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Semigroup associated with a free polynomial

Abbas Ali and Assi Abdallah ∗

Abstract

Let K be an algebraically closed field of characteristic zero and let KC [[x1, ..., xe]] be the ring
of formal power series in several variables with exponents in a line free cone C. We consider
irreducible polynomials f = yn + a1(x)yn−1 + . . . + an(x) in KC [[x1, ..., xe]][y] whose roots are in

KC [[x
1
n
1 , ..., x

1
n
e ]]. We generalize to these polynomials the theory of Abhyankar-Moh. In particular

we associate with any such polynomial its set of characteristic exponents and its semigroup of
values. We also prove that the set of values can be obtained using the set of approximate roots.
We finally prove that polynomials of K[[x]][y] fit in the above set for a specific line free cone (see
Section 4).

Introduction

Let K be an algebraically closed field of characteristic zero and let K[[x]] be the ring of formal power
series in x = (x1, . . . , xe) over K. Let f = yn + a1(x)yn−1 + · · · + an(x) be a nonzero polynomial of
degree n in K[[x]][y]. Suppose that f is a quasi-ordinary polynomial, i.e its discriminant ∆y(f)(the y-
resultant of f and its y-derivative), is of the form ∆y(f) = xα.ε(x), where ε(x) is a unit in K[[x]] (Note
that this is always the case if e = 1). If f is irreducible then, by the Abhyankar-Jung theorem, there

exists y =
∑

p cpx
p ∈ K[[x

1
n ]] such that f(x, y) = 0. Define the support of y to be the set Supp(y) =

{p ∈ Ne|cp 6= 0}. In [7], Lipman proved that there exists a sequence of elements m1
n , ...,

mh
n ∈ Supp(y)

such that:

(i) m1 < m2 < · · · < mh coordinate wise.

(ii) If m
n ∈ Supp(y), then m ∈ (nZ)e +

h∑
i=1

miZ. Moreover, mi /∈ (nZ)e +
∑

j<imjZ for all i = 1, ..., h.

The semigroup of f is defined to be the set Γ(f) = {O(f, g), g ∈ K[[x]][y]\(f)}, where O(f, g) is the
order of the initial form of the y-resultant of f and g with respect to a fixed order on Ne (we also
have O(f, g) = ng(x, y(x). Now we can associate with f the following sequences: the D-sequence of
f is defined to be D1 = ne, and for all 1 ≤ i ≤ h, Di is the gcd of the (e, e) minors of the matrix
[nIe,m

T
1 , ...,m

T
i ], where T denotes the transpose of a vector. We have D1 > ... > Dh+1 = ne−1. Then
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we define the e-sequence to be ei = Di
Di+1

for all 1 ≤ i ≤ h, and the r-sequence r10, ..., r
e
0, r1, ..., re to be

r1 = m1, ri = ei−1ri−1 + mi −mi−1 for all 2 ≤ i ≤ h, and r10, ..., r
e
0 is the canonical basis of Ze. The

sequence {r10, ..., re0, r1, ..., rh} is a system of generators of Γ(f). Moreover, there exists a special set of
polynomials g1, ..., gh (the approximate roots of f), such that O(f, gi) = ri for all i ∈ {1, ..., h}( see
[5]).
The aim of this article is to generalize these results to a wider class of polynomials. Namely let C be
a line free rational convex cone in Re and let KC [[x]] be the ring of power series whose exponents are
in C. Let f = yn + a1(x)yn−1 + · · · + an(x) be a nonzero polynomial of KC [[x]][y]. We say that f is

free if it is irreducible in KC [[x]][y] and if it has a root (then all its roots) y(x) ∈ KC [[x
1
n ]]. Note that

irreducible quasi-ordinary polynomials are free with respect to the cone Re+. In general, we associate
with a free polynomial f its set of characteristic exponents and characteristic sequences. We also
associate with f its set of pseudo-approximate roots and we prove that the set of orders (with respect
to a fixed order on Ze ∩ C) of these polynomials generate the semigroup of f , which is defined to be
the set of orders of polynomials of KC [[x]][y]. Finally we prove that the semigroup is also generated
by the set of orders of approximate roots of f (see Section 3). Note that the semigroup is free in
the sense of [6]. This explain the notion of free polynomial. In Section 4 we apply our results to
polynomials of K[[x]][y] = KRe+ [[x]][y]. An irreducible polynomial f ∈ K[[x]][y] is not free in general.
Our main result is that f becomes free in KC [[x]][y] for a specific cone, after a preparation result.
More precisely let ∆y(f) be the y-discriminant of f . If f is a prepared polynomial (in the sense of
Remark 4) then f is equivalent, modulo a birational transformation, to a quasi-ordinary polynomial
F . This transformation is used in order to go from roots of F to roots of f , and these roots are in
KC [[x

1
n ]] for the cone introduced in Proposition 17.

1 G-adic expansion and Approximate roots

In this section we recall the notion of G- adic expansion and the notion of approximate roots (see [1]).
Let R[Y ] be the polynomial ring in one variable over an integral domain R.

Proposition 1 Let f be a polynomial of degree n in R[Y ] and let d be a divisor of n. Let g be a
monic polynomial of degree n

d , then there exist unique polynomials a1, ..., ad ∈ R[Y ] with degY (ai) <
n
d

for all i ∈ {1, ..., d} such that ai 6= 0, and f = gd + a1g
d−1 + . . .+ ad.

This expression is called the g−adic expansion of f . The Tschirnhausen transform of g with
respect to f is defined to be τf (g) = g + d−1a1. Note that the τf (g) is a monic polynomial of degree
n
d and so we can define recursively the ith Tschirnhausen transform of g to be τ if (g) = τf (τ

(i−1)
f (g))

with τ1f (g) = τf (g). By [2], τf (g) = g if and only if a1 = 0 if and only if deg(f − gd) < n− n
d . In this

case g is said to be the dth approximate root of f . For every divisor d of n there exists a unique dth

approximate root of f . We denote it by App(f, d).

More generally let n = d1 > d2 > ... > dh be a sequence of integers such that di+1 divides di
for all i ∈ {1, ..., h − 1}, and set ei = di

di+1
, 1 ≤ i ≤ h − 1, and eh = +∞. For all i ∈ {1, ..., h}

let Gi be a polynomial of degree n
di

(in particular degYG1 = 1) and let G = (G1, . . . , Gh). Let

B = {b = (b1, ..., bh) ∈ Nh, 0 ≤ bi < ei ∀1 ≤ i ≤ h}. Then f can be written in a unique way as
f =

∑
b∈B cbG

b1
1 . . . Gbhh . We call this expression the G−adic expansion of f .
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2 Line Free Cones

In this section we recall the notion of line free cones, which will be used later in the paper. Let C ⊆ Re.
We say that C is a cone if for all s ∈ C and for all λ ≥ 0, λs ∈ C. A cone C is said to be finitely
generated if there exists a finite subset {s1, ..., sk} of C such that for all s ∈ C,

s = λ1s1 + . . .+ λksk

for some λ1, ..., λk ∈ R. If s1, . . . , sk can be chosen to be in Qe, then C is said to be rational. From
now on we suppose that all considered cones are finitely generated and rational.

Definition 1 Let C be a cone, then C is said to be a line free cone if ∀v ∈ C − {0}, −v /∈ C.

Given a line free cone, we can define the set of formal power series in several variables with exponents in
C, denoted KC [[x]]. More precisely an element y ∈ KC [[x]] is of the form y =

∑
p=(p1,...,pe)∈C αpx

p1
1 . . . xpee .

It follows from [8] that this set is a ring.

Definition 2 Let ≤ be a total order on Ze, then ≤ is said to be additive if for all m,n, k ∈ Ze we
have : m ≤ n =⇒ m+ k ≤ n+ k. An additive order on Ze is said to be compatible with a cone C if
m ≥ 0 = (0, ..., 0) for all m ∈ C ∩ Ze.

With these notations we have the following:

Proposition 2 (see [8]) Let C is a line free cone. There exists an additive total order ≤ which is
compatible with C. Moreover, if ≤ is such an total orde, then ≤ is a well-founded order on C∩Ze, i.e,
every subset of C ∩Ze contains a minimal element with respect to the chosen order, and this minimal
element is unique.

Let y =
∑

p cpx
p be an element in KC [[x]]. The support of y, denoted Supp(y), is defined to be the

set of elements p ∈ C such that cp 6= 0. It results from Proposition 2 that elements in Supp(y) can be
written as an increasing sequence with respect to the chosen additive order on C.

We shall now introduce the notion of free polynomials.

Definition 3 Let C be a line free cone and let f = yn + a1(x)yn−1 + . . .+ an(x) ∈ KC [[x]][y]. Then

f is said to be a free polynomial if f is irreducible in KC [[x]][y] and if it has a root y(x) in KC [[x
1
n ]].

3 Characteristic sequences of a free polynomial

In this section we will introduce the set of characteristic sequences associated with a free polynomial
as well as its semigroup. Let C be a line free cone and let ≤ be an additive order on Ze compatible
with C. Let f ∈ KC [[x]][y] be a free polynomial and let y ∈ KC [[x

1
n ]] be a root of f . Let L be the field

of fractions of KC [[x]] and set L1 = L(x
1
n
1 ), L2 = L1(x

1
n
2 ), ..., Ln = Ln−1(x

1
n
e ) = L(x

1
n
1 , ..., x

1
n
e ). Then

Ln is a galois extension of L of degree ne. Let finally Un be the set of nth roots of unity in K.
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Let θ ∈ Aut(Ln/L). For all i = 1, ..., e we have θ(x
1
n
i ) = ωix

1
n
i for some ωi ∈ Un. Then θ(x

p

n ) = kx
p

n ,
where k is a non zero element of K. Let Roots(f) = {y1, . . . , yn} be the conjugates of y over L,

with the assumption that y1 = y =
∑
cpx

p

n . Then for all 2 ≤ i ≤ n there exists an automorphism

θ ∈ Aut(Ln/L) such that yi = θ(y), hence yi = θ(y) =
∑
cpkpx

p

n , kp ∈ K∗, and consequently
Supp(y) = Supp(yi).

Let z(x) ∈ KC [[x
1
n ]]. Then Supp(z(x)) can be arranged into an increasing sequence with respect to

≤. We define the the order of z, denoted O(z), to be O(z) = inf≤(Supp(z)) if z 6= 0, and O(0) = −∞.

We set LM(z) = x
p

n where p = O(z), and we call it the leading monomial of z. We set LC(z) = cO(z)

and we call it the leading coefficient of z. We finally set Info(z) = LC(z)LM(z) and we call it the
initial form of y.

Definition 4 Let the notations be as above with {y1, ..., yn} = Roots(f) and y1 = y. The set of
characteristic exponents of f is defined to be {O(yi − yj), yi 6= yj}. Similarly we define the set of
characteristic monomials of f to be {LM(yi − yj), yi 6= yj}.

Next we will give some properties of the set of characteristic exponents.

Proposition 3 Let the notations be as above. Then the set of characteristic exponents of f is equal
to the set {O(yk − y), yk 6= y}. In particular the set of characteristic monomials of f is given by
{LM(yk − y), k = 2, ..., n} = {LM(θ(y)− y), θ(y) 6= y, θ ∈ Aut(Ln/L)}.

Proof. We only need to prove that any characteristic exponent is of the form O(yk − y) for some k.
Let 1 ≤ i 6= j ≤ n and let cij = LC(yi− yj) and Mij = LM(yi− yj), then yi− yj = cijMij + εij where
εij ∈ Ln and O(εij) > O(Mij). Let θ ∈ Aut(Ln/L), such that θ(yj) = y, then θ(yi) = yk for some
1 ≤ k ≤ n, and θ(yi− yj) = θ(yi)− θ(yj) = yk − y = ck1Mk1 + εk1 = θ(cijMij + εij) = cijαMij + θ(εij)
with α 6= 0, O(εk1) > O(Mk1), and O(θ(εij)) > O(Mij). Hence Mk1 = Mij = LM(yi − yj). This
proves our assertion.�

Let {M1, . . . ,Mh} be the set of characteristic monomials of f and write Mi = x
mi
n . Then {m1, . . . ,mh}

is the set of characteristic exponents of f . We shall suppose that m1 < m2 < ... < mh.

Proposition 4 Let the notations be as above. We have L(y) = L(M1, ...,Mh).

Proof. Let θ ∈ Aut(Ln/L(y)), then θ is an L-automorphism of Ln with θ(y) = y. We have θ(y) =

θ(
∑
cpx

p

n ) =
∑
cpθ(x

p

n ) =
∑
cpkpx

p

n = y =
∑
cpx

p

n , with kp 6= 0 for all p ∈ Supp(y), and so

θ(x
p

n ) = x
p

n . Hence x
p

n ∈ L(y) for all p ∈ Supp(y). In particular, since M1, ...,Mh are monomials of y,
then M1, ...,Mh ∈ L(y), and so L(M1, ...,Mh) ⊂ L(y). Conversely, if θ ∈ Aut(Ln/L(M1, ..,Mh)), i.e if
θ is an L automorphism of Ln such that θ(Mi) = Mi ∀ i = 1, ..., h, then θ(y) = y. In fact if θ(y) 6= y
then θ(y) − y = cMi + εi for some characteristic monomial Mi, hence θ(Mi) 6= Mi which contradicts
the hypothesis. This proves our assertion.�

Note that for all i ∈ {1, ..., h}, L(M1, ...,Mi) = L[M1, ...,Mi] since Mi is algebraic over L.

Proposition 5 Let the notations be as above. If m ∈ Ze ∩ Supp(y) then m ∈ (nZ)e +
∑h

i=1miZ.
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Proof. Write M = x
m
n . Since M is a monomial of y, then M ∈ L(y) = L[M1, ...,Mh], hence

M = f1
g1
M

α1
1

1 . . .M
α1
h

h + . . . + fl
gl
M

αl1
1 . . .M

αlh
h for some f1, ..., fl, g1, ..., gl ∈ KC [[x]] and l ∈ N∗, and

so g1 . . . glM = f1g2 . . . glM
α1
1

1 . . .M
α1
h

h + . . . + flg1 . . . gl−1M
αl1
1 . . .M

αlh
h . Comparing both sides we

get that xb = LM(g1 . . . glM) = xaM
αi1
1 . . .M

αih
h for some i ∈ {1, ..., l} and a ∈ Ze. In particular

nb+m = na+ αi1m1 + ...+ αihmh, and so m = n(a− b) + αi1m1 + ...+ αihmh ∈ (nZ)e +
∑h

i=1miZ.�

Remark 1 Write F0 = L and for all i ∈ {1, . . . , h}, Fi = L[M1, ...,Mi] = Fi−1[Mi]. Also let G0 =
(nZ)e and for all i ∈ {1, . . . , h}, Gi = (nZ)e +

∑i
j=1mjZ. As in Proposition 5, we can prove that for

any monomial M = x
m
n with m ∈ C, we have M ∈ Fi ⇔ m ∈ Gi.

Next we will define the set of characteristic sequences associated with f .

Definition 5 Let the notations be as above and let {m1, ...,mh} be the set of characteristic exponents
of f . Let Ie be the e× e identity matrix. We shall introduce the following sequences:
• The GCD-sequence {Di}1≤i≤h+1, where D1 = ne and for all i ∈ {1, ..., h}, Di+1 = gcd(nIe,m

T
1 , .

..,mT
i ), the gcd of the (e, e) minors of the e× (e+ i) matrix (nIe,m

T
1 , ...,m

T
i ).

• The d-sequence {di}1≤i≤h+1, where di = Di
Dh+1

.

• The e-sequence {ei}1≤i≤h, where ei = Di
Di+1

= di
di+1

.

• The r-sequence {r10, ..., re0, r1, ..., rh}, where (r10, ...r
e
0) is the canonical basis of (nZ)e, r1 = m1, and

for all i ∈ {2, ..., h} ri = ei−1ri−1+mi−mi−1. Note that for all i ∈ {2, ..., h}, ridi = r1d1+
∑i

k=2(mk−
mk−1)dk =

∑i−1
k=1(dk − dk+1)mk +midi.

Remark 2 Let the notations be as in Definition 5 and let v be a non zero vector in Ze. Let D̃
be the gcd of the (e, e) minors of the matrix (nIe,m

T
1 , ...,m

T
i , v

T ), then v ∈ (nZ)e +
∑i

j=1mjZ if

and only if Di+1 = D̃. More generally, Di+1

D̃
.v ∈ (nZ)e +

∑i
j=1mjZ and if Di+1 > D̃ then for all

1 ≤ k < Di+1

D̃
, kv /∈ (nZ)e +

∑i
j=1mjZ.

Proposition 6 For all i = 1, ..., h− 1 let Hi = L(M = x
m
n ,m ∈ Supp(y),m < mi+1). Then we have

(i) Fi = Hi and mi does not belong to Fi−1
(ii) [Fi : Fi−1], the degree of extension of Fi over Fi−1, is equal to ei.

Proof. (i) Since mj < mi+1 for all j = 1, ..., i, then m1, ...,mi ∈ Hi, and so Fi ⊆ Hi. In order to
prove that Hi ⊆ Fi, consider a monomial M of y such that M < Mi+1. For each θ ∈ Aut(Ln/Fi),
θ is an L automorphism of Ln and θ(Mj) = Mj for all j < i + 1. Hence LM(θ(y) − y) ≥ Mi+1,
and so θ(M) = M for all M < Mi+1, hence M ∈ Fi. Finally we get that Hi = Fi. Now to prove
that mi /∈ Fi−1, let θ ∈ Aut(Ln\L) such that θ(y) − y = cMi + ε with O(ε) > mi and c a non zero
constant (such a θ obviously exists since Mi is a characteristic monomial of f), then θ(Mj) = Mj for
all j = 1, ..., i − 1 and θ(Mi) 6= Mi, and so θ ∈ Aut(Ln\Fi−1) with θ(Mi) 6= Mi, hence Mi does not
belong to Fi−1.
(ii) Since Mi /∈ Fi−1, then mi /∈ Gi−1, and so Di > Di+1. Moreover eimi ∈ Gi−1 and for all 0 < α < ei
we have αmi /∈ Gi−1. Now let g = yl+a1y

l−1 + ...+al be the minimal polynomial of Mi over Fi−1 and

suppose that l < ei. Since g(Mi) = 0, then there exists some k ∈ {0, ..., l−1} such that xl
mi
n = x

α
nx

kmi
n

for some α ∈ Gi−1, and so (l − k)mi = α ∈ Gi−1 with 0 < l − k < ei which is a contradiction. Hence

l ≥ ei. But g divides Y ei − xei·
mi
n . Hence g = Y ei − xei·

mi
n , and consequently [Fi : Fi−1] = ei.�
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Proposition 7 Let the notations be as above. For all i ∈ {1, ..., h} we have eiri ∈ (nZ)e +
∑i−1

j=1 rjZ.

Moreover, αri /∈ (nZ)e +
∑i−1

j=1 rjZ for all 1 ≤ α < ei.

Proof. We can easily prove that ri = mi +
∑i−1

j=1(ej − 1)rj for all i ∈ {2, ..., h}, hence each of

the sequences (mk)1≤k≤h and (rk)1≤k≤h can be obtained from the other and (nZ)e +
∑i

j=1 rjZ =

(nZ)e+
∑i

j=1mjZ for all i ∈ {1, ..., h}. In particular, for all α ∈ N, αri ∈ (nZ)e+
∑i−1

j=1 rjZ if and only

if αmi ∈ (nZ)e+
∑i−1

j=1mjZ. Let i ∈ {1, ..., h}. By Remark 2, eimi = Di
Di+1

mi ∈ (nZ)e+
∑i−1

j=1mjZ and

αmi /∈ (nZ)e+
∑i−1

j=1mjZ for all 1 ≤ α < ei. Hence eiri ∈ (nZ)e+
∑i−1

j=1 rjZ and αri /∈ (nZ)e+
∑i−1

j=1 rjZ
for all 1 ≤ α < ei.�

Remark 3 Since [L(y) : L] = n, then it follows from proposition 6 that [L(y) : L] = e1 . . . eh = D1
Dh+1

.

But [L(y);L] = n and D1 = ne, hence Dh+1 = ne−1. It follows that d1 = n and dh+1 = 1.

For all i ∈ {1, . . . , h}, define the following sets: Q(i) = {θ ∈ Aut(Ln/L)|O(y − θ(y)) < mi}, R(i) =
{θ ∈ Aut(Ln/L)|O(y − θ(y)) > mi} and S(i) = {θ ∈ Aut(Ln/L)|O(y − θ(y)) = mi}. With these
notations we have the following:

Proposition 8 #R(i) = Di and #S(i) = Di −Di+1, where # stand for the cardinality.

Proof. We have θ ∈ R(i) ⇔ θ(Mj) = Mj for all j < i ⇔ θ ∈ Aut(Ln/L(M1, ...,Mi−1)), hence
#R(i) = #Aut(Ln/L(M1, ...,Mi−1)) = [Ln : L(M1, ...,Mi−1)] = [Ln : Fi−1]. By proposition 6 we have
[Fi−1 : L] = [Fi−1 : Fi−2] · · · [F1 : L] = ei−1 · · · e1 = D1

Di
= ne

Di
. But [Ln : L] = [Ln : Fi−1][Fi−1 : L] = ne,

then [Ln : Fi−1] = Di, and so #R(i) = Di. Now R(i + 1) ⊂ R(i) and θ ∈ S(i) if and only if
O(y − θ(y)) = mi if and only if θ ∈ R(i) and θ /∈ R(i+ 1), hence #S(i) = Di −Di+1. �

The statement and the proof of Proposition 8 imply the following: for all i ∈ {1, . . . , h}, let R̃(i) =
{yk|O(y − yk) ≥ mi} and S̄(i) = {yk|O(y − yk) = mi}. We have:

Proposition 9 #R̃(i) = di and #S̃(i) = di − di+1.

3.1 Pseudo roots, semigroup, and approximate roots of a free polynomial

Let the notations be as above. For all i ∈ {1, ..., h} we will define a specific free polynomial Gi, called
the ith pseudo root of f such that O(Gi(x, y(x))) = ri. Also we will define the semigroup Γ(f) of f and
we will construct a system of generators of Γ(f). Finally we will prove that O(f,App(f, di)) = ri for

all i ∈ {1, . . . , h}. Let y(x) =
∑
cpx

p

n be a root of f and let m ∈ Supp(y). We set y<m =
∑

p<m cpx
p

n

and we call y<m the m-truncation of y.

Definition 6 For all i ∈ {1, . . . , h}, we define the ith pseudo root of f to be the minimal polynomial
of y<mi over L. We denote it by Gi.

In the following we shall study the properties of Gi. In particular we shall prove that O(f,Gi) = ri.

Proposition 10 Let the notations be as above. For all i = 1, ..., h, degy(Gi) = ne

Di
= n

di
.
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Proof. By proposition 6 we have L(y<mi) = L(M1, ..,Mi−1). In particular degy(Gi) = [L(y<mi) : L] =
[L(M1, ...,Mi−1) : L] = ne

Di
= n

di
.�

Proposition 11 The polynomial Gi is free, and its characteristic exponents are m1
di
, ..., mi−1

di
.

Proof. The polynomial Gi is free from the definition. We shall prove that y<mi ∈ KC [[x
1
n
di ]].

Let x
λ
n be a monomial of y<mi , then λ ∈ (nZ)e +

∑i−1
j=1mjZ. Let D be the gcd of the minors

of the matrix (m1
0, ...,m

e
0,m1, ...,mi−1, λ), then D = Di. For all l ∈ {1, ..., e} the matrix Al =

(m1
0, ...,m

l−1
0 , λ,ml+1

0 , ...,me
0) is one of the minors of the matrix (m1

0, ...,m
e
0,m1, ...,mi−1), then Di

divides Det(Al). Write λ = (λ1, ..., λe), then obviously Det(Al) = ne−1λl, and so Di divides ne−1λl
for all l ∈ {1, ..., e}. It follows that ne−1λ

Di
= λ

di
∈ Ze. Moreover, since λ ∈ C, and 1

di
≥ 0, then λ

di
∈ C.

Hence x
λ
n = x

λ′
n
di where λ′ = λ

di
, and so x

λ
n ∈ KC [[x

1
n
di ]].

Let θ(y<mi) be a conjugate of y<mi , then obviously LM(θ(y<mi) − y<mi) = x
mj
n for some j ∈

{1, ..., i− 1}. But
mj
n =

mj
di
n
di

, hence the set of characteristic monomials of Gi is {m1
di
, ..., mi−1

di
}.�

Proposition 12 Let the notations be as above. For all i ∈ {1, . . . , h}, we have O(f(x, y<mi(x)) =
ridi
n

.

Proof. We have f(x, y<mi) =
∏n
k=1(y<mi − yk) with the assumption that y = y1. Clearly O(y<mi −

yk) = O(y1−yk) ifO(y1−yk) < mi
n and mi

n otherwise. It follows from Proposition 9 thatO(
∏n
k=1(y<mi−

yk) = 1
n(
∑i−1

k=1(dk − dk+1)mk + dimi), which is equal to
ridi
n

by Definition 5.�

Let g = ym + b1(x)ym−1 + . . .+ bm(x) be free polynomial of KC [[x]][y] and let z1, . . . , zm be the set of

roots of g in K[[x
1
m ]]. We set O(f, g) =

∑n
i=1O(g(x, yi(x)). Clearly O(f, g) =

∑m
j=1O(f(x, zj(x)) =

O(g, f) = O(Resy(f, g)), where Res stand for the y-resultant of f, g. As a corollary of Proposition 12
we get the following:

Corollary 1 With the notations above, we have O(f,Gi) = ri

Proof. In fact, O(f,Gi) = O(Gi, f) = n
di
O(f(x, y<mi)) = ri.�

As a corollary we get the following:

Proposition 13 Let {G1, ..., Gh} be the set of pseudo roots of f . Let i ∈ {1, ..., h}, then we have
O(Gi, Gj) =

rj
di

for all j ∈ {1, ..., i− 1}.

Proof. This is an immediate consequence of Corollary 1 because G1, . . . , Gi−1 is the set of pseudo-

approximate roots of Gi and the r sequence of Gi is given by
r10
di
, . . . ,

re0
di
, r1di , . . . ,

ri−1

di
. �

Definition 7 Given g ∈ KC [[x]][y], f 6 |g, we set O(f, g) =
∑n

i=1O(g(x, yi)) = nO(g(x, y(x)). Clearly
O(f, g1g2) = O(f, g1)+O(f, g2). It follows that Γ(f) = {O(f, g)|g ∈ KC [[x]][y]\(f)} is a subsemigroup
of Ze. We call it the semigroup associated with f .
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In the following we will be prove that (r10, . . . , r
e
0, r1, . . . , rh) is a system of generators of Γ(f). We

shall need the following result:

Lemma 1 Let the notations be as above and let α = (α1
0, . . . , α

e
0, α1, . . . , rh), β = (β10 , . . . , β

e
0, β1, . . . , βh)

be two elements of Ze × Nh such that 0 ≤ αi, βi < ei for all i ∈ {1, . . . , h}. If a =
∑e

i=1 α
i
0r
i
0 +∑h

j=1 αjrj =
∑e

i=1 β
i
0r
i
0 +

∑h
j=1 βjrj then α = β.

Proof. Suppose that α 6= β and let k be the smallest integer ≥ 1 such that αi = βi for all i ≥ k + 1.

Suppose that αk > βk. We have (αk − βk)rk =
∑e

i=1(β
i
0 − αi0)ri0 +

∑k−1
j=1(βj − αj)rj . This contradicts

Proposition 7.�

Lemma 2 Let g ∈ KC [[x]][y] and suppose that f 6 |g. There exists a unique θ = (θ10, . . . , θ
e
0, θ1, . . . , θh) ∈

Ze×Nh such that 0 ≤ θj < ej for all j ∈ {1, . . . , h} and O(f, g) =
∑e

i=1 θ
i
0r
i
0+

∑h
j=1 θjrj. In particular

Γ(f) is generated by r10, . . . , r
e
0, r1, . . . , rh.

Proof. Let g =
∑

θ cθ(x)Gθ11 . . . Gθhh f
θh+1 be the expansion of g with respect to (G1, . . . , Gh, f) and

recall that for all θ, if cθ 6= 0 then θ = (θ1, ..., θh+1) ∈ {(β1, ..., βh+1) ∈ Nh+1, 0 ≤ βj < ej ∀j =
1, ..., h}. The hypothesis implies that there exists at least one θ such that cθ 6= 0 and θh+1 = 0. Let

M = cθ(x)Gθ11 . . . Gθhh , N = cθ′(x)G
θ′1
1 . . . G

θ′h
h be two distinct monomials of g. It follows from Lemma 1

that O(f,M) 6= O(f,N). Hence there exists a unique monomial M̃ of g such that O(f, g) = O(f, M̃).
This proves our assertion. �

Remark 4 In the Lemma above, if degyg < n
di

for some i ∈ {1, . . . , h}, then O(f, g) ∈ (nZ)e +∑i−1
k=1 rkN. Moreover, O(f, g) = diO(Gi, g). In fact, in this case, any monomial M of the expansion

of g with respect to (G1, . . . , Gh, f) is a monomial in G1, . . . , Gi−1. Hence this expansion coincides with
that of g with respect to (G1, . . . , Gi−1, Gi). If M is the unique monomial such that O(f, g) = O(f,M)
then M is the unique monomial such that O(Gi, g) = O(Gi,M). But O(f,M) = diO(Gi,M). This
proves our assertion.�

The next Proposition shows that we can calculate a system of generators of Γ(f) only with the set of
approximate roots of f .

Proposition 14 For all i ∈ {1, . . . , h}, let gi = App(f, di). We have O(f, gi) = ri.

Proof. Let i = h and consider the Gh-adic expansion of f , f = Gdhh +C1(x, y)Gdh−1h + . . .+Cdh(x, y) =∑dh
k=0Ck(x, y)Gdh−kh where C0 = 1 and Ck(x, y) ∈ KC [[x]][y] with degy(Ck(x, y)) < n

dh
for all

k = 1, ..., dh. Consider the Tschirnhausen transform of Gh with respect to f given by τf (Gh) =
Gh + d−1h C1(x, y). We have O(f,Gh) = rh, hence we need to prove that O(f, C1) > rh.

Let k ∈ {0, ..., dh− 1}. For all α 6= k, we have O(f, CαG
dh−α
h ) 6= O(f, CkG

dh−k
h ). In fact, suppose that

O(f, CαG
dh−α
h ) = O(f, CkG

dh−k
h ), that is O(f, Cα) + (dh − α)rh = O(f, Ck) + (dh − k)rh. Suppose

that α > k, then (α − k)rh = O(f, Cα) − O(f, Ck). But degy(Cα),degy(Ck) <
n
dh

, then by Remark
4, O(f, Cα), O(f, Ck) ∈ (nZ)e + r1Z + . . . + rh−1Z, and so (α − k)rh ∈ (nZ)e + r1N + . . . + rh−1N,
with 0 < α − k < dh = eh. This contradicts Proposition 7. Now a similar argument shows that
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O(f, CkG
dh−k
h ) = O(f, Ck) + (dh − k)rh 6= O(f, Cdh). As f(x, y(x)) = 0, we get that O(f, Cdh) =

O(f,Gdhh ) = rhdh < O(CkG
dh−k
k , hence O(f, Ck) > krh. This is true for k = 1, consequently

O(f, C1) > rh, and O(f, τf (Gh)) = rh. Repeating this process, we get that O(f, τ lf (Gh)) = rh for

all l ≥ 1. But gh = App(f, dh) = τ l0f (Gh) for some l0. Hence O(f, gh) = rh.
Now suppose that O(f, gk) = rk for all k > i, and let us prove that O(f, gi) = ri. Note that
gi = App(gi+1, ei). Let

gi+1 = Geii + β1(x, y)Gei−1i + . . .+ βei(x, y) (1)

be the Gi−adic expansion of gi+1 and consider O(f, gi+1). For all k ∈ {1, . . . , ei}, O(f, βkG
ei−k
k ) =

O(f, βk) + (ei − k)ri. But O(f, βk) ∈ (nZ)e +
∑i−1

j=1 rjN because degyβk) <
n
di

, and ri+1 /∈ (nZ)e +∑i
j=1 rjN. Now a similar argument as above shows that riei = O(f,Geii ) = O(f, βei) < O(β1G

ei−1
i ).

Hence O(f, β1) > ri. In particular

O(f, τgi+1(Gi)) = O(f,Gi +
1

ei
β1) = ri

Applying the same process to f and τgi+1(Gi) instead of f and Gi. We get that O(f, τ2gi+1
(Gi)) = ri.

But gi = τ ligi+1
(Gi)) for some li, hence O(f, gi) = O(f, τ eigi+1

(Gi)) = ri. This proves our assertion. �

Remark 5 The semigroup Γ(f) is a free affine semigroup with respect to the arrangement (r10, . . . , r
e
0,

r1, . . . , rh) (see [6] for the definition and properties of free affine semigroup). This explains the notion
of free polynomials introduced in the paper.

4 Solutions of formal power series

Let f(x, y) = yn + a1(x)yn−1 + · · · + an−1(x)y + an(x) be a polynomial of degree n in K[[x]][y]. In
this Section we shall prove that, modulo an automorphism of K[[x]][y], and under an irreducibility
condition, f is free in KC [[x]][y] for some specific line free cone C. Let ∆(x) be the discriminant of f in
y, and write ∆(x) =

∑
p∈Ne cpx

p =
∑

d≥0 ud(x) where for all d ≥ 0, ud is the homogeneous component

of degree d of ∆. Let a = inf{d, ud 6= 0}. If a = 0, then f is a quasi-ordinary polynomial. Suppose
that a > 0, and, without loss of generality, that ua /∈ K[[x2, . . . , xe]]. In the next remark we will
show how to prepare our polynomial so that the smallest homogeneous component ua of ∆ contains
a monomial in x1.

Remark 6 (Preparation) Consider the mapping ξ : K[[x]] 7→ K[[x]], defined by ξ(x1) = X1 and
ξ(xi) = Xi + tX1 for all i ∈ {2, ..., e}, where t is a parameter to be determined. Let ψ : K[[x]][y] 7→
K[[X]][y] be the map defined as follows: if H = h0(x)ym + . . . + hm−1(x)y + hm(x) ∈ K[[x]][y] then
ψ(H) = ξ(h0(x))ym+. . .+ξ(hm−1(x))y+ξ(hm(x)). Then we easily prove that ψ is an isomorphism. If
∆′ is the discriminant of ψ(f) and if vd(X) = ud(X1, X2 + tX1, ..., Xe+ tX1) then ∆′ =

∑
d≥a vd. But

vd(X) = εd(t)X
d
1 + v′d, where v′d is a homogeneous polynomial of degree d, and εd(t) is a polynomial

in t. Since K is an infinite filed, then we can choose t ∈ K such that εa(t) 6= 0.

In the following we shall say that a polynomial f is prepared if it satisfies the condition of Remark 6,
i.e. its discriminant is of the form ∆ =

∑
d≥0 ud such that the smallest homogeneous component is

of the form ua = cax
a
1 + u′a with ca 6= 0 and u′a ∈ K[x]. The next proposition shows that a prepared

polynomial is birationally equivalent to a quasi-ordinary polynomial.
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Proposition 15 With the notations above, if f is a prepared polynomial then F (X1, ..., Xe, y) =
f(X1, X2X1, . . . , XeX1, y) is a quasi-ordinary polynomial.

Proof. Let ∆ be the discriminant of f . The discriminant ∆N of F is ∆N = ∆(X1, X2X1, . . . , XeX1).
Write ∆ =

∑
d≥a ud, where ud is the homogeneous component of degree d of ∆ and ua 6= 0, then

∆N =
∑

d≥awd(X) with wd(X) = ud(X1, X2X1, . . . , XeX1). For all d ≥ a, we have

wd(X) = Xd
1ud(1, X2, . . . , Xe) = Xd

1 (cd + εd(X1, ..., Xe)) = Xa
1X

d−a
1 (cd + εd(X1, ..., Xe))

where cd ∈ K and εd(0, . . . , 0) = 0. Since f is prepared, then ca 6= 0, hence ∆N = Xa
1 (ca + ε(X) and

ε(X) is a non unit in K[[X]]. So F is a quasi-ordinary polynomial. �

We will now introduce the following line free cone.

Proposition 16 The set C = {(c1, ..., ce) ∈ Re, c1 ≥ −(c2 + . . . + ce), ci ≥ 0 ∀ 2 ≤ i ≤ e} is a line
free convex cone.

Proof. Let c = (c1, ..., ce) ∈ C and λ ≥ 0, then obviously λc ∈ C, hence C is a cone. Moreover, if
c = (c1, ..., ce), c

′ = (c′1, ..., c
′
e) ∈ C, then c+ c′ ∈ C, and so C is a convex cone. Let c = (c1, ..., ce) ∈ C

such that c 6= 0, and let us prove that −c = (−c1, ...,−ce) /∈ C. We have ci ≥ 0 for all i ∈ {2, ..., e}.
If ci > 0 for some i ∈ {2, ..., e}, then obviously −c = (−c1, ...,−ce) /∈ C. If ci = 0 for all i ∈ {2, ..., e},
then c1 ≥ −(c2 + . . .+ ce) = 0, but c 6= 0, then c1 > 0, and so −c = (−c1, 0, ..., 0) /∈ C. Hence C is a
line free cone.�

y

x

Along this Section, C will denote the cone defined in proposition 16.

Lemma 3 Let Y (X) be an element of K[[X]]. If y(x) = Y (x1, x2x
−1
1 , . . . , xex

−1
1 ) then y(x) ∈ KC [[x]].

Proof. Write Y (X) =
∑

a γaX
a, then y(x) =

∑
a γax

a1−(a2+...+ae)
1 xa22 . . . xaee . In particular Supp(y) =

{(a1−(a2+. . .+ae), a2, ..., ae), a ∈ Supp(Y )}. As a1 ≥ 0, we have (a1−(a2+. . .+ae) ≥ −(a2+. . .+ae),
hence y(x) ∈ KC [[x]].�

The following proposition characterizes the irreducibility of elements of K[[x]][y] in KC [[x]][y].

Proposition 17 With the notations above, f is irreducible in KC [[x]][y] if and only if F (X1, ..., Xe, y) =
f(X1, X2X1, ..., XeX1, y) is irreducible in K[[X]][y].

Proof. Suppose that f is irreducible in KC [[x]][y]. If F is reducible in K[[X]][y], then there exist
monic polynomials G,H ∈ K[[X]][y] such that F = GH and 0 < degy(G), degy(H) < n. But
f(x1, ..., xe, y) = F (x1, x2x

−1
1 , . . . , xex

−1
1 , y). Then:

f(x1, ..., xe, y) = G(x1, x2x
−1
1 , . . . , xex

−1
1 , y)H(x1, x2x

−1
1 , . . . , xex

−1
1 , y).
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Let g(x, y) = G(x1, x2x
−1
1 , . . . , xex

−1
1 , y) and h(x, y) = H(x1, x2x

−1
1 , . . . , xex

−1
1 , y). Let m = degy(G)

and write G(X, y) = ym + a1(X)ym−1 + ... + am(X), where ai(X) ∈ K[[X]] for all i = 1, ...,m. We
have:

g(x, y) = ym + a1(x1, x2x
−1
1 , . . . , xex

−1
1 )ym−1 + ...+ am(x1, x2x

−1
1 , . . . , xex

−1
1 )

Since ai(X) ∈ K[[X]] for all i = 1, ...,m, then by Lemma 3 we get that ai(x1, x2x
−1
1 , . . . , xex

−1
1 ) ∈

KC [[x]] for all i = 1, ...,m. It follows that g ∈ KC [[x]][y]. Similarly we can prove that h ∈ KC [[x]][y].
Hence f = gh with 0 < degy(g) = degy(G) < n and 0 < degy(h) = degy(H) < n = degy(f), and
so f is reducible in KC [[x]][y], which is a contradiction. Conversely suppose that F is an irreducible
polynomial in K[[X]][y]. If f is reducible in KC [[x]][y], then there exist h1, h2 ∈ KC [[x]][y] such that
f = h1h2 with 0 < degy(h1), degy(h2) < degy(f). Given a(x) =

∑
cax

a1
1 . . . xaee ∈ KC [[x]], we have

a(X1, X2X1, ..., XeX1) =
∑

caX
a1
1 (X2X1)

a2 . . . (XeX1)
ae =

∑
caX

a1+a2+...+ae
1 Xa2

2 . . . Xae
e

Since a(x) ∈ KC [[x]], then a1 ≥ −(a2 + . . . + ae) for all (a1, ..., ae) ∈ Supp(a(x)). It follows that
a1 + a2 + . . .+ ae ≥ 0 for all (a1, ..., ae) ∈ Supp(a(x)). Hence, a(X1, X2X1, ..., XeX1) ∈ K[[X]]. Then
h1(X1, X2X1, ..., XeX1, y), h2(X1, X2X1, ..., XeX1, y) ∈ K[[X]][y]. But

F (X1, ..., Xe, y) = f(X1, X2X1, ..., XeX1, y) = h1(X1, X2X1, ..., XeX1, y)h2(X1, X2X1, ..., XeX1, y).

This contradicts the hypothesis.�

In the following we give a characterization for the polynomial f to be free.

Proposition 18 Suppose that f is a prepared polynomial. If f is irreducible in KC [[x]][y], then it is
free.

Proof. By Proposition 15, F (X1, ..., Xe, y) = f(X1, X2X1, . . . , XeX1, y) is a quasi-ordinary polyno-
mial of K[[X]][y], and by Proposition 17 we get that F is an irreducible quasi-ordinary polynomial in
K[[X]][y] of degree n, then by the Abhyankar-Jung theorem there exists a formal power series Z in

K[[X
1
n
1 , ..., X

1
n
e ]] such that F (X,Z(X) = 0. But F (X,Z(X)) = f(X1, X2X1, . . . , XeX1, Z(X)), then

f(x1, x2, ..., xe, Z(x1, x2x
−1
1 , . . . , xex

−1
1 )) = 0. It follows that Z(x1, x2x

−1
1 , . . . , xex

−1
1 ) is a solution of

f(x1, ..., xe, y) = 0. Since Z(X) ∈ K[[X
1
n ]], then by Lemma 3 we deduce that Z(x1, x2x

−1
1 , . . . , xex

−1
1 ) ∈

KC [[x
1
n ]]. This proves our assertion.�

Remark 7 In Propositions 17 and 18, if F (X) = f(X1, X2X1, . . . , XeX1) is not irreducible, then
it decomposes into quasi-ordinary polynomials, hence f itself decomposes into free polynomials in
KC [[x]][y]. As for reducible quasi-ordinary polynomials, we can associate with f the set of characteristic
sequences of its irreducible components as well as a semigroup defined from the set of semigroups of
these components.

Next we prove that the approximate roots of a prepared free polynomial are free polynomials.

Proposition 19 Suppose that f is prepared and let d be a divisor of n. If f is free in KC [[x]][y] then
App(f, d) is also free.
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Proof. By Propositions 15, 18 and Lemma 17, the polynomial F (X, y) = f(X1, X2X1, . . . , XeX1, y)
is an irreducible quasi-ordinary polynomial of K[[X]][y]. Let G = App(F, d). We have F = Gd +
C2(X, y)Gd−2 + . . . + Cd(X, y), with degy(Ci) <

n
d for all i ∈ {2, ..., d}. Hence, f(x1, ..., xe, y) =

F (x1, x2x
−1
1 , . . . , xex

−1
1 , y) = gd(x, y)+C ′2(x, y)gd−1(x, y)+ . . .+C ′d(x, y) where g(x, y) = G(x1, x2x

−1
1 ,

. . . , xex
−1
1 , y) and C ′i(x, y) = Ci(x1, x2x

−1
1 , . . . , xex

−1
1 , y) for all i ∈ {2, ..., d}. By lemma 3 we have

g, C ′i ∈ KC [[x]][y] for all i ∈ {2, ..., n}. Since degy(C
′
i) <

n
d for all i ∈ {2, ..., d} and degy(g) = n

d
we get that g = App(f, d) in KC [[x]][y]. But f ∈ K[[x]][y] and K[[x]][y] ⊆ KC [[x]][y], then g =
App(f, d) in K[[x]][y] . Since G is the approximate root of an irreducible quasi-ordinary polynomial

then it is an irreducible quasi-ordinary polynomial, and G admits a root in K[[x
1
n
d ]]. But g(x, y) =

G(x1, x2x
−1
1 , . . . , xex

−1
1 , y), then by a similar argument as in Proposition 18 we get that g admits a

root in KC [[x
1
n
d ]]. Moreover g is irreducible in KC [[x]][y] by lemma 17. Hence g is free.�
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