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Introduction

Let K be an algebraically closed field of characteristic zero and let K [[x]] be the ring of formal power series in x = (x 1 , . . . , x e ) over K. Let f = y n + a 1 (x)y n-1 + • • • + a n (x) be a nonzero polynomial of degree n in K[[x]][y]. Suppose that f is a quasi-ordinary polynomial, i.e its discriminant ∆ y (f )(the yresultant of f and its y-derivative), is of the form ∆ y (f ) = x α .ε(x), where ε(x) is a unit in K [[x]] (Note that this is always the case if e = 1). If f is irreducible then, by the Abhyankar-Jung theorem, there exists y = p c p x p ∈ K[[x

n ]] such that f (x, y) = 0. Define the support of y to be the set Supp(y) = {p ∈ N e |c p = 0}. In [START_REF] Lipman | Quasi-ordinary singularities of embedded surfaces[END_REF], Lipman proved that there exists a sequence of elements m 1 n , ..., m h n ∈ Supp(y) such that:

(i) m 1 < m 2 < • • • < m h coordinate wise. (ii) If m n ∈ Supp(y), then m ∈ (nZ) e + h i=1 m i Z.
Moreover, m i / ∈ (nZ) e + j<i m j Z for all i = 1, ..., h.

The semigroup of f is defined to be the set Γ(f ) = {O(f, g), g ∈ K[[x]][y]\(f )}, where O(f, g) is the order of the initial form of the y-resultant of f and g with respect to a fixed order on N e (we also have O(f, g) = ng(x, y(x). Now we can associate with f the following sequences: the D-sequence of f is defined to be D 1 = n e , and for all 1 ≤ i ≤ h, D i is the gcd of the (e, e) minors of the matrix [nI e , m T 1 , ..., m T i ], where T denotes the transpose of a vector. We have D 1 > ... > D h+1 = n e-1 . Then 1 we define the e-sequence to be e i = D i D i+1 for all 1 ≤ i ≤ h, and the r-sequence r 1 0 , ..., r e 0 , r 1 , ..., r e to be r 1 = m 1 , r i = e i-1 r i-1 + m i -m i-1 for all 2 ≤ i ≤ h, and r 1 0 , ..., r e 0 is the canonical basis of Z e . The sequence {r 1 0 , ..., r e 0 , r 1 , ..., r h } is a system of generators of Γ(f ). Moreover, there exists a special set of polynomials g 1 , ..., g h (the approximate roots of f ), such that O(f, g i ) = r i for all i ∈ {1, ..., h}( see [START_REF] Assi | Irreducibility criterion for quasi-ordinary polynomials[END_REF]). The aim of this article is to generalize these results to a wider class of polynomials. Namely let C be a line free rational convex cone in R e and let K C [[x]] be the ring of power series whose exponents are in C. Let f = y n + a 1 (x)y n-1 + • • • + a n (x) be a nonzero polynomial of K C [[x]][y]. We say that f is free if it is irreducible in K C [[x]][y] and if it has a root (then all its roots) y(x)

∈ K C [[x 1 n ]].
Note that irreducible quasi-ordinary polynomials are free with respect to the cone R e + . In general, we associate with a free polynomial f its set of characteristic exponents and characteristic sequences. We also associate with f its set of pseudo-approximate roots and we prove that the set of orders (with respect to a fixed order on Z e ∩ C) of these polynomials generate the semigroup of f , which is defined to be the set of orders of polynomials of K C [[x]][y]. Finally we prove that the semigroup is also generated by the set of orders of approximate roots of f (see Section 3). Note that the semigroup is free in the sense of [START_REF] Assi | The Frobenius vector of a free affine semigroup[END_REF]. This explain the notion of free polynomial. In Section 4 we apply our results to polynomials of K

[[x]][y] = K R e + [[x]][y]. An irreducible polynomial f ∈ K[[x]][y] is not free in general. Our main result is that f becomes free in K C [[x]][
y] for a specific cone, after a preparation result. More precisely let ∆ y (f ) be the y-discriminant of f . If f is a prepared polynomial (in the sense of Remark 4) then f is equivalent, modulo a birational transformation, to a quasi-ordinary polynomial F . This transformation is used in order to go from roots of F to roots of f , and these roots are in

K C [[x 1 
n ]] for the cone introduced in Proposition 17.

G-adic expansion and Approximate roots

In this section we recall the notion of G-adic expansion and the notion of approximate roots (see [START_REF] Abhyankar | Expansion Techniques in Algebraic Geometry[END_REF]). Let R[Y ] be the polynomial ring in one variable over an integral domain R.

Proposition 1 Let f be a polynomial of degree n in R[Y ] and let d be a divisor of n. Let g be a monic polynomial of degree n d , then there exist unique polynomials a 1 , ...,

a d ∈ R[Y ] with deg Y (a i ) < n d
for all i ∈ {1, ..., d} such that a i = 0, and

f = g d + a 1 g d-1 + . . . + a d .
This expression is called the g-adic expansion of f . The Tschirnhausen transform of g with respect to f is defined to be τ f (g) = g + d -1 a 1 . Note that the τ f (g) is a monic polynomial of degree n d and so we can define recursively the i th Tschirnhausen transform of g to be τ i f (g) = τ f (τ

(i-1) f (g)) with τ 1 f (g) = τ f (g). By [2], τ f (g) = g if and only if a 1 = 0 if and only if deg(f -g d ) < n -n d .
In this case g is said to be the d th approximate root of f . For every divisor d of n there exists a unique d th approximate root of f . We denote it by App(f, d).

More generally let n = d 1 > d 2 > ... > d h be a sequence of integers such that d i+1 divides d i for all i ∈ {1, ..., h -1}, and set

e i = d i d i+1 , 1 ≤ i ≤ h -1
, and e h = +∞. For all i ∈ {1, ..., h} let G i be a polynomial of degree

n d i (in particular deg Y G 1 = 1) and let G = (G 1 , . . . , G h ). Let B = {b = (b 1 , ..., b h ) ∈ N h , 0 ≤ b i < e i ∀1 ≤ i ≤ h}. Then f can be written in a unique way as f = b∈B c b G b 1 1 . . . G b h h .
We call this expression the G-adic expansion of f .

Line Free Cones

In this section we recall the notion of line free cones, which will be used later in the paper. Let C ⊆ R e . We say that C is a cone if for all s ∈ C and for all λ ≥ 0, λs ∈ C. A cone C is said to be finitely generated if there exists a finite subset {s 1 , ..., s k } of C such that for all s ∈ C, s = λ 1 s 1 + . . . + λ k s k for some λ 1 , ..., λ k ∈ R. If s 1 , . . . , s k can be chosen to be in Q e , then C is said to be rational. From now on we suppose that all considered cones are finitely generated and rational.

Definition 1 Let C be a cone, then C is said to be a line free cone if ∀v ∈ C -{0}, -v / ∈ C.

Given a line free cone, we can define the set of formal power series in several variables with exponents in

C, denoted K C [[x]]. More precisely an element y ∈ K C [[x]
] is of the form y = p=(p 1 ,...,pe)∈C α p x p 1 1 . . . x pe e . It follows from [START_REF] Monforte | Formal Laurent series in several variables[END_REF] that this set is a ring.

Definition 2 Let ≤ be a total order on Z e , then ≤ is said to be additive if for all m, n, k ∈ Z e we have : m ≤ n =⇒ m + k ≤ n + k. An additive order on Z e is said to be compatible with a cone C if m ≥ 0 = (0, ..., 0) for all m ∈ C ∩ Z e .

With these notations we have the following: Proposition 2 (see [START_REF] Monforte | Formal Laurent series in several variables[END_REF]) Let C is a line free cone. There exists an additive total order ≤ which is compatible with C. Moreover, if ≤ is such an total orde, then ≤ is a well-founded order on C ∩ Z e , i.e, every subset of C ∩ Z e contains a minimal element with respect to the chosen order, and this minimal element is unique.

Let y = p c p x p be an element in K C [[x]]. The support of y, denoted Supp(y), is defined to be the set of elements p ∈ C such that c p = 0. It results from Proposition 2 that elements in Supp(y) can be written as an increasing sequence with respect to the chosen additive order on C.

We shall now introduce the notion of free polynomials.

Definition 3 Let C be a line free cone and let

f = y n + a 1 (x)y n-1 + . . . + a n (x) ∈ K C [[x]][y]. Then f is said to be a free polynomial if f is irreducible in K C [[x]][y] and if it has a root y(x) in K C [[x 1 n ]].

Characteristic sequences of a free polynomial

In this section we will introduce the set of characteristic sequences associated with a free polynomial as well as its semigroup. Let C be a line free cone and let ≤ be an additive order on Z e compatible with C.

Let f ∈ K C [[x]][y] be a free polynomial and let y ∈ K C [[x 1 n ]] be a root of f . Let L be the field of fractions of K C [[x]] and set L 1 = L(x 1 n 1 ), L 2 = L 1 (x 1 n 2 ), ..., L n = L n-1 (x 1 n e ) = L(x 1 n 1 , ..., x
1 n e ). Then L n is a galois extension of L of degree n e . Let finally U n be the set of n th roots of unity in K.

Let θ ∈ Aut(L n /L). For all i = 1, ..., e we have θ(x

1 n i ) = ω i x 1 n i for some ω i ∈ U n . Then θ(x p n ) = kx p n ,
where k is a non zero element of K. Let Roots(f ) = {y 1 , . . . , y n } be the conjugates of y over L, with the assumption that y 1 = y = c p x p n . Then for all 2 ≤ i ≤ n there exists an automorphism θ ∈ Aut(L n /L) such that y i = θ(y), hence

y i = θ(y) = c p k p x p n , k p ∈ K * , and consequently Supp(y) = Supp(y i ). Let z(x) ∈ K C [[x 1 n ]].
Then Supp(z(x)) can be arranged into an increasing sequence with respect to ≤. We define the the order of z, denoted O(z), to be O(z) = inf ≤ (Supp(z)) if z = 0, and O(0) = -∞. We set LM (z) = x p n where p = O(z), and we call it the leading monomial of z. We set LC(z) = c O(z) and we call it the leading coefficient of z. We finally set Inf o(z) = LC(z)LM (z) and we call it the initial form of y.

Definition 4 Let the notations be as above with {y 1 , ..., y n } = Roots(f ) and y 1 = y. The set of characteristic exponents of f is defined to be {O(y i -y j ), y i = y j }. Similarly we define the set of characteristic monomials of f to be {LM (y i -y j ), y i = y j }.

Next we will give some properties of the set of characteristic exponents.

Proposition 3 Let the notations be as above. Then the set of characteristic exponents of f is equal to the set {O(y k -y), y k = y}. In particular the set of characteristic monomials of f is given by

{LM (y k -y), k = 2, ..., n} = {LM (θ(y) -y), θ(y) = y, θ ∈ Aut(L n /L)}.
Proof. We only need to prove that any characteristic exponent is of the form O(y k -y) for some k. Let 1 ≤ i = j ≤ n and let c ij = LC(y i -y j ) and M ij = LM (y i -y j ), then y i -

y j = c ij M ij + ij where ij ∈ L n and O( ij ) > O(M ij ). Let θ ∈ Aut(L n /L), such that θ(y j ) = y, then θ(y i ) = y k for some 1 ≤ k ≤ n, and θ(y i -y j ) = θ(y i ) -θ(y j ) = y k -y = c k1 M k1 + k1 = θ(c ij M ij + ij ) = c ij αM ij + θ( ij ) with α = 0, O( k1 ) > O(M k1 ), and O(θ( ij )) > O(M ij ). Hence M k1 = M ij = LM (y i -y j )
. This proves our assertion.

Let {M 1 , . . . , M h } be the set of characteristic monomials of f and write M i = x m i n . Then {m 1 , . . . , m h } is the set of characteristic exponents of f . We shall suppose that m 1 < m 2 < ... < m h . Proposition 4 Let the notations be as above. We have

L(y) = L(M 1 , ..., M h ). Proof. Let θ ∈ Aut(L n /L(y)), then θ is an L-automorphism of L n with θ(y) = y. We have θ(y) = θ( c p x p n ) = c p θ(x p n ) = c p k p x p n = y = c p x p n
, with k p = 0 for all p ∈ Supp(y), and so θ(x p n ) = x p n . Hence x p n ∈ L(y) for all p ∈ Supp(y). In particular, since M 1 , ..., M h are monomials of y, then M 1 , ..., M h ∈ L(y), and so

L(M 1 , ..., M h ) ⊂ L(y). Conversely, if θ ∈ Aut(L n /L(M 1 , .., M h )), i.e if θ is an L automorphism of L n such that θ(M i ) = M i ∀ i = 1, ..., h, then θ(y) = y. In fact if θ(y) = y then θ(y) -y = cM i + i for some characteristic monomial M i , hence θ(M i ) = M i
which contradicts the hypothesis. This proves our assertion.

Note that for all i ∈ {1, ..., h}, L(M 1 , ...

, M i ) = L[M 1 , ..., M i ] since M i is algebraic over L.
Proposition 5 Let the notations be as above. If m ∈ Z e ∩ Supp(y) then m ∈ (nZ) e + h i=1 m i Z.

4 Proof. Write M = x m n . Since M is a monomial of y, then M ∈ L(y) = L[M 1 , ..., M h ], hence M = f 1 g 1 M α 1 1 1 . . . M α 1 h h + . . . + f l g l M α l 1 1 . . . M α l h h for some f 1 , ..., f l , g 1 , ..., g l ∈ K C [[x]
] and l ∈ N * , and so g 1 . . .

g l M = f 1 g 2 . . . g l M α 1 1 1 . . . M α 1 h h + . . . + f l g 1 . . . g l-1 M α l 1 1 . . . M α l h h . Comparing both sides we get that x b = LM (g 1 . . . g l M ) = x a M α i 1 1 . . . M α i h
h for some i ∈ {1, ..., l} and a ∈ Z e . In particular

nb + m = na + α i 1 m 1 + ... + α i h m h , and so m = n(a -b) + α i 1 m 1 + ... + α i h m h ∈ (nZ) e + h i=1 m i Z.
Remark 1 Write F 0 = L and for all i ∈ {1, . . . , h},

F i = L[M 1 , ..., M i ] = F i-1 [M i ]. Also let G 0 = (nZ)
e and for all i ∈ {1, . . . , h}, G i = (nZ) e + i j=1 m j Z. As in Proposition 5, we can prove that for any monomial

M = x m n with m ∈ C, we have M ∈ F i ⇔ m ∈ G i .
Next we will define the set of characteristic sequences associated with f . Definition 5 Let the notations be as above and let {m 1 , ..., m h } be the set of characteristic exponents of f . Let I e be the e × e identity matrix. We shall introduce the following sequences:

• The GCD-sequence {D i } 1≤i≤h+1 , where D 1 = n e and for all i ∈ {1, ..., h}, D i+1 = gcd(nI e , m T 1 , . .., m T i ), the gcd of the (e, e) minors of the e × (e + i) matrix (nI e , m T 1 , ..., m T i ).

• The d-sequence {d i } 1≤i≤h+1 , where d i = D i D h+1 . • The e-sequence {e i } 1≤i≤h , where e i = D i D i+1 = d i d i+1 .
• The r-sequence {r 1 0 , ..., r e 0 , r 1 , ..., r h }, where (r 1 0 , ...r e 0 ) is the canonical basis of (nZ) e , r 1 = m 1 , and for all i ∈ {2, ..., h} r i = e i-1 r i-1 +m i -m i-1 . Note that for all i ∈ {2, ..., h}, r

i d i = r 1 d 1 + i k=2 (m k - m k-1 )d k = i-1 k=1 (d k -d k+1 )m k + m i d i .
Remark 2 Let the notations be as in Definition 5 and let v be a non zero vector in Z e . Let D be the gcd of the (e, e) minors of the matrix (nI e , m T 1 , ..., m T i , v T ), then v ∈ (nZ) e + i j=1 m j Z if and only if D i+1 = D. More generally, D i+1 D .v ∈ (nZ) e + i j=1 m j Z and if D i+1 > D then for all

1 ≤ k < D i+1 D , kv / ∈ (nZ) e + i j=1 m j Z.
Proposition 6 For all i = 1, ..., h -1 let

H i = L(M = x m n , m ∈ Supp(y), m < m i+1 ). Then we have (i) F i = H i and m i does not belong to F i-1 (ii) [F i : F i-1 ], the degree of extension of F i over F i-1 , is equal to e i .
Proof. (i) Since m j < m i+1 for all j = 1, ..., i, then m 1 , ..., m i ∈ H i , and so F i ⊆ H i . In order to prove that H i ⊆ F i , consider a monomial M of y such that M < M i+1 . For each θ ∈ Aut(L n /F i ), θ is an L automorphism of L n and θ(M j ) = M j for all j < i + 1. Hence LM (θ(y) -y) ≥ M i+1 , and so θ(M ) = M for all M < M i+1 , hence M ∈ F i . Finally we get that H i = F i . Now to prove that m i / ∈ F i-1 , let θ ∈ Aut(L n \L) such that θ(y) -y = cM i + ε with O(ε) > m i and c a non zero constant (such a θ obviously exists since M i is a characteristic monomial of f ), then θ(M j ) = M j for all j = 1, ..., i -1 and θ(M i ) = M i , and so θ ∈ Aut(L n \F i-1 ) with θ(

M i ) = M i , hence M i does not belong to F i-1 . (ii) Since M i / ∈ F i-1 , then m i / ∈ G i-1
, and so D i > D i+1 . Moreover e i m i ∈ G i-1 and for all 0 < α < e i we have αm i / ∈ G i-1 . Now let g = y l + a 1 y l-1 + ... + a l be the minimal polynomial of M i over F i-1 and suppose that l < e i . Since g(M i ) = 0, then there exists some k ∈ {0, ..., l-1} such that x l m i n = x α n x km i n for some α ∈ G i-1 , and so (l -k)m i = α ∈ G i-1 with 0 < l -k < e i which is a contradiction. Hence l ≥ e i . But g divides Y e i -x e i • m i n . Hence g = Y e i -x e i • m i n , and consequently [F i :

F i-1 ] = e i .
Proposition 7 Let the notations be as above. For all i ∈ {1, ..., h} we have e i r i ∈ (nZ) e + i-1 j=1 r j Z. Moreover, αr i / ∈ (nZ) e + i-1 j=1 r j Z for all 1 ≤ α < e i .

Proof. We can easily prove that r i = m i + i-1 j=1 (e j -1)r j for all i ∈ {2, ..., h}, hence each of the sequences (m k ) 1≤k≤h and (r k ) 1≤k≤h can be obtained from the other and (nZ) e + i j=1 r j Z = (nZ) e + i j=1 m j Z for all i ∈ {1, ..., h}. In particular, for all α ∈ N, αr i ∈ (nZ) e + i-1 j=1 r j Z if and only if αm i ∈ (nZ) e + i-1 j=1 m j Z. Let i ∈ {1, ..., h}. By Remark 2, e i m i = D i D i+1 m i ∈ (nZ) e + i-1 j=1 m j Z and αm i / ∈ (nZ) e + i-1 j=1 m j Z for all 1 ≤ α < e i . Hence e i r i ∈ (nZ) e + i-1 j=1 r j Z and αr i / ∈ (nZ) e + i-1 j=1 r j Z for all 1 ≤ α < e i . For all i ∈ {1, . . . , h}, define the following sets:

Q(i) = {θ ∈ Aut(L n /L)|O(y -θ(y)) < m i }, R(i) = {θ ∈ Aut(L n /L)|O(y -θ(y)) m i } and S(i) = {θ ∈ Aut(L n /L)|O(y -θ(y)) = m i }.
With these notations we have the following:

Proposition 8 #R(i) = D i and #S(i) = D i -D i+1
, where # stand for the cardinality.

Proof. We have θ ∈ R(i) ⇔ θ(M j ) = M j for all j < i ⇔ θ ∈ Aut(L n /L(M 1 , ..., M i-1 )), hence #R(i) = #Aut(L n /L(M 1 , ..., M i-1 )) = [L n : L(M 1 , ..., M i-1 )] = [L n : F i-1 ]. By proposition 6 we have [F i-1 : L] = [F i-1 : F i-2 ] • • • [F 1 : L] = e i-1 • • • e 1 = D 1 D i = n e D i . But [L n : L] = [L n : F i-1 ][F i-1 : L] = n e , then [L n : F i-1 ] = D i , and so #R(i) = D i . Now R(i + 1) ⊂ R(i) and θ ∈ S(i) if and only if O(y -θ(y)) = m i if and only if θ ∈ R(i) and θ / ∈ R(i + 1), hence #S(i) = D i -D i+1 .
The statement and the proof of Proposition 8 imply the following: for all i ∈ {1, . . . , h}, let R(i) = {y k |O(y -y k ) ≥ m i } and S(i) = {y k |O(y -y k ) = m i }. We have:

Proposition 9 # R(i) = d i and # S(i) = d i -d i+1 .

Pseudo roots, semigroup, and approximate roots of a free polynomial

Let the notations be as above. For all i ∈ {1, ..., h} we will define a specific free polynomial G i , called the i th pseudo root of f such that O(G i (x, y(x))) = r i . Also we will define the semigroup Γ(f ) of f and we will construct a system of generators of Γ(f ). Finally we will prove that O(f, App(f, d i )) = r i for all i ∈ {1, . . . , h}. Let y(x) = c p x p n be a root of f and let m ∈ Supp(y). We set y <m = p<m c p x p n and we call y <m the m-truncation of y.

Definition 6 For all i ∈ {1, . . . , h}, we define the i th pseudo root of f to be the minimal polynomial of y <m i over L. We denote it by G i .

In the following we shall study the properties of G i . In particular we shall prove that O(f, G i ) = r i .

Proposition 10 Let the notations be as above. For all i = 1, ..., h, deg y

(G i ) = n e D i = n d i .
Proof. By proposition 6 we have L(

y <m i ) = L(M 1 , .., M i-1 ). In particular deg y (G i ) = [L(y <m i ) : L] = [L(M 1 , ..., M i-1 ) : L] = n e D i = n d i .
Proposition 11 The polynomial G i is free, and its characteristic exponents are m 1 d i , ..., m i-1 d i .

Proof. The polynomial G i is free from the definition. We shall prove that

y <m i ∈ K C [[x 1 n d i ]]. Let x
λ n be a monomial of y <m i , then λ ∈ (nZ) e + i-1 j=1 m j Z. Let D be the gcd of the minors of the matrix (m 1 0 , ..., m e 0 , m 1 , ..., m i-1 , λ), then D = D i . For all l ∈ {1, ..., e} the matrix A l = (m 1 0 , ..., m l-1 0 , λ, m l+1 0 , ..., m e 0 ) is one of the minors of the matrix (m 1 0 , ..., m e 0 , m 1 , ..., m i-1 ), then D i divides Det(A l ). Write λ = (λ 1 , ..., λ e ), then obviously Det(A l ) = n e-1 λ l , and so D i divides n e-1 λ l for all l ∈ {1, ..., e}. It follows that n e-1 λ D i = λ d i ∈ Z e . Moreover, since λ ∈ C, and

1 d i ≥ 0, then λ d i ∈ C. Hence x λ n = x λ n d i where λ = λ d i , and so x λ n ∈ K C [[x 1 n d i ]].
Let θ(y <m i ) be a conjugate of y <m i , then obviously LM (θ(y <m i ) -

y <m i ) = x m j n
for some j ∈ {1, ..., i -1}. But

m j n = m j d i n d i , hence the set of characteristic monomials of G i is { m 1 d i , ..., m i-1 d i }.
Proposition 12 Let the notations be as above. For all i ∈ {1, . . . , h}, we have O(f (x,

y <m i (x)) = r i d i n .
Proof. We have f (x,

y <m i ) = n k=1 (y <m i -y k ) with the assumption that y = y 1 . Clearly O(y <m i - y k ) = O(y 1 -y k ) if O(y 1 -y k ) < m i
n and m i n otherwise. It follows from Proposition 9 that O( n k=1 (y <m i -

y k ) = 1 n ( i-1 k=1 (d k -d k+1 )m k + d i m i ), which is equal to r i d i n by Definition 5. Let g = y m + b 1 (x)y m-1 + . . . + b m (x) be free polynomial of K C [[x]]
[y] and let z 1 , . . . , z m be the set of roots of

g in K[[x 1 m ]]. We set O(f, g) = n i=1 O(g(x, y i (x)). Clearly O(f, g) = m j=1 O(f (x, z j (x)) = O(g, f ) = O(Res y (f, g)),
where Res stand for the y-resultant of f, g. As a corollary of Proposition 12 we get the following:

Corollary 1 With the notations above, we have O(f, G i ) = r i Proof. In fact, O(f, G i ) = O(G i , f ) = n d i O(f (x, y <m i )) = r i .
As a corollary we get the following:

Proposition 13 Let {G 1 , ..., G h } be the set of pseudo roots of f . Let i ∈ {1, ..., h}, then we have O(G i , G j ) = r j d i for all j ∈ {1, ..., i -1}.
Proof. This is an immediate consequence of Corollary 1 because G 1 , . . . , G i-1 is the set of pseudoapproximate roots of G i and the r sequence of G i is given by

r 1 0 d i , . . . , r e 0 d i , r 1 d i , . . . , r i-1 d i . Definition 7 Given g ∈ K C [[x]][y], f |g, we set O(f, g) = n i=1 O(g(x, y i )) = nO(g(x, y(x)). Clearly O(f, g 1 g 2 ) = O(f, g 1 )+O(f, g 2 ). It follows that Γ(f ) = {O(f, g)|g ∈ K C [[x]][y]\(f )} is a subsemigroup of Z e .
We call it the semigroup associated with f .

In the following we will be prove that (r 1 0 , . . . , r e 0 , r 1 , . . . , r h ) is a system of generators of Γ(f ). We shall need the following result: Lemma 1 Let the notations be as above and let α = (α 1 0 , . . . , α e 0 , α 1 , . . . , r h ), β = (β 1 0 , . . . , β e 0 , β 1 , . . . , β h ) be two elements of Z e × N h such that 0 ≤ α i , β i < e i for all i ∈ {1, . . . , h}. If a = e i=1 α i 0 r i 0 + h j=1 α j r j = e i=1 β i 0 r i 0 + h j=1 β j r j then α = β.

Proof. Suppose that α = β and let k be the smallest integer ≥ 1 such that

α i = β i for all i ≥ k + 1. Suppose that α k > β k . We have (α k -β k )r k = e i=1 (β i 0 -α i 0 )r i 0 + k-1 j=1 (β j -α j )r j . This contradicts Proposition 7. Lemma 2 Let g ∈ K C [[x]]
[y] and suppose that f |g. There exists a unique θ = (θ 1 0 , . . . , θ e 0 , θ 1 , . . . , θ h ) ∈ Z e ×N h such that 0 ≤ θ j < e j for all j ∈ {1, . . . , h} and O(f, g) = e i=1 θ i 0 r i 0 + h j=1 θ j r j . In particular Γ(f ) is generated by r 1 0 , . . . , r e 0 , r 1 , . . . , r h .

Proof. Let g = θ c θ (x)G θ 1 1 . . . G θ h h f θ h+1 be the expansion of g with respect to (G 1 , . . . , G h , f ) and recall that for all θ, if c θ = 0 then θ = (θ 1 , ..., θ h+1 ) ∈ {(β 1 , ..., β h+1 ) ∈ N h+1 , 0 ≤ β j < e j ∀j = 1, ..., h}. The hypothesis implies that there exists at least one θ such that c θ = 0 and θ h+1 = 0. Let In fact, in this case, any monomial M of the expansion of g with respect to (G 1 , . . . , G h , f ) is a monomial in G 1 , . . . , G i-1 . Hence this expansion coincides with that of g with respect to (G 1 , . . .

M = c θ (x)G θ 1 1 . . . G θ h h , N = c θ (x)G θ 1 1 . . . G
, G i-1 , G i ). If M is the unique monomial such that O(f, g) = O(f, M ) then M is the unique monomial such that O(G i , g) = O(G i , M ). But O(f, M ) = d i O(G i , M
). This proves our assertion.

The next Proposition shows that we can calculate a system of generators of Γ(f ) only with the set of approximate roots of f . Proposition 14 For all i ∈ {1, . . . , h}, let

g i = App(f, d i ). We have O(f, g i ) = r i . Proof. Let i = h and consider the G h -adic expansion of f , f = G d h h + C 1 (x, y)G d h -1 h + . . . + C d h (x, y) = d h k=0 C k (x, y)G d h -k h where C 0 = 1 and C k (x, y) ∈ K C [[x]][y] with deg y (C k (x, y)) < n d h for all k = 1, ..., d h . Consider the Tschirnhausen transform of G h with respect to f given by τ f (G h ) = G h + d -1 h C 1 (x, y). We have O(f, G h ) = r h , hence we need to prove that O(f, C 1 ) > r h . Let k ∈ {0, ..., d h -1}. For all α = k, we have O(f, C α G d h -α h ) = O(f, C k G d h -k h ). In fact, suppose that O(f, C α G d h -α h ) = O(f, C k G d h -k h ), that is O(f, C α ) + (d h -α)r h = O(f, C k ) + (d h -k)r h . Suppose that α > k, then (α -k)r h = O(f, C α ) -O(f, C k ). But deg y (C α ), deg y (C k ) < n d h , then by Remark 4, O(f, C α ), O(f, C k ) ∈ (nZ) e + r 1 Z + . . . + r h-1 Z, and so (α -k)r h ∈ (nZ) e + r 1 N + . . . + r h-1 N, with 0 < α -k < d h = e h . This contradicts Proposition 7. Now a similar argument shows that O(f, C k G d h -k h ) = O(f, C k ) + (d h -k)r h = O(f, C d h ). As f (x, y(x)) = 0, we get that O(f, C d h ) = O(f, G d h h ) = r h d h < O(C k G d h -k k , hence O(f, C k ) > kr h . This is true for k = 1, consequently O(f, C 1 ) > r h , and O(f, τ f (G h )) = r h . Repeating this process, we get that O(f, τ l f (G h )) = r h for all l ≥ 1. But g h = App(f, d h ) = τ l 0 f (G h )
for some l 0 . Hence O(f, g h ) = r h . Now suppose that O(f, g k ) = r k for all k > i, and let us prove that O(f, g i ) = r i . Note that g i = App(g i+1 , e i ). Let

g i+1 = G e i i + β 1 (x, y)G e i -1 i + . . . + β e i (x, y) (1) 
be the G i -adic expansion of g i+1 and consider O(f, g i+1 ). For all k ∈ {1, . . . , e i }, 

O(f, β k G e i -k k ) = O(f, β k ) + (e i -k)r i . But O(f, β k ) ∈ (nZ) e + i-1 j=1 r j N because deg y β k ) < n d i ,
e i = O(f, G e i i ) = O(f, β e i ) < O(β 1 G e i -1 i ). Hence O(f, β 1 ) > r i . In particular O(f, τ g i+1 (G i )) = O(f, G i + 1 e i β 1 ) = r i
Applying the same process to f and τ g i+1 (G i ) instead of f and G i . We get that O(f, τ 2 g i+1 (G i )) = r i . But g i = τ l i g i+1 (G i )) for some l i , hence O(f, g i ) = O(f, τ e i g i+1 (G i )) = r i . This proves our assertion.

Remark 5 The semigroup Γ(f ) is a free affine semigroup with respect to the arrangement (r 1 0 , . . . , r e 0 , r 1 , . . . , r h ) (see [START_REF] Assi | The Frobenius vector of a free affine semigroup[END_REF] for the definition and properties of free affine semigroup). This explains the notion of free polynomials introduced in the paper. In the next remark we will show how to prepare our polynomial so that the smallest homogeneous component u a of ∆ contains a monomial in x 1 .

Solutions of formal power series

Remark 6 (Preparation) Consider the mapping ξ : K[[x]] → K[[x]], defined by ξ(x 1 ) = X 1 and ξ(x i ) = X i + tX 1 for all i ∈ {2, ..., e}, where t is a parameter to be determined. Let ψ : K

[[x]][y] → K[[X]][
y] be the map defined as follows: if H = h 0 (x)y m + . . . + h m-1 (x)y + h m (x) ∈ K[[x]][y] then ψ(H) = ξ(h 0 (x))y m +. . .+ξ(h m-1 (x))y +ξ(h m (x)). Then we easily prove that ψ is an isomorphism. If ∆ is the discriminant of ψ(f ) and if v d (X) = u d (X 1 , X 2 + tX 1 , ..., X e + tX 1 ) then ∆ = d≥a v d . But v d (X) = ε d (t)X d 1 + v d , where v d is a homogeneous polynomial of degree d, and ε d (t) is a polynomial in t. Since K is an infinite filed, then we can choose t ∈ K such that ε a (t) = 0.

In the following we shall say that a polynomial f is prepared if it satisfies the condition of Remark 6, i.e. its discriminant is of the form ∆ = d≥0 u d such that the smallest homogeneous component is of the form u a = c a x a 1 + u a with c a = 0 and u a ∈ K[x]. The next proposition shows that a prepared polynomial is birationally equivalent to a quasi-ordinary polynomial.

Remark 3

 3 Since [L(y) : L] = n, then it follows from proposition 6 that [L(y) : L] = e 1 . . . e h = D 1 D h+1 . But [L(y); L] = n and D 1 = n e , hence D h+1 = n e-1 . It follows that d 1 = n and d h+1 = 1.

θ hhRemark 4

 4 be two distinct monomials of g. It follows from Lemma 1 that O(f, M ) = O(f, N ). Hence there exists a unique monomial M of g such that O(f, g) = O(f, M ). This proves our assertion. In the Lemma above, if deg y g < n d i for some i ∈ {1, . . . , h}, then O(f, g) ∈ (nZ) e + i-1 k=1 r k N. Moreover, O(f, g) = d i O(G i , g).

  Let f (x, y) = y n + a 1 (x)y n-1 + • • • + a n-1 (x)y + a n (x) be a polynomial of degree n in K[[x]][y]. In this Section we shall prove that, modulo an automorphism of K[[x]][y], and under an irreducibility condition, f is free in K C [[x]][y] for some specific line free cone C. Let ∆(x) be the discriminant of f in y, and write ∆(x) = p∈N e c p x p = d≥0 u d (x) where for all d ≥ 0, u d is the homogeneous component of degree d of ∆. Let a = inf {d, u d = 0}. If a = 0, then f is a quasi-ordinary polynomial. Suppose that a > 0, and, without loss of generality, that u a / ∈ K[[x 2 , . . . , x e ]].

  and r i+1 / ∈ (nZ) e + i j=1 r j N. Now a similar argument as above shows that r i

Proposition 15 With the notations above, if f is a prepared polynomial then F (X 1 , ..., X e , y) = f (X 1 , X 2 X 1 , . . . , X e X 1 , y) is a quasi-ordinary polynomial.

Proof. Let ∆ be the discriminant of f . The discriminant ∆ N of F is ∆ N = ∆(X 1 , X 2 X 1 , . . . , X e X 1 ). Write ∆ = d≥a u d , where u d is the homogeneous component of degree d of ∆ and u a = 0, then ∆ N = d≥a w d (X) with w d (X) = u d (X 1 , X 2 X 1 , . . . , X e X 1 ). For all d ≥ a, we have

where

We will now introduce the following line free cone. x Along this Section, C will denote the cone defined in proposition 16.

x a 2 2 . . . x ae e . In particular Supp(y

The following proposition characterizes the irreducibility of elements of K

] for all i = 1, ..., m, then by Lemma 3 we get that a i (x 1 , x 2 x -1 1 , . . . , x e x -1

], then a 1 ≥ -(a 2 + . . . + a e ) for all (a 1 , ..., a e ) ∈ Supp(a(x)). It follows that a 1 + a 2 + . . . + a e ≥ 0 for all (a 1 , ..., a e ) ∈ Supp(a(x)). Hence, a(X 1 , X 2 X 1 , ..., X e X 1 )

y).

This contradicts the hypothesis.

In the following we give a characterization for the polynomial f to be free.

then it is free.

Proof. By Proposition 15, F (X 1 , ..., X e , y) = f (X 1 , X 2 X 1 , . . . , X e X 1 , y) is a quasi-ordinary polynomial of K[[X]][y], and by Proposition 17 we get that F is an irreducible quasi-ordinary polynomial in K[[X]][y] of degree n, then by the Abhyankar-Jung theorem there exists a formal power series Z in

. This proves our assertion.

Remark 7 In Propositions 17 and 18, if

is not irreducible, then it decomposes into quasi-ordinary polynomials, hence f itself decomposes into free polynomials in

As for reducible quasi-ordinary polynomials, we can associate with f the set of characteristic sequences of its irreducible components as well as a semigroup defined from the set of semigroups of these components.

Next we prove that the approximate roots of a prepared free polynomial are free polynomials.

Proposition 19 Suppose that f is prepared and let d be a divisor of n.

Proof. By Propositions 15, 18 and Lemma 17, the polynomial F (X, y