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Abstract. We present a latent space factorization that controls a gener-
ative neural network for shapes in a semantic way. Our method uses the
segmentation data present in a shapes collection to explicitly factorize
the encoder of a pointcloud autoencoder network, replacing it by several
sub-encoders. This allows to learn a semantically-structured latent space
in which we can uncover statistical modes corresponding to semantically
similar shapes, as well as mixing parts from several objects to create
hybrids and quickly exploring design ideas through varying shape com-
binations. Our work differs from existing methods in two ways: first, it
proves the usefulness of neural networks to achieve shape combinations
and second, adapts the whole geometry of the object to accommodate
for its different parts.
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1 Introduction

Design ideas exploration is a necessary step for creative modeling. Building tools
that help quickly prototyping ideas can significantly improve designers’ workflow.
Given the tremendous size of 3D shape repositories, scanning all previously ex-
isting models can be cumbersome. This is why we propose, in this work, a first
step to building such a tool: a shape composer that allows to combine parts com-
ing from different objects into a single and coherent new object. Unlike other
works that extract and snap different parts into new positions, we explore the
possibility of holistic composition with the use of generative neural networks.

This paper presents a semantically-rich way of controlling generative net-
works for 3D shapes, without limiting the user to predefined labels. On the
contrary, our approach is essentially data-driven in two ways. First, because we
rely on a large collection of shapes to train our generative model; second, because
the dataset itself is used by the user to tweak the output. More specifically, the
dataset contains various shapes along with their segmentations into meaningful
object parts. Our generative network is then trained to produce shapes in a way
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that is compatible with the segmentation. This is achieved by factorizing the
latent space of the generative model according to the different possible shape
parts. Thanks to this, a user can edit any given shape and decide to only change
part of it, by picking the desired geometry within the dataset. Moreover, the
network automatically adapts the final shape in a holistic way to make sure the
new part fits naturally.

2 Related work

Our method is related to different research efforts in 3D shapes analysis and
generation. We separate our review in three categories: generative modeling,
shapes neural networks, and data-driven shapes editing.

Generative neural networks Generative models suchs as GANs [6] and VAEs
[10] both offer ways to sample from a distribution that matches a given dataset.
VAEs rely on an autoencoder scheme, where a network computes a lower dimen-
sionality code that represents a sample from the data and recreates it. Adding a
variational constraint that imposes a prior (e.g. gaussian) on the latent distribu-
tion makes sure that the model generalizes well. Their compression-like behavior
can then be used for several tasks among which unsupervised learning, sampling,
interpolation and denoising [4]. One drawback is that the output is typically
blurred, because their loss doesn’t account for a perceptual term. On the con-
trary, GANs aim at mimicking a given distribution by generating samples that
are indistinguishable from the original dataset; they can hence generate much
sharper results, to the cost of harder training and difficulty to control for mode
collapse [12]. Conditioning on the likelihood [3, 16] allows to have a finer control
on their outputs. Our work aims at the same property by means of imposing a
specific factorization on an autoencoder latent space.

Shape neural networks As opposed to images, 3D shapes don’t naturally fit
in a neural network framework. The main issue is to represent them in a fixed-
size euclidian domain. The most direct way to do so is to use voxel grids and
directly transpose Convolutional Neural Networks in 3D [7]. However, even if this
approach can yield good results, generated shapes quality is limited by the grid
discretization and the O(n3) complexity. To overcome these limits, Pointnet [17]
introduced a neural network architecture based on pointclouds and permutation-
invariant operators, which characterizes well an unordered set such as a point-
cloud. It has successfully shown its usefulness for tasks such as classification and
segmentation, and even has an extension that exploits hierarchical analysis [18].
This architecture can also be used to generate pointclouds from photographs
[5]. Lastly, [2] has replaced the permutation invariance constraint by imposing
a lexicographic order on the pointset, leading to pointcloud GANs with high
reconstruction accuracy. Our method relies on a variation of such a shape neural
networks, tailored at being used for shape combinations.
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Data-driven shape editing Many existing methods give automated tools for
shapes editing and design exploration. Existing works range from shape corre-
spondences [7] to style similarity and transfer [13, 14]. Others focus on gener-
ating diversity, by extracting and snapping parts together [8], or by hierchical
shape analysis and synthesis [11]. While [8] creates a combinatorial diversity, our
method tries to achieve a geometric diversity. We also share a common usage as
[14], but while they use an example to guide the overall style, we use an example
to guide the shape a of given part.

3 Method

3.1 Autoencoder foundation

Our goal is to create new object shapes, by generating variations within their
different parts, in a data-driven process. The first step is to be able to recreate
objects from the dataset. A natural choice is to use a generative model, we chose
autoencoders. Formally, the goal is to learn the two functions E (encoder) and
D (decoder) such that, for all X in the dataset:

X = D(E(X)) (1)

These two functions are implemented as neural networks that operate on point-
clouds. The key specificity of our method is our factorization of E based on the
available segmentation data. The architecture of our foundational autoencoder
is the following (N = 1024 points):

input: a minibatch of 32 pointclouds, each represented as a Nx3 matrix, ac-
companied by their segmentation data (see part 3.2)

encoder: based on Pointnet [17] but in a much simpler version, with successive
layers of per-point filters followed by ReLU layers

code mixer: the latent space factorization step, as explained in part 3.3

decoder: three fully connected layers with biases, except on the last layer

output: the last layer is ultimately reshaped to a Nx3 matrix

3.2 Consistent segmentation data

To demonstrate our method, we use the planes category from ShapenetCore
and its segmentation obtained from [19], comprising of the four following parts:
body, wings, engine, tail (we restricted our analysis only to models containing
the four parts). Since all models are aligned in a consistent manner (the plane
body is aligned with the Z axis), our neural networks doesn’t need any rotational
invariance, and can leverage from the strong spatial relations of the models’ parts
for both the encoder and decoder.
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3.3 Semantic latent space factorization

We use pointclouds to represent surfaces, a choice that leads to the following
remark: any subset of a pointcloud is a pointcloud. Although this may seem
trivial, note that this is not a property that usually holds in a machine learning
setting: for instance, a segmented region in an image is not typically rectangular.
This allows us to replace the encoder by K encoders, each for a part, which yields
the following factorization:

E = E1 ∗ E2 ∗ ... ∗ EK (2)

E(X) = C = [c1, c2, ..., cn], ci = Ei(X) (3)

where each Ei represents a partial encoder for part i, and evaluates what we call
a subcode. The above product corresponds to vector concatenation. In this form,
the factorization of the latent space simply corresponds to assigning parts to
dedicated coordinates. Figure 1 shows a diagram of the corresponding pipeline.
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Fig. 1: Structure of our hybrid encoder model, illustrated for simplicity with
K = 2 parts

3.4 Loss

When it comes to pointclouds, two reconstruction losses can be considered:
Chamfer and Earth Mover’s Distance (EMD). We chose the former for its easy
implementation; the interested reader will find in [5] a comparison of both losses.

dCD(S1, S2) =
∑
x∈S1

min
y∈S2

‖x− y‖22 +
∑
y∈S2

min
x∈S1

‖x− y‖22 (4)

4 Experiments

We implemented our architecture using Tensorflow [1] and ran it on an Nvidia
Gti1080 GPU. We trained over 40 epochs using Adam [9] with learning rate of
0.9 and a batchsize of 32.
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4.1 Basic autoencoder mode

Since our network is based on an autoencoder, we first demonstrate its ability
to reconstruct objects from the training set. Figure 2 shows examples of re-
constructions, chosen to be representative of the type of objects present in our
dataset. We can notice that the reconstruction quality highly depends on the sub
category (not available) of the object: the typical plane present in the dataset
is similar to the second column, so this is where the autoencoder concentrated
most of its capacity.

Fig. 2: Example of some reconstructions. Top row: original. Bottom row: recon-
structed

Clustering The latent codes computed by E can be explored using standard
dimensionality reduction techniques, such as PCA and tSNE [15]. Figure 3 shows
the tSNE projection of our latent space over 2 dimensions, and snapshots of
certain blobs with their corresponding shapes. Note how similar shapes live in
the same blob. As with any tSNE projection, we remind the reader that distances
between blobs are not significant.

Continuous part transfer Thanks to the factorization of E, by simply in-
terpolating on a given Ei, we can easily transfer a part of an object to another
one while keeping the rest of the object unchanged. Let S be a source object,
T the target and i the index of the part we wish to transfer from S to T . This
is done with E(T ) = E1(T ) ∗ E2(T ) ∗ ... ∗ EK(T ), replacing Ei(T ) by Ei(S). A
linear interpolation between Ei(T ) and Ei(S) effectively realizes the continuous
morphing of the part. Figure 4 shows the results of selectively transfering parts
of a plane onto another one.



6 R. Groscot et al.

(a) Blob from the left (b) Latent space (c) Blob from the middle
right

Fig. 3: tSNE projection of the encoder latent space, with close-ups of two blobs

(a) Interpolation of the whole plane

(b) Interpolation only on: wing

(c) Interpolation only on: body

(d) Interpolation only on: engine

(e) Interpolation only on: tail

Fig. 4: Selective part transfer, compared to the global interpolation from a source
to a target plane
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5 Limitations and discussion

An inherent limitation of our model is that of the autoencoder it is based upon.
Indeed, it suffers from a problem slightly similar to mode collapse, as shown
in Figure 2: it focuses all its reconstruction capacity towards the most frequent
shapes from the dataset, which means that it cannot be suited for part transfer
when one part belongs to an atypical object. Another limitation is that small
details can be lost, but are a major concern when they belong to a discriminative
part. For instance, once can think of a plane with 4 engines: overall, the engines
only have a medium contribution to the reconstruction loss. Adopting a part-
specific loss could be a way of circumventing this problem.

As for part transfer, our holistic approach has both pros and cons. Since we
want the whole model to adapt for the new shape, we do not want to limit the
geometry changes to the region of the transfered part. However, in its current
state, it is still hard to predict the general evolution of an object upon part
transfer.
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