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Abstract

The dual-front scheme is a powerful curve evolution tool for active contours and im-
age segmentation, which has proven its capability in dealing with various segmentation
tasks. In its basic formulation, a contour is represented by the interface of two adja-
cent Voronoi regions derived from the geodesic distance map which is the solution to
an Eikonal equation. The original dual-front model [16] is based on isotropic metrics,
and thus cannot take into account the asymmetric enhancements during curve evolution.
In this paper, we propose a new asymmetric dual-front curve evolution model through
an asymmetric Finsler geodesic metric, which is constructed in terms of the extended
normal vector field of the current contour and the image data. The experimental results
demonstrate the advantages of the proposed method in computational efficiency, robust-
ness and accuracy when compared to the original isotropic dual-front model.

1 Introduction
Active contour models are a flexible segmentation tool that are able to benefit from the well-
established energy minimization framework. Most of the existing active contour models
aim to seek a family of closed curves to minimize a functional that is dependent on the
region-based similarity measure and/or edge-based features such as image gradient. Since
the original work of the snake model [14], the active contour approaches concentrate either
on designing suitable energy functionals to address various segmentation problems in differ-
ent situations, or on the improvement of the contour evolution schemes. Even though a large
variety of energy functionals have been studied, the contour evolution tools have received
little attention, which is the object of the method proposed in this paper.

Parametrized curves are a basic tool for active contour evolution where a contour is com-
prised of a set of ordered vertices or snaxels [7, 14, 18, 25]. It benefits from low computation
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complexity leading to a series of successful applications in the task of tracking. However, the
parametrized curve often suffers from the self-crossing problem in the course of the curve
evolution, when dealing with the segmentation of an object with a complicated or noisy
background [19]. Moreover, it is difficult for parametrized curves to handle the splitting or
merging operation. In order to solve these problems, several curve evolution frameworks are
exploited using either a continuous scheme [5, 20, 22] or a discrete scheme [10, 12].

For the continuous scheme, the level set method [20] has been broadly exploited for
the active contour evolution [3, 26] in the past decades thanks to its solid mathematical
guarantees. In the level set formulation, a closed (rectifiable) contour Γ can be reformulated
as the zero-level set line of a signed Euclidean distance function φ : Ω→R such that Γ= {x∈
Ω; φ(x) = 0}. The level set scheme requires high computation complexity which prevents
its practical applications in image segmentation. Many approaches have been devoted to
improve the performance of the original level set formulation, such as the variational level
set [27], the distance-preserved model [11, 15] and the Voronoi implicit interface model [22].

In contrast to the methods [11, 15, 22, 27] that use the Euclidean distance function to
construct the level set lines, an alternative way is the dual-front scheme [16] which takes into
account a geodesic distance map. During the evolution, a new contour can be recovered by
detecting the common boundary of two adjacent Voronoi regions. The course of the geodesic
distance propagation is similar to a wave front propagation. The distance computation is
constrained by the narrowband region leading to an efficient implementation. One can also
determine the thickness of the narrowband region providing the possibility of adequately
finding the desired image boundary. One crucial component of the dual-front scheme is the
geodesic metric. Basically, a suitable geodesic metric should be able to govern the fronts to
travel fast in the homogeneous regions but slow in the vicinity of image edges. In [16], the
authors used a class of isotropic metrics for the computation of the geodesic distances. This
model cannot benefit from the geodesic asymmetric property because of its isotropic nature
of the geodesic metrics used. In this paper, we propose a Finsler geodesic metric-based
dual-front model for active contour evolution and image segmentation. The Finsler geodesic
metric designed is derived from the image gradient information and the shape gradient of
any adequate region-based active contour energy. Thus the proposed model can be taken as
a general, efficient and robust curve evolution tool for image segmentation.
Paper Outline. In Section 2 we introduce the background on Voronoi Diagram computation
in the sense of geodesic distance and the principle for the dual-front scheme. Section 3
presents the main contribution of this paper: how to construct a Finsler metric using the shape
gradient of region-based energy and image gradients. In Section 4 we present the numerical
implementation and the experimental results. Conclusions are presented in Section 5.

2 Voronoi Diagram Computation via Geodesic Distance

Let Ω ⊂ R2 be an open bounded domain1. A closed contour Γ is a subset of Ω, which can
be explicitly parametrized by a closed curve. Let U(Γ) ⊂ Ω be a tubular neighbourhood of
Γ with radius ` ∈ R+

0 . We denote by R(Γ) ⊂ Ω the interior region of the contour Γ. The
neighbourhood U(Γ) of Γ has two boundaries Cint ⊂R(Γ) and Cext ⊂Ω\R(Γ).
Geodesic Distance Map and Voronoi Diagram. Let sk ⊂ Ω be a family of source point
sets which are indexed by k ∈ {1,2, · · · ,n}. The geodesic distance value Uk(x) is defined as

1In this paper, we only consider the 2D case, i.e. m = 2, which can be straightforwardly extended to 3D.
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Figure 1: Dual-Front Scheme. On the left we show the contour Γ (blue curve), the interior
boundary Cint (black curve) and the exterior boundary Cext (red curve). In the middle we
show the new contour Γnew (green curve). On the right we show the Voronoi regions.

the minimal geodesic curve length between a point x and the set sk associated to a geodesic
metric2 F : Ω×R2→ [0,∞]:

Uk(x) = inf
y∈sk

{
inf

γ∈Lips(Ω)

{∫ 1

0
F(γ(u),γ ′(u))du

}
, s. t. γ(0) = y, γ(1) = x

}
, (1)

where Lips(Ω) is the set of curves γ : [0,1]→ Ω with Lipschitz continuity. The geodesic
distance map Uk associated to a Finsler metric F is the unique viscosity solution to the
Hamilton-Jacobi-Bellman (HJB) equation:

H(x,∇Us(x)) = 1/2, ∀x ∈Ω\s, (2)

with boundary condition Us(x) = 0, ∀x ∈ s, whereH : Ω×R2→ [0,∞) is a Hamiltonian and
∇Us is the Euclidean gradient of Us. The HamiltonianH can be expressed for any x ∈Ω by

H(x,u) = sup
v∈R2

{
〈u,v〉− 1

2
F2(x,v)

}
.

The Voronoi regions are defined in terms of the geodesic distance maps Uk by

Vk = {x ∈Ω; Uk(x) = U∗(x)}, where U∗(x) = min
1≤k≤n

Uk(x). (3)

We use the Hamiltonian fast marching method3 [17] which is based on Voronoi’s first re-
duction technique as the numerical solver for the HJB equation (2). This is a generalization
of the original fast marching method [23]. It can efficiently and accurately handle a variety
of anisotropic and asymmetric Finsler metrics, such as F in Eq. (4), in addition to classi-
cal isotropic Riemannian metrics. The Hamiltonian fast marching is an efficient numerical
solver with a computational time complexityO(m2 NlogN), where m denotes the dimension
of the domain and N is the total number of the points in the discretized domain. The compu-
tation of Voronoi regions can be done during the fast marching fronts propagation [6, 21].
Dual-Front Scheme. The dual-front model [16] proposed by Li and Yezzi uses the Voronoi
diagram for the curve evolution scheme (see Fig. 1). Denoting by Γ ⊂ Ω a given closed
contour, the objective for the dual-front model is to seek the next evolutional contour Γnew.
Based on the notations at the beginning of this section, we can compute the geodesic distance

2It is a convex and 1-homogeneous function on its second argument.
3The C++ codes can be downloaded from https://github.com/Mirebeau/HamiltonFastMarching.
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maps Uint and Uext by taking the boundaries Cint and Cext as the respective source point sets.
Note that the distance maps Uint and Uext are estimated only within the neighbourhood U(Γ)
for the sake of computational efficiency. Thus one can identify the Voronoi regions Vint
and Vext by Eq. (3). Then the new contour Γnew is set as the common boundary of Vint and
Vext. In the sense of curve evolution, one can construct a neighbourhood for the new contour
Γnew and repeat the procedure described above till the contour Γnew converges to the desired
object boundary. For this scheme, each geodesic distance map corresponds to an individual
geodesic metric.

One crucial point for the dual-front model is the geodesic metrics Fint and Fext that are
used to estimate the distance maps Uint and Uext. The geodesic metrics in [16] are derived
from the region-based similarity measure and image edge appearance features. However,
these metrics used in [16] are only an isotropic case which is independent of the front direc-
tions. By these isotropic metrics, the fronts propagation might be terminated before finding
the expected object boundaries. We generalize the isotropic dual-front model [16] by tak-
ing into account the shape gradient of any region-based active contour energy to build an
anisotropic and asymmetric Finsler metric. In this case, the extended dual-front model can
be a general tool for active contour models.

3 Finsler Metrics for Dual-Front Active Contours
We denote by 〈·, ·〉 the Euclidean scalar product on R2, by S+2 the set of symmetric pos-
itive definite matrices, and by ‖u‖M =

√
〈u,M u〉 the anisotropic norm associated with a

symmetric matrix M ∈ S+2 . We consider an asymmetric Finsler metric F with a form

F2(x,u) = ‖u‖2
M(x)+ 〈u,ω(x)〉2−, 〈u,v〉− = max{−〈u,v〉,0}, (4)

whereM : Ω→ S+2 is a definite positive symmetric tensor field and ω : Ω→ R2 is a vector
field. The Finsler metric4 F formulated in Eq. (4) is said to be asymmetric with respect to
its second argument by the fact that ∃x ∈Ω and ∃u ∈ R2 such that F(x,u) 6= F(x,−u). The
asymmetry property of the Finsler metric F is from its second term associated to the vector
field ω . Obviously, when the vector field ω satisfies ω ≡ 0, the metric F gets to a symmetric
Riemannian case.

The crucial point for the Finsler metric F is the computation ofM and ω . Suppose that
a feature vector field p : Ω→ R2 with ‖p‖ ≡ 1 is given. The computation of p are detailed
in Section 3.1. Now we give the construction method for the tensor fieldM and the vector
field ω through the feature vector field p and three scalar functions ς , µ , λ : Ω→ R+ by

M(x) = ς
2(x)p(x)p(x)T +µ

2(x)p⊥(x)p⊥(x)T , s.t. ς(x)≤ µ(x), (5)

ω(x) =
√

max{0,λ 2(x)µ2(x)− ς2(x)} p(x). (6)

The vector p⊥(x) is orthogonal to p(x) and ς2(x),µ2(x) are the eigenvalues ofM(x) with
respect to eigenvectors p(x) and p⊥(x). The metric F(x, ·) is asymmetric at point x in the
case λ (x)µ(x) > ς(x). For each point x, the speed of the fronts along the directions p(x),
p⊥(x), and −p(x) are respectively ς(x), µ(x) and λ (x)µ(x). With respect to the dual-front

4Note that a form similar to the one of (4) was used by the authors of [9] to build an orientation-lifted Finsler
metric for curvature-penalized geodesic computation, while here we use this form for image segmentation.
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Figure 2: Control sets with different values of µ(x) and λ (x) and with ς ≡ 1. Left: µ(x) = 1
and λ (x) = 3. Middle: µ(x) = 1 and λ (x) = 8. Right: µ(x) = 3 and λ (x)=8. The red dots
are the origins of the control sets B(x). The arrow indicates the vector p(x).
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Figure 3: Geodesic distance maps associated to the Finsler metrics for which the control sets
at each point are shown in the corresponding columns of Fig. 2.

scheme [16], the segmentation is determined in terms of the respective Voronoi regions. By
adequately designing the feature vector field p and the functions ς , µ and λ , we can control
the velocities for the fronts expanding from the exterior and interior contours, leading to
a suitable Voronoi region partitioning. The computation for the functions ς, µ, λ and the
feature vector field p are described in Section 3.1.

Here we show some geometric properties of the metric F formulated in Eq. (4) with
respect to differentM and ω . A basic tool for characterizing the metric F is its control set B
which is a collection of unit balls which can be expressed as B(x) = {u ∈R2; F(x,u)≤ 1}.
In Fig. 2, we illustrate the control sets B(x) associated to three Finsler metrics F at a point
x. We fix that ς ≡ 1 and p ≡ (cos(π/4),sin(π/4))T . In columns 1 to 3 of Fig. 2, we use
different values of µ and λ to construct these Finsler metrics. Note that for the sake of
simplicity, in this experiment we set µ and λ to be constant functions. The geodesic distance
maps associated to the Finsler metrics, which are used in the corresponding columns of Fig 2
for control set demonstration, are shown in Fig. 3.

3.1 Finsler Metric Construction

In this section, we use the region-based similarity measure to compute the Finsler metrics
for dual-front scheme. According to the dual-front scheme (see [16] or Section 2), for each
tubular neighbourhood boundary (either Cint or Cext) we need to design a Finsler geodesic
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metric (denoted by Fint and Fext respectively), in order to compute the associated Voronoi
diagram. We define an extended normal vector field N:

Definition 1. Consider a closed contour ∂ h̄ which is the boundary of a shape h̄ and let
N∂ h̄ : ∂ h̄→ R2 be its unit normal. We define a vector field Nh̄ : Ω→ R2 being such that

Nh̄(x) =N∂ h̄(x), ∀x ∈ ∂ h̄, and Nh̄(x) = ∇d∂ h̄(x), ∀x ∈ U(∂ h̄)\∂ h̄, (7)

where d∂ h̄ : U(∂ h̄)→ R+
0 is a Euclidean distance map associated to the contour ∂ h̄, i.e.,

d∂ h̄(x) = miny∈U(∂ h̄) ‖x−y‖. In this case, the vector field Nh̄ gets to be an extension ofN∂ h̄.

We suppose that a shape h̄ is an arbitrary measurable subset of the domain Ω with a
rectifiable boundary ∂ h̄. For a region-based functional Eh̄ associated to a fixed shape h̄, we
denote its shape gradient [1] at the shape h̄ by ψh̄, which can be obtained via the Gâteaux
derivative of the functional Eh̄ along an admissible perturbation. For simplicity, we define a
variant shape gradient function Ch̄ : Ω→ R as

Ch̄(x) =−ψh̄(x), ∀x ∈ h̄, and Ch̄(x) = ψh̄(x), ∀x ∈Ω\h̄. (8)

Through the function Ch̄, we divide the tubular region U(∂ h̄) into four subregions:

U+
int := {x ∈ h̄, C(x)≥ 0}, U−int := {x ∈ h̄, C(x)< 0}, (9)

U+
ext := {x ∈Ω\h̄, C(x)≥ 0}, U−ext := {x ∈Ω\h̄, C(x)< 0}. (10)

Recall that the fronts expanding from the internal and external tube boundaries Cint and Cext
depend on the Finsler metrics Fint and Fext, respectively. Let h̄∗ be a shape obtained in a
deformable manner from the initial shape h̄. If h̄∗ is a minimizer for the region-based energy
Eh̄, its boundary ∂ h̄∗ should be a subset of the zero-crossing point set of ψh̄. Our goal is to
seek a shape h̄∗ ⊂Ω such that in some tubular neighbourhood U(∂ h̄∗) of the shape boundary
∂ h̄∗, the inequality Ch̄(x) ≥ 0 can hold. One possible solution is to make the front which
expands from the internal tube boundary travel slower in the region U−int than the front from
the external tube boundary Cext. For this purpose, we can design the Finsler metrics Fint
and Fext such that Fint(x,N(x)) > Fext(x,−N(x)), ∀x ∈ U−int. Alternatively, for each point
x∈U−ext, the Finsler metrics should satisfyFext(x,N(x))>Fint(x,−N(x)) in order to expand
the front associated to Fext slower than the front from the internal tube boundary.
Computation of the eigenvalue functions ς and µ . The eigenvalue functions ς and µ

should be computed individually for each of the Finsler metrics Fint and Fext. The fronts
from the tube boundaries Cint and Cext are expected to meet at the zero-crossing points of the
shape gradient ψh̄. For this purpose, we set the eigenvalue functions for the metric Fext as

ςext(x) = exp(βτ(x))exp(−αψh̄(x)), µext ≡ ςext, (11)

and the metric Fint as

ςint(x) = exp(βτ(x))exp(αψh̄(x)), µint ≡ ςint, (12)

where α and β are positive constants. The function τ : Ω→ [0,1] is a normalized edge ap-
pearance indicating function. For a vector-valued image I = (I1, I2, I3) : Ω→R3 in the RGB
colour space, the edge appearance function τ can be computed using the Gaussian-smoothed
colour gradient ∇Iσ (x) = (∇Gσ ∗ I)(x), where Gσ is a Gaussian kernel with variance σ .
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(a) (b) (c)

Figure 4: Convergence rates for different values of ε and `. (a) The initial contour (red curve)
and the segmentation (blue curve). (b) The curves of J̄ for different values of ε during the
shape evolution. (c) The curves of J̄ for different values of ` during the shape evolution.

Note that ∇Iσ (x) is a 2×3 Jacobian matrix. The edge appearance function τ of the image I
can be computed via the Frobenius norm of the Jacobian matrix ∇Iσ (x) such that

τ(x) =
τ0(x)
‖τ0‖∞

, where τ0(x) =

√
3

∑
i=1
‖(∇Gσ ∗ Ii)(x)‖2.

Computation of the asymmetric penalty λ and the feature vector field p. The asymmet-
ric penalty function λ can be computed in terms of the function Ch̄ such that

λ (x) = exp(−ε Ch̄(x)), (13)

where ε ∈ R+ is a positive constant. For each point x ∈ U+
int∪U

+
ext = {x ∈ U;C(x)≥ 0}, we

have λ (x) ≤ 1 leading to ω(x) = 0 (see Eq. (6)). In this case, the metrics Fint and Fext get
to be the isotropic metrics. Thus, the metrics Fint(x, ·) and Fext(x, ·) are independent of the
vectors p(x) for the points x such that C(x)≥ 0. In order to follow the criteriaFint(x,N(x))>
Fext(x,−N(x)), ∀x ∈ U−int and Fext(x,N(x)) > Fint(x,−N(x)), ∀x ∈ U−ext, we construct the
feature vector field p by

p(x) =Nh̄(x). (14)

In the numerical experiments, we further set λ (x) = 1, ∀x ∈ ∂ h̄. For the points x ∈
U−int∪U

−
ext = {x ∈ U;Ch̄(x)< 0}, the Finsler metrics Fint and Fext are strongly asymmetric.

It can help the dual-front propagation scheme to reduce the risk of the front shortcut problem,
which will be illustrated in the following experiments.
Remark 1. The class of asymmetric Finsler metrics as defined in Eq. (4), allows us to
independently set the front propagation speed in one direction and in the opposite direction,
such as N(x) and−N(x) at a point x in the tubular neighbourhood. Therefore, the conditions
could in principle be achieved using a single metric F = Fint = Fext with α = 0, in contrast
with previous works [16]. This potential simplification was one of our initial motivations
for the study of active contours based on asymmetric geodesic distances. However, in the
end, we found that the best efficiency was achieved by combining the advantages of both (i)
asymmetric metrics, and (ii) distinct metrics for the two fronts.
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8 DA CHEN ET AL. : ASYMMETRIC GEODESIC DISTANCE PROPAGATION

Figure 5: Comparative results of the dual-front method with isotropic and Finsler metrics.
Row 1 Initial contours indicated by red curves. Row 2 Segmentation from isotropic dual-
front scheme. Row 3 Segmentation from the proposed Finsler dual-front scheme.

4 Experimental Results
In this section we illustrate the results of the dual-front scheme with the proposed asymmetric
Finsler metric, involving the study of the proposed model itself and the comparisons with the
original dual-front scheme [16].
Chan-Vese Active Contour Energy. The Chan-Vese model [4] invokes two vectors η int =
{η int

i }1≤i≤3 and ηext = {ηext
i }1≤i≤3, to approximate the intensities inside and outside the

contour Γ of a vector-valued image I

Eh̄(Γ) =
∫
R(Γ)

∑
i
(Ii(x)−η

int
i )2dx+

∫
Ω\R(Γ)

∑
i
(Ii(x)−η

ext
i )2dx,

where η int
i and ηext

i are the mean intensity values inside and outside the contour ∂ h̄ of the ith

image channel Ii. The shape gradient ψh̄ for the Chan-Vese energy Eh̄ can be expressed by

ψh̄(x) = ∑
i

(
(Ii(x)−η

int
i )2− (Ii(x)−η

ext
i )2

)
. (15)

In the following experiments, we normalize the shape gradient ψh̄ to the range [−1,1].
Influence of Different Values of the Parameters. We show the influences from the param-
eters to be set up in our model. First, the parameter ε in Eq. (13) dominates the asymmetric
penalty for the Finsler metrics Fext and Fint. Secondly, the parameters α and β in Eqs. (11)
and (12) control the influence from the image data. Finally, the value of ` controls the width
of the tubular neighbourhood. In the following, we show how ε and ` affect the convergence
rate of the Finsler dual-front model. We set the discretization scale to be 1.

In Fig. 4, the parameters α and β are set to 0.5 and 10, respectively. We consider different
values of ε and ` to show how the convergence rates of the dual-front scheme are affected by
the asymmetry penalty and the tubular neighbourhood width. For this purpose, we compute a
variant Jaccard index J̄ (S,G)= 1−J (S,G) between the current shape S and the groundtruth
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G, where J (S,G) = |S∩G|/|S∪G|with |S| and |G| the areas of S and G. In Fig. 4a, we show
the original image with initial contour (red curve) and the final segmentation (blue curve). In
Fig. 4b, we plot the values of J̄ for the proposed Finsler dual-front method with values of ε

being set to 0, 0.2, 0.4, 0.8, and 1.2, respectively. One can point out that a large value of ε

which implies strong asymmetry leads to a fast convergence rate. In Fig. 4c, we fix β = 10
and ε = 1. The convergence rate associated with different values of tubular neighbourhood
radii ` is tested by setting ` = 4, 8, 12 and 16 respectively. One can see that a sufficiently
large ` could speed up the convergence of the dual-front scheme.

In Fig. 5, we show the comparative results on the isotropic dual-front model [16] and the
proposed Finsler dual-front model. In the first row of Fig. 5, we show the original images
with initial contours. The second and the third rows are the results derived from the isotropic
and Finsler dual-front models, respectively. For the sake of fair comparison, we use the
same values of α, β and ` for both models. More specifically, we set α = 0.3, β = 10 and
`= 16. The dual-front propagation will be terminated when the two contours of the adjacent
iterations are close enough. One can point out that the final segmentation contours from
the isotropic model are trapped to the false positions, while the proposed Finsler dual-front
model can find the expected segmentation thanks to the asymmetric penalty.

In Table. 1, we show the quantitive comparisons between the isotropic and Finsler dual-
front models on the images shown in Fig. 5. For each image, we run the dual-front models
with different metrics for 30 times and we compute the statistical information including the
maximum (Max.), minimum (Min.), average (Avg.) and standard derivation (Std.) values
of the Jaccard index J for these 30 experiments. In each dual-front running, the initial
contour is set as a circle with radius 40, the centre point of which is chosen by randomly
sampling a point that is inside the target. We set α = 0.3, β = 10 and ` = 16 for both
the isotropic and Finsler dual-front models. Specifically, we set ε = 1 for the dual-front
model with the proposed Finsler metrics. From Table. 1, one can see that through the 30
segmentation experiments on each image, the Finsler dual-front model achieves higher Avg.
and Max. Jaccard index values than the isotropic model. Meanwhile, the standard derivation
of J from the Finsler dual-front model is lower than the isotropic model. This implies
the proposed Finsler dual-front model is more accurate and more robust to initialization
compared to the isotropic case [16], even if the parameter α is set to a small value.

Note that through the comparative experiments we make use of a small value of α in
order to demonstrate the advantages of using the asymmetric Finsler metrics for dual-front
propagation. For a small value of α , in each iteration, it is difficult for the isotropic dual-front
model to shift the interface of the two fronts toward the desired object boundaries. While for
the proposed Finsler case, the asymmetric penalty leads to a fast fronts motion by assigning
a large distance values to the front points for which the advancing directions are unexpected.
Remark 2. In the context of image segmentation, the minimal path-based approaches, such
as the region-based Eikonal active contours method [7] and the Finsler ealstica method [8]
represent the object boundaries via a set of geodesic curves, which cannot be straightfor-
wardly extended to surface evolution. In contrast, the dual-front scheme can be naturally
extended to 3D volume segmentation since the segmentation scheme is carried out by the
fronts of the geodesic distances instead of the geodesics themselves.
Remark 3. In this paper, for the sake of simplicity, we only consider the classic piecewise
constant active contour energy [4] to construct the Finsler geodesic metrics. However, the
proposed model can be adapted to a broad variety of active contour energies to deal with
more complicated segmentation situations, for example the pairwise similarity-based active
contours models [2, 13, 24].
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Table 1: Quantitative results of the isotropic and Finsler models on the images in Fig. 5.

IMAGES Col. 1 Col. 2 Col. 3 Col. 4 Col. 5

Isotropic Model [16]

Avg. 0.794 0.204 0.769 0.746 0.584
Max. 0.886 0.38 0.946 0.965 0.813
Min. 0.363 0.084 0.289 0.368 0.189
Std. 0.147 0.074 0.209 0.219 0.169

Proposed Finsler Model

Avg. 0.946 0.971 0.945 0.965 0.958
Max. 0.946 0.971 0.946 0.965 0.959
Min. 0.946 0.969 0.945 0.965 0.957
Std. ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

5 Conclusion
In this paper, we propose a new Finsler dual-front model for image segmentation. We ex-
tend the isotropic dual-front model [16] to the generally asymmetric and anisotropic Finsler
case. A crucial contribution is the construction method of the Finsler geodesic metric with
an asymmetric quadratic form. This Finsler metric is able to take advantages from the shape
gradient of a region-based energy and the image gradient features. Compared to the isotropic
case, the proposed Finsler dual-front scheme can reduce the risk of detecting spurious con-
tours. Thus the proposed Finsler dual-front model is able to obtain more accurate and more
robust segmentations. In future, we will extend this work to the applications of 2D multi-
region segmentation and 3D volume segmentation, integrating with the edge anisotropy.
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