))

)∫ x

0

eW (t)dt <∞.

Of course, it suffices to investigate what happens for x→∞. Note that

lim inf
x→∞

W ′(x) = lim inf
x→∞

(
V ′(x)− (2− r)x1−r

1 + x2−r

)
> 0

(by Assumption (i)) and

lim
x→∞

W ′′(x)

W ′(x)2
= 0

(by (ii) and the fact that W ′′(x) = V ′′(x) + o(1)). Thus, as x→∞,

µ((x,∞)) =

∫ ∞
x

e−V (t)dt ∼ e−V (x)

V ′(x)
,∫ x

0

eW (t)dt ∼ eW (x)

W ′(x)
=

eV (x)

(1 + |x|2−r)(V ′(x) + o(1))

(here by ‘∼’ we mean that the ratio of both sides tends to 1 as x → ∞; to prove
that this is indeed the case it suffices to consider the ratio of the derivatives of both
sides). Therefore, (6.2) holds if and only if

lim sup
x→∞

V (x) + log V ′(x)

(1 + |x|2−r)(V ′(x) + o(1))V ′(x)
<∞,

which, since V ′(x) is bounded away from zero as x→∞, happens if and only if

lim sup
x→∞

V (x)

|x|2−rV ′(x)2
<∞. �
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Our example is a modification of the example constructed by Cattiaux and Guillin
[11] to prove that the log-Sobolev inequality is strictly stronger than Talagrand’s
transportation cost inequality.

Proposition 6.3. For r ∈ (1, 2) and max{r/2, r − 1/r} < β − 1 < r − 1/2 define

V (x) = Vr,β(x) = |x|r+1 + (r + 1)|x|r sin2(x) + |x|β , x ∈ R.

Let µr,β be the probability measure with density proportional to e−Vr,β(x). Then
µr,β satisfies the modified log-Sobolev inequality (1.6) and the Latała–Oleszkiewicz
inequality (1.5) (with d = 1).

On the other hand, µr,β does not satisfy the weighted log-Sobolev inequality (6.1).

Proof. Let us first note that β ∈ (r, r + 1). For x > 0,

V (x) = xr+1 + (r + 1)xr sin2(x) + xβ ,

V ′(x) = (r + 1)(1 + sin(2x))xr + (r + 1)rxr−1 sin2(x) + βxβ−1.

Clearly, V ′(x) ≥ βxβ−1; in particular lim infx→∞ V ′(x) > 0. Moreover, for x > 1,
|V ′′(x)| can be bounded by Mxr for some constant M = M(r, β). Thus,

lim
x→∞

|V ′′(x)|
V ′(x)2

≤ lim
x→∞

Mxr

β2x2(β−1)
= 0,

since β − 1 > r/2. We are thus in position to apply workable versions of the criteria
for the modified and weighted log-Sobolev inequalities (note that the normalization
of µr,β amounts to adding a constant to the potential V , which does not affect the
calculations and reasoning below).

First note that

lim
x→∞

V (x)

V ′(x)r′
≤ lim
x→∞

(r + 3)xr+1

βr′x(β−1)r′
= 0,

since (β − 1)r′ > (r − 1/r)r′ = r + 1. Thus, by the Barthe–Roberto criterion (see
(5.6)), µr,β satisfies the modified log-Sobolev and the Latała–Oleszkiewicz inequality.

On the other hand, for certain values of x→∞ (e.g., for x = kπ − π/4, k ∈ N),
we have |V ′(x)| ≤ ((r + 1)r + β)xβ−1. Hence

lim sup
x→∞

V (x)

x2−rV ′(x)2
≥ lim
x→∞

xr+1

x2−r((r + 1)r + β)2x2(β−1)
=∞,

since β − 1 < r − 1/2. Thus, by Proposition 6.1 above, µr,β cannot satisfy the
weighted log-Sobolev inequality. �

Remark 6.4. The introduction of [21], suggests that the results of our Theorem 2.1 are
contained in [26], namely that it follows from [26] that the Fr-Sobolev inequality (3.1)
implies the modified log-Sobolev inequality (1.6). We would like to rectify this:
Wang’s paper [26] deals with measures with faster decay than Gaussian. He proves
that in that setting an appropriate super Poincaré inequality (or equivalently, an
appropriate F -Sobolev inequality) implies a certain weighted log-Sobolev inequality.
However, in our setting (measures with tail decay slower than Gaussian), we have an
example of a measure which satisfies the modified log-Sobolev inequality (1.6) and
the Latała–Oleszkiewicz inequality (1.5) (or equivalently, the Fr-Sobolev inequal-
ity (3.1)), but does not satisfy the weighted log-Sobolev inequality (6.1). Therefore
Theorem 2.1 cannot be deduced from Wang’s paper [26].
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7. On potentials with vanishing derivatives

7.1. Motivation. Recall that r ∈ (1, 2) is the parameter associated with the
Latała–Oleszkiewicz inequality (1.5) and the modified log-Sobolev inequality (1.6).
Throughout this section we consider symmetric probability measures on the real
line of the form

dµ(x) = dµV (x) =
1

Z
exp(−V (x))dx, x ∈ R,

where V : R→ R is even and Z is the normalization constant.
It is easy to see that if ε ∈ [0, 1) and for x ∈ R

V (x) =
∣∣x+ ε sin(x)

∣∣r, x > 0,

then µV satisfies both the Latała–Oleszkiewicz inequality (1.5) and the modified
log-Sobolev inequality (1.6). Indeed, if ε ∈ [0, 1), then lim infx→+∞ V ′(x) > 0,
limx→∞ V ′′(x)/V ′(x)2 = 0 and the claim follows from the simplified versions of the
Barthe–Roberto criteria (see (5.6)).

This example becomes more interesting for ε = 1: since for any integer k,
V ′((2k+ 1)π) = 0 we cannot apply the simplified asymptotic versions of the criteria.
In particular, one would like to know if, for measures with such potentials, the
modified log-Sobolev inequality (1.6) and the Latała–Oleszkiewicz inequality (1.5)
are valid simultaneously.

In the limit case r = 2, Cattiaux [10] proved that if

V (x) = x2 + 2λx sin(x), x > 0,

then µV satisfies the classical log-Sobolev inequality if and only if |λ| < 1 (note that
this potential differs from (x+ λ sin(x))2 only by a bounded perturbation). He used
probabilistic methods which seem to rely on the fact that r = 2. Below we present
an analytic approach and obtain an extension of his results.

7.2. Results. For α > 1 define

Vα(x) =
∣∣x+ sin(x)

∣∣α, x ∈ R.

Let να be the probability measure with density proportional to exp(−Vα):

dνα(x) =
1

Zα
exp(−Vα(x))dx, x ∈ R.

Proposition 7.1. Let α > 1 and r ∈ (1, 2). The following assertions are equivalent
(i) r ≤ r0(α) := 3α

2α+1 ,
(ii) να satisfies the Latała–Oleszkiewicz inequality (1.5) with parameter r,
(iii) να satisfies the modified log-Sobolev inequality (1.6) with parameter r.

Remark 7.2. For Cattiaux’s example the threshold is r0(2) = 6/5.

The threshold r0(α) in Inequalities (1.5) and (1.6) suggests a weaker concentration
than the one actually exhibited by the measures να, which is better described by
transportation cost inequalities, see [24, 23]. Let α ∈ (1, 2]. Recall that we say that
a probability measure µ on the real line satisfies the transport–entropy inequality
Tmin{x2,|x|α}(a) if for any probability measure σ on the real line

Tα,a(µ, σ) ≤ H(σ|µ),

where Tα,a is the optimal transport cost between the measures µ and σ with respect
to the cost function t 7→ min{(at)2, |at|α}, i.e.,

Tα,a(µ, σ) = inf
π

∫
R

∫
R

min{(a(x− y))2, |a(x− y)|α}dπ(x, y),



18 F. BARTHE AND M. STRZELECKI

where the infimum runs over the set of couplings between µ and σ, and H(σ|µ)
stands for the relative entropy of σ with respect to µ.

Proposition 7.3. Let α ∈ (1, 2]. The measure να satisfies the transport–entropy
inequality Tmin{x2,|x|α}(a) with some constant a > 0 depending only on α.

One can also wonder what happens if we allow the potential V to have even
bigger oscillations. For α > 1 and λ > 1 define

Vα,λ(x) = |x+ λ sin(x)|α, x ∈ R,

and let να,λ be the probability measure with density proportional to exp(−Vα,λ).

Proposition 7.4. Let α > 1 and λ > 1. The measure να,λ does not satisfy the
Poincaré inequality (1.2).

7.3. Proofs. In the next two proofs we shall omit the subscripts α and Vα in the
notation and write V , ν, and Z instead of Vα, να and Zα, respectively.

Proof of Proposition 7.1. Fix α > 1. Let us start with proving that the Latała–
Oleszkiewicz inequality (1.5) holds for r ≤ r0(α). For x > 0 we have V (x) =
(x+ sin(x))α and

V ′(x) = α(x+ sin(x))α−1(1 + cos(x)).

Denote for simplicity β = (α− 1)/3. For x > 0 such that 1− βx−β−1 ≥ 0, we have∫ ∞
x

e−V (t)dt =

∫ x+x−β

x

e−V (t)dt+

∫ ∞
x+x−β

e−V (t)dt

≤ e−V (x)

xβ
+

∫ ∞
x

e−V (u+u−β)(1− βu−β−1)du,

≤ e−V (x)

xβ
+

∫ ∞
x

e−V (u+u−β)du,(7.1)

where we used the fact the V is increasing on (0,∞) and substituted t = u+ u−β in
the second integral. Note that, by the convexity of the function x 7→ xα, x > 0,

V (u+ u−β)− V (u) =
(
u+ u−β + sin(u+ u−β)

)α − (u+ sin(u))α

≥ α(u+ sin(u))α−1
(
u−β + sin(u+ u−β)− sin(u)

)
= α(u+ sin(u))α−1

(
u−β + 2 sin(u−β/2) cos(u+ u−β/2)

)
≥ α(u+ sin(u))α−1

(
u−β − 2 sin(u−β/2)

)
≥ c1uα−1u−3β = c1

for some c1 = c1(α) > 0 (for, say, u ≥ 1). Thus (7.1) implies that for sufficiently
large x,

(7.2)
∫ ∞
x

e−V (t)dt ≤ 1

1− e−c1
· e
−V (x)

x(α−1)/3
.

We proceed similarly with
∫ x

0
eV (t)dt. First note that, for t ≥ 2π,

V (t− 2π) + (2π)α = (t− 2π + sin(t))α + (2π)α ≤ (t+ sin(t))α = V (t),

since α ≥ 1. Hence,∫ 2kπ

2(k−1)π

eV (t)dt =

∫ 2(k+1)π

2kπ

eV (t−2π)dt ≤ e−(2π)α
∫ 2(k+1)π

2kπ

eV (t)dt
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and consequently, for x ≥ 2π,∫ x

0

eV (t)dt ≤
(

1 +

∞∑
k=0

e−k(2π)α
)∫ x

x−2π

eV (t)dt

=
(

1 +
1

1− e−(2π)α

)∫ x

x−2π

eV (t)dt

(recall that V is increasing on (0,∞)).
As above, denote for simplicity β = (α− 1)/3. For x > 2π we have∫ x

x−2π

eV (t)dt =

∫ x

x−x−β
eV (t)dt+

∫ x−x−β

x−2π

eV (t)dt

≤ eV (x)

xβ
+

∫ x

l(x)

eV (u−u−β)(1 + βu−β−1)du,

≤ eV (x)

xβ
+ (1 + β(x− 2π)−β−1)

∫ x

x−2π

eV (u−u−β)du,(7.3)

where we used the fact the V is increasing on (0,∞) and substituted t = u−u−β in the
second integral (l(x) > x−2π is the unique number such that x−2π = l(x)−l(x)−β).
Note that

V (u− u−β)− V (u) =
(
u− u−β + sin(u− u−β)

)α − (u+ sin(u))α

≤− α
(
u− u−β + sin(u− u−β)

)α−1(
u−β − sin(u− u−β) + sin(u)

)
=− α

(
u− u−β + sin(u− u−β)

)α−1(
u−β − 2 sin(u−β/2) cos(u− u−β/2)

)
≤− α

(
u− u−β + sin(u− u−β)

)α−1(
u−β − 2 sin(u−β/2)

)
≤− c2uα−1u−3β = −c2

for some c2 = c2(α) > 0 and sufficiently large u > 0. Thus (7.3) implies that for
sufficiently large x,∫ x

x−2π

eV (t)dt ≤ eV (x)

xβ
+ (1 + β(x− 2π)−β−1)e−c2

∫ x

x−2π

eV (u)du

≤ eV (x)

xβ
+ e−c̃2

∫ x

x−2π

eV (u),

for some c̃2 = c̃2(α) > 0. Thus, for sufficiently large x,

(7.4)
∫ x

0

eV (t)dt ≤
1 + 1

1−e−(2π)α

1− e−c̃2
· eV (x)

x(α−1)/3
.

For q > 2 the function t 7→ t log2/q(1 + 1/(2t)) is increasing for small enough
positive t. Using (7.2) and (7.4), we see that for sufficiently large x > 0,

ν([x,∞]) log2/r′
(

1 +
1

2ν([x,∞))

)∫ x

0

eV (t)dt

.
e−V (x)

x(α−1)/3
log2/r′

(
eV (x)x(α−1)/3

) eV (x)

x(α−1)/3
.

V (x)2/r′

x2(α−1)/3
. x2(α/r′−(α−1)/3)

(we omit multiplicative constants not depending on x). Clearly, if 1 < r ≤ r0(α),
then this is bounded as x → ∞, and by the Barthe–Roberto criterion (see (5.3)
above) the Latała–Oleszkiewicz inequality with parameter r does hold.

Conversely, let us show that if ν enjoys the Latała–Oleszkiewicz with parameter
r then necessarily r ≤ r0(α). This can be seen by focusing on the points xk =
(2k + 1)π where V ′ vanishes and our estimates can be reversed up to multiplicative
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constants. Indeed, for k large enough one can find a constant c3 such that for
y ∈ [xk − k−β , xk + k−β ],

|V ′(y)| ≤ c3xα−1
k k−2β .

For k and y as above,

|V (y)− V (xk)| ≤ c3xα−1
k k−3β ≤ c4,

using here that β = (α− 1)/3. Thus,∫ ∞
xk

e−V (x)dx ≥
∫ xk+k−β

xk

e−V (x)dx ≥ k−βe−V (xk)e−c4 ,∫ xk

0

eV (x)dx ≥
∫ xk

xk−k−β
eV (x)dx ≥ k−βeV (xk)e−c4 .

Consequently, as the function t 7→ t log2/r′(1 + 1/(2t)) is increasing for small enough
positive t, for k sufficiently large we can write:

ν([xk,∞)) log2/r′
(

1 +
1

2ν([xk,∞))

)∫ xk

0

eV (t)dt

&
e−V (xk)

kβ
log2/r′

(
eV (xk)kβ

)eV (xk)

kβ

≥ V (xk)
2/r′

k2β
≥ (2kπ)2α/r′

k2β
.

If ν satisfies the Latała–Oleszkiewicz Inequality with parameter r, then by the
Barthe–Roberto criterion (see (5.3) above) the latter quantity remains bounded
from above when k →∞. This forces α/r′ ≤ β, or equivalently r ≤ r0(α).

Next we turn to the proof of (i) ⇐⇒ (iii). In view of Theorem 2.1, we just
need to prove that if ν satisfies a modified log-Sobolev inequality with parameter r
then necessarily r ≤ r0(α). We apply the necessity part of the criterion of Barthe–
Roberto. It requires Assumption (5.5), which is verified since (7.4) is valid for
(r− 1)V instead of V , with different numerical constants. Then we use the fact that
the quantity B+

mLS(r) defined in (5.4) is bounded, together with lower bounds of∫∞
xk
e−V and

∫ xk
0
e(r−1)V . The computations are similar than the above ones for the

Latała–Oleszkiewicz inequality, and yield r ≤ r0(α). We omit the details. �

Proof of Proposition 7.3. Fix α ∈ (1, 2] and denote, for t ≥ 0,

e−N(t) =
2

Z

∫ ∞
t

e−V (s)ds.

Let Fν and Fexp be the cumulative distribution functions of ν and the symmetric
exponential measure with density 1

2e
−|x| respectively.

By Proposition 7.1, ν satisfies the Latała–Oleszkiewicz inequality with r0(α) > 1,
so it satisfies the Poincaré inequality. Thus, by Theorem 1.1 of [15], in order to
prove the assertion it suffices to show that there exists b = b(α) > 0 such that∣∣F−1

ν (Fexp(x))− F−1
ν (Fexp(y))

∣∣ ≤ 1

b
(1 + |x− y|)1/α

for all x, y ∈ R.
Note that for x ≥ 0 we have x̃ = F−1

ν (Fexp(x)) if and only if

1− 1

2
e−N(x̃) = Fν(x̃) = Fexp(x) = 1− 1

2
e−x.

Thus it suffices to check whether there exists b = b(α) > 0 such that

(7.5) bα
∣∣x− y∣∣α ≤ 1 +

∣∣N(|x|) sgn(x)−N(|y|) sgn(y)
∣∣
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for all x, y ∈ R (recall that ν is symmetric).
If |x − y| ≤ 2π, then one can guarantee that (7.5) holds simply by taking

b ≤ (2π)−1. Let therefore consider the case when |x− y| ≥ 2π. We have to cases:
1. x, y are of different signs,
2. x, y are of the same sign.

Case 1. In the first case we have

bα|x− y|α = bα(|x|+ |y|)α ≤ 2α−1bα(|x|α + |y|α).

From the proof of Proposition 7.1 we know that for sufficiently large t > 0 we have

1

2
e−N(t) =

1

Z

∫ ∞
t

e−V (s)ds ≤ 1

Z(1− e−c1(α))
· e
−V (t)

t(α−1)/3

(see (7.2)). Thus, for sufficiently large t > 0,

N(t) ≥ V (t) = |t+ sin(t)|α ≥ 1

2
tα.

Therefore, we can choose b > 0 to be such that 2α−1bαtα ≤ N(t) + 1
2 holds for all

t > 0. Then

bα|x− y|α ≤ 2α−1bα(|x|α + |y|α) ≤ 1 +N(|x|) +N(|y|),
which is exactly (7.5) in the case when x, y are of different signs.

Case 2. Suppose now that x, y are of the same sign, say x ≥ y + 2π ≥ y ≥ 0.
Observe that, for t > 0 and k ∈ N,

V (t+ 2kπ) = |t+ sin(t) + 2kπ|α ≥ V (t) + (2kπ)α.

Thus, for t > 0 and s ≥ 2π,

V (t+ s) ≥ V (t+ 2πbs/(2π)c) ≥ V (t) + (2π)αbs/(2π)cα ≥ V (t) + sα/2α.

Therefore, for t > 0 and s ≥ 2π,

e−N(t+s) =
2

Z

∫ ∞
t+s

e−V (u)du =
2

Z

∫ ∞
t

e−V (u+s)du

≤ 2

Z

∫ ∞
t

e−V (u)−sα/2αdu = e−N(t)−sα/2α .

Thus, if we take b ≤ 1/2, then (7.5) holds also for x ≥ y+ 2π ≥ y ≥ 0 (we substitute
x = t+ s, y = t).

This finishes the proof. �

Below we follow the same convention as above and omit the subscripts α and λ
in the notation.

Proof of Proposition 7.4. Fix λ, α > 1. For sufficiently large x > 0 we have

V ′(x) = α(x+ λ sin(x))α−1(1 + λ cos(x)).

Denote xk = (2k + 1)π, k ∈ N. There exists δ0 > 0 such that V is decreasing on
[xk − δ0, xk + δ0] for sufficiently large k. Thus

(7.6)
∫ ∞
xk

e−V (t)dt ≥
∫ xk+δ0

xk

e−V (t)dt ≥ δ0e−V (xk).

Moreover, by the convexity of the function x 7→ xα (x > 0), for h ∈ [0, δ0] we
have

V (xk − h)− V (xk) = (xk − h+ λ sin(xk − h))α − (xk + λ sin(xk))α

≥ α(xk + λ sin(xk))α−1(−h+ λ sin(xk − h))

= αxα−1
k (λ sin(h)− h).
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Hence ∫ xk

0

eV (t)dt ≥
∫ xk

xk−δ0
eV (t)dt =

∫ δ0

0

eV (xk−h)dh

≥
∫ δ0

0

eV (xk)+αxα−1
k (λ sin(h)−h)dh.(7.7)

Putting together (7.6) and (7.7), we observe that∫ ∞
xk

e−V (t)dt×
∫ xk

0

eV (t)dt ≥ δ0
∫ δ0

0

eαx
α−1
k (λ sin(h)−h)dh

tends to infinity when k →∞, since λ sin(h)−h > 0 for h positive and small enough.
By the Muckenhoupt criterion (see (5.1)), we may conclude that ν cannot satisfy
any Poincaré inequality. �

7.4. Remarks on a general setting. In this final section, we show informally
how the method used in the calculations of the previous section can be extended
to more general families of measures. The main issue is to derive estimates of the
quantities

∫ x
x0
eV and

∫∞
x
e−V . For shortness we do not treat separately upper and

lower bounds.
The classical approach is based on writing

∫
eV =

∫
1
V ′ × V ′eV and on an

integration by parts. It works if there exits x0 and ε > 0 such that for x ≥ x0, V is
of class C2, V ′ > 0 and

∣∣∣ V ”
(V ′)2

∣∣∣ ≤ 1− ε. In this case, up to multiplicative constants
dependent on ε, for x ≥ x0,∫ ∞

x

e−V ≈ e−V (x)

V ′(x)
,

∫ x

x0

eV ≈ eV (x)

V ′(x)
·

This approach cannot work if V ′ vanishes for arbitrarily large values, as it was
the case for Vα. The approach that we used for να can still be applied in such
situations, when the potential is, in some sense, essentially increasing. The key
parameter at point x is a number θ(x) > 0 so that for some constants C ≥ c > 0
(independent of x),

∀y ∈ [x− θ(x), x+ θ(x)], |V (y)− V (x)| ≤ C,
V (x+ θ(x)) ≥ V (x) + c,

V (x− θ(x)) ≤ V (x) + c.

In words, V is essentially constant on [x− θ(x), x+ θ(x)], but does increase between
the left end-point and the center, and between the center and the right end-point.
For the upper bound, one also needs V to grow at least linearly: V (x+K) ≥ V (x)+c.
Under some additional assumptions (e.g., θ positive and θ′ is small enough compared
to c), one gets ∫ ∞

x

e−V ≈ θ(x)e−V (x),

∫ x

x0

eV ≈ θ(x)eV (x)·

Note that when V ′(x) > 0, 1/V ′(x) is heuristically the scale at which V moves by
1, which makes a connection with the classical approach. Let us also mention that
for measures having the latter properties, the Latała–Oleszkiewicz and the modified
log-Sobolev inequality with parameters r will be true simultaneously. Indeed if θ is
bounded from above, then Condition (5.5) should be verified. Then the quantities
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B+
LO(r) and B+

mLS(r) are comparable since for x large(∫ ∞
x

e−V
)

log2/r′
(

1 +
1∫∞

x
e−V

)∫ x

0

eV (t)dt ≈ θ(x)2
(
V (x) + log θ(x)

)2/r′
,(∫ ∞

x

e−V
)

log
( 1∫∞

x
e−V

)(∫ x

0

e(r−1)V (t)dt

)1/(r−1)

≈ θ(x)r
′(
V (x) + log θ(x)

)
.

Let us conclude with a simple observation about potentials which are nonincreasing
on infinitely many intervals (variants involving essentially nonincreasing ones can
be written).

Lemma 7.5. Let µ be a probability measure on the real line with density proportional
to exp(−V (x)) for some locally bounded V : R→ R. Suppose that there exists ε > 0
and a sequence of positive real numbers xn →∞, such that V is nonincreasing on
(xn − ε, xn + ε). Then µ does not satisfy the Latała–Oleszkiewicz inequality (1.5)
with any parameter r ∈ (1, 2).

Proof. From the assumption about the monotonicity of V on the intervals (xn −
ε, xn + ε), we get∫ ∞

xn

e−V (t)dt

∫ xn

0

eV (t)dt ≥ εe−V (xn) · εeV (xn) = ε2.

Moreover, log2/r′
(

1 + 1
2µ([x,∞))

)
→ +∞ for any r ∈ (1, 2). Thus, by the Barthe–

Roberto criterion (see (5.3) above) the Latała–Oleszkiewicz inequality (1.5) cannot
hold, with any parameter r ∈ (1, 2). �

The above result should be compared to Proposition 7.4. Obverse that measures
satisfying the hypotheses of the Lemma may verify a Poincaré inequality. This is
the case for the potential V (x) = b|x|c involving the integer part. This potential is
constant on every interval [k, k + 1), ∈ N. Nevertheless V (x) is a bounded additive
perturbation of the potential |x| of the symmetric exponential distribution, hence
the associated measure satisfies a Poincaré inequality.
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