
A New Dynamic Minimal Path Model for Tubular
Structure Centerline Delineation

Da Chen1,2 and Laurent D. Cohen1

1University Paris Dauphine, PSL Research University, CNRS, UMR 7534, CEREMADE, 75016 Paris, France
2Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, Paris, France

Email: {chenda, cohen}@ceremade.dauphine.fr

Abstract—We propose a new dynamic Riemannian metric
with adaptive anisotropy enhancement and with appearance
feature coherence penalization. The appearance features are
characterized by the orientation score maps. Unlike the static
geodesic metrics which depend on local pointwise information,
the dynamic metric can take into account the nonlocal feature
coherence penalty in order to extract a desired structure from
complicated background or from a vessel tree. We construct the
metric using the information from two external reference points
which are identified during the geodesic distance computation.
Numerical experiments are performed in retinal vessels, including
the independent results from the proposed dynamic metric
itself and the comparison against existing minimal path models.
The results show that the proposed metric indeed gets better
performance than state-of-the-art geodesic metrics.

I. INTRODUCTION

The minimal path model [1] is a robust and efficient
method for vessel extraction. In its basic formulation, a tubular
structure can be naturally modelled as a minimal path. It seeks
a globally optimal curve that minimizes the path length

L(γ) =

∫ 1

0

P (γ(t))‖γ′(t)‖dt

along a path γ with Lipschitz continuity, where s is the
arc-length parameter of γ such that ‖γ′(s)‖ ≡ 1 and P
is a potential function with small values inside the tubular
structure. The minimal path model is able to efficiently find
the global optimality of the path length L through the solution
to the Eikonal partial differential equation (PDE) thanks to
the well-established numerical solvers like the fast marching
methods [2], [3]. By designing suitable potentials P , the
minimal path model can be applied to solve various vessel
segmentation problems [4].

One of the key ingredients for the minimal path com-
putation is the used geodesic metrics. In order to address
various tubular structure segmentation problems, a series of
geodesic metrics have been designed. The Li-Yezzi minimal
path model [5] defined an isotropic Riemannian metric in
a multi-scale space to solve the problem of simultaneously
finding the vessel centerlines and boundaries. Benmansour and
Cohen [6] generalized the Li-Yezzi model to the anisotropic
Riemannian case, where the vessel orientations were also used
to mitigate the shortcuts problem. Péchaud et al. [7] added
an abstract orientation dimension to the multi-scale space,
which provides an orientation-lifted way to use the tubular
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Fig. 1. Short branches combination problem. a Original image with bound-
aries of target vessel. b Minimal path from the anisotropic Riemannian
metric [6]. c Minimal path from the proposed dynamic metric.

orientation information. The elastica geodesic metrics [8] and
the Reeds-Sheep metrics [9], [10] can be used to minimize
the path length with second-order regularization term such as
the curvatures. These metrics have beed successfully applied to
retinal imaging. In [11], a new minimal path extraction method
in conjunction with a fast marching front frozen scheme was
proposed. The path features like curvatures are estimated
through the truncated geodesics from the front points, which
will be frozen if their path features do not satisfy the prescribed
criteria. The idea of using truncated geodesics to estimate the
features are also used in this paper. In order to reduce the
user intervention, the keypoints methods [12]–[14] iteratively
add new source points in the course of geodesic distance
computation. The approaches listed above are not exhaustive
and other interesting methods relevant to minimal path-based
tubularity segmentation include [15], [16].

In this paper, we propose a new dynamic geodesic metric for
tubular centerline delineation. The main contribution lies at the
construction of a metric with adaptive anisotropy enhancement
and feature coherence penalty in a dynamic manner. The com-
putation of the dynamic metric is carried out during the fast
marching fronts propagation in conjunction with a truncated
geodesics tracking scheme. The new dynamic metric is able
to reduce the risk of tracking incorrect tubular structures. In
Fig. 1b, we show a typical short combination problem suffered
by the anisotropic Riemannian metric [6]. In Fig. 1c, we
illustrate the result from the proposed metric which avoids
this problem.

The paper is organized as follows. In Section II, we briefly
introduce the computation of the tubular features. In Sec-



tion III, we introduce the construction method for the dynamic
metric. The experimental results are presented in Section V.

II. LOCAL TUBULARITY DESCRIPTOR

We suppose that the gray levels inside the tubular structures
are locally darker than the background. A tubular structure or
a vessel can be described by a feature vector field and by a
vesselness map. The feature vector field indicates the vessel
orientation at each point and the vesselness map indicates
the probability of a point belonging to a vessel. Both maps
can be detected through any multi-scale steerable filters such
as [17], [18]. In this paper, we choose the optimally oriented
flux (OOF) filter, as our vessel detector. It invokes a Gaussian
filter Gσ with variance σ and a characteristic function χr of
a disk with radius r

OF(x, r) :=
1

r

(
∂xxGσ ∂xyGσ
∂yxGσ ∂yGσ

)
∗ χr(x) ∗ I(x), (1)

where ∂xyGσ is the second-order derivative of Gσ and I :
Ω → R is a gray level image. For each point x and scale
r, the OOF response OF(x, r) is a 2 × 2 symmetric matrix
with eigenvalues %̂1(x, r) and %̂2(x, r). Let q̂of(x, r) be the
eigenvector corresponding to the eigenvalue %̂2(x, r). Without
loss of generality, we assume that %̂1(x, r) ≤ %̂2(x, r) and if x̂
is inside a vessel one further has %̂1(x, r) ≈ 0. At each point
x, one can define an optimal scale

ζ(x) = arg max
r

%̂2(x, r).

Let S1 = [0, 2π) be an orientation space with periodic
boundary condition and let g(θ) = (cos θ, sin θ)T be an unit
vector associated to an angle θ ∈ S1. An orientation score
(OS) map ψos : Ω× S1 → R can be computed by

ψos(x, θ) = max{〈g⊥(θ),OF(x, ζ(x))g⊥(θ)〉, 0}, (2)

with g⊥(θ) = (− sin θ, cos θ)T a vector orthogonal to g(θ).
A feature map qof is defined by

qof(x) = q̂of(x, ζ(x)). (3)

III. DYNAMIC METRIC WITH COHERENCE PENALIZATION
AND ADAPTIVE ANISOTROPY ENHANCEMENT

A. Potentially Asymmetric Orientation Score

We consider an oriented Gaussian kernel Qθσ associated to
θ ∈ S1 which can be expressed for any x ∈ Ω by

Qθσ(x) = exp

(
−|〈g(θ),x〉|2

2σ2
1

− |〈g
⊥(θ),x〉|2

2σ2
2

)
,

where σ = (σ1, σ2) with σ1 and σ2 (σ1 � σ2) being
the Gaussian variances along the directions gθ and g⊥θ , re-
spectively. Here we further consider an asymmetric Gaussian
kernel through a cutoff function δθ : Ω→ {0, 1}

δθ(x) =

{
1, if 〈∇Gσ1

(x), g(θ)〉 ≥ ε0,
0, otherwise,

where ∇Gσ1 = (∂xGσ1 , ∂yGσ1)T is the standard Euclidean
gradient of the isotropic Gaussian kernel Gσ1

with variance σ

and ε0 ∈ R+
0 is a sufficiently small constant. An asymmetric

Gaussian kernel Hθσ over the domain Ω can be expressed by

Hθσ(x) = δθ(x)Qθσ(x).

A new potentially asymmetric OS map Ψos for each fixed
orientation θ ∈ S1 is defined by

Ψos(x, θ) =
(Hπ+θ

σ ∗ ψθos)(x)∫
Ω
Hπ+θ
σ (x) dx

, ψθos(·) :=
ψos(·, θ)
‖ψos‖∞

, (4)

where ∗ is a convolution operator.

B. Crossing-adaptive Tensor Field

In an image which involves tubular tree structures, there
may exist a set of points belonging to different vessels. These
points are crossing points, for which one needs more than one
orientation vectors to describe the tubular anisotropic property.
In this case, it may increase the risk of obtaining incorrect
geodesic tangents at these crossing points. A possible solution
is to design a crossing-adaptive Riemannian metric, which
should be weakly anisotropic (or approximately isotropic)
at these crossing points but be strongly anisotropic at the
other points inside the tubular tree. This can be done by
taking into account the orientation score values at the crossing
points to establish the relevant tensor field [19]. In contrast
to [19] which uses the score values corresponding to all the
orientations, in this section we only consider the score values
with respect to locally optimal orientations. For this purpose,
we first define a set Mx involving locally optimal feature
vectors in the sense of orientation score map. For each point
x, the set Mx of locally optimal feature vectors associated to
Ψos(x, ·) can be defined by

Mx =
{
g(θ∗); Ψos(x, θ

∗) > Ψos(x, θ), ∀θ ∈ N(θ∗, ξ),

and Ψos(x, θ
∗) >

1

2π

∫ 2π

0

Ψos(x, θ) dθ
}
,

where N(θ∗, ξ) is a neighbourhood of θ∗ ∈ S1 with length of
ξ. The characteristic function of the set Mx is expressed as

C(x, θ) =

{
1, if g(θ) ∈Mx,

0, otherwise.

Similar to Mx, the set of locally optimal directions associated
to ψos(x, θ) is denoted by Mx, ∀x ∈ Ω.

Let Id be the 2×2 identity matrix. A tensor field Tbase can
be constructed by

Tbase(x) =

∫ 2π

0
C(x, θ)Ψos(x, θ)g(θ)g(θ)T dθ

max
{∫ 2π

0
C(x, θ)dθ, ε1

} + µ0 Id, (5)

where µ0 and ε1 are sufficiently small positive constants.
The matrix µ0 Id ensures the non-singularity of the matrix
Tbase(x), ∀x ∈ Ω.

The desired tensor field Tos : Ω → S+
2 for the anisotropy-

adaptive Riemannian metric can be computed in terms of Tbase

Tos(x) = exp

(
−α max

θ∈S1
ψos(x, θ)

)
T−1

base(x). (6)
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Fig. 2. Left The red and blue arrows at point x1 (resp. x2) respectively indicate the elements involved in Mx1 (resp. Mx2 ) and Mx1 (resp. Mx2 ). Middle
The red and blue curves respectively indicate the values of Ψos(x1, θ) and ψos(x1, θ). Black dots are the peak orientations. Right The red and blue curves
respectively indicate the values of Ψos(x2, θ) and ψos(x2, θ).

where α ∈ R+ is a positive constant that controls the contrast
ratio and T−1

base(x) is the inverse matrix of Tbase(x).

C. Coherence-Penalized Dynamic Riemannian Metric

Let p : Ω→Mx be a new tubular anisotropy feature map,
which corresponds to an orientation map a : Ω → S1, where
a(x) is defined being such that (cos(a(x)), sin(a(x)))T =
p(x). At a crossing point x, the feature vector p(x) should
be proportional to the centerline tangent of the target vessel at
x. Let x, ax, bx ∈ Ω be three points belonging to the same
tubular structure. The points ax and bx, which are named
reference points, are supposed to be approximately located at
the tubular centerline. In addition, we also suppose the point
x is close to the reference point ax. In the following, we solve
the problem for the computation of the coherence penalty at a
point x providing its reference points ax and bx are known.

The computation criterion for the feature vector p(x) is
based on the prior that p(ax) and p(bx) have been known.
Since x and ax is close to each other, the measurement
|〈p(x), p(ax)〉| ≈ 1 should be held. We define a set M∗x ⊆Mx

of the selected feature vectors by

M∗x = {w∗;w∗ = arg max
w∈Mx

|〈w, p(ax)〉|}.

Thus the feature vector p(x) can be identified by

p(x) := (cos θ∗x, sin θ
∗
x)T , (7)

where the orientation θx is computed by

θ∗x := arg min
θ:g(θ)∈M∗

x

|Ψos(x, θ)−Ψos(ax, a(ax))|.

For a crossing point x, each feature vector in Mx charac-
terizes the orientation that the tubular structure should have
at x through the map a. The map p is constructed in a
progressive way. For the source point s, the feature vector
p(s) = (cos(a(s)), sin(a(s)))T is chosen being such that

a(s) = arg max
θ

Ψos(s, θ)

The progressive procedure for the computation of p and a is
is detailed in Section IV. Once the feature vector p(x) and the

corresponding orientation a(x) at point x are detected, we can
construct a coherence penalization term which is comprised
of two components. The first component is a scalar field Eos

computed by the enhanced orientation score map Ψos and the
reference point bx such that for a point x ∈ Ω

Eos(x) = exp
(
λ |Ψos(x, a(x))−Ψos(bx, a(bx))|

)
, (8)

where λ is a positive constant. Now we can define a dynamic
tensor field Td : Ω→ S+

2 for ∀x ∈ Ω by

Td(x) := Eos(x) (Tos(x) + Taniso(x)) , (9)

where Taniso is defined by

Taniso(x) = µ p⊥(x)⊗ p⊥(x), µ ∈ R+. (10)

We set µ = 10 through all the experiments.

IV. FAST MARCHING IMPLEMENTATION

The fast marching front visits all the grid points in Z2. It
computes the geodesic distances in a monotonically increasing
order from the source points, coupled with a course of label
assignment [2], [3]. During the geodesic distance computation,
each grid point is assigned a label which is either Far,
Accepted or Trial. A basic point for the fast marching method
is the stencil map S which defines the neighbourhood for
each grid point. In order to deal with the anisotropic case,
a complicated metric-dependent stencil construction method
should be used [3]. In this paper, we make use of state-of-
the-art fast marching method proposed by Mirebeau [3] as
our Eikonal solver, where the C++ codes can be downloaded
from Anisotropic FM.

At the initialization step, all the source points are tagged
as Trial while the remaining grid points in Z2 are tagged
as Far. In each distance update step, we seek a Trial point
xmin with the minimal geodesic distance. The point xmin is
immediately tagged as Accepted, from which one can back
track a curve length-parameterized geodesic C̄xmin joining
xmin to the source point, i.e., C̄xmin(0) = xmin. By this
geodesic, we can determine two points amin and bmin can
be identified

amin = C̄xmin
(u1), bmin = C̄xmin

(u2), (11)

https://github.com/Mirebeau/ITK_Anisotropic


Fig. 3. Partial fronts propagation scheme. The geodesic distance maps
superimposed on the retinal patch. The black curves indicate the geodesics
for which the endpoints are respectively s and q.

where u1, u2 ∈ (0, Lxmin) with Lxmin the Euclidean curve
length of C̄xmin , and u1 ≤ u2. For each non-accepted1

neighbour point xn ∈ S∗(xmin) where S∗(xmin) = {y ∈
Z2;xmin ∈ S(y)}, we approximate the reference points axn

and bxn
by

axn = amin, bxn = bmin.

Henceforth we note axn and bxn as a and b for simplicity.
Based on the reference points a and b, we can update the
tensors Td(xn).

In order to estimate the geodesic distance Us(·)(x), we need
to solve the following Hopf-Lax operator [3]

Us(x) = min
y∈∂S(x)

{
‖y − x‖Td(x) + IS(x) Us(y)

}
, (12)

where IS Us(y) is a distance value estimated by the piecewise
linear interpolator IS(x) in the stencil S(x).

In contrast to the general fast marching method which starts
the front propagation only from the source point s, here we
adopt the partial fronts propagation style [20] which starts the
propagation simultaneously from the source point s and the
endpoint q. A saddle point x∗ is the first meeting point of the
two fronts expanding from the respective points s and q. It
can be defined by

x∗ = arg min
x: Us(x)=Uq(x)

Us(x), (13)

where Us and Uq are the geodesic distance maps associated
to the fixed points s and q. Based the maps Us and Uq, we
can define a new geodesic distance map U by

U(x) = min{Us(x),Uq(x)}.

The procedure for the dynamic metrics-based partial fronts
propagation can be found in Algorithm 1. We illustrate an
example for this partial fronts propagation scheme in Fig. 3.
Note that the fast marching front propagation will be termi-
nated once the saddle point x∗ is detected.

Note that the idea of using feature coherence penalization
to construct dynamic metric during the geodesic distance
propagation was also considered in [21]. However, the method

1A non-accepted point is a point tagged as Trial or Far.

Algorithm 1 PARTIAL FRONTS PROPAGATION SCHEME

Output: The distance map U and the saddle point x∗.
Initialization:
• ∀x ∈ Z2\{s,q}, set U(x)←∞ and set V(x)← Far.
• ∀x ∈ {s,q}, set U(x)← 0 and set V(x)← Trial.
• ∀x ∈ {s,q}, set p(x)← arg maxθ Ψos(x, θ).

1: while xmin is not a saddle point do
2: Find xmin, the Trial point which minimizes U .
3: Set V(xmin)← Accepted.
4: Find the reference points a and b.
5: for All xn ∈ S∗(xmin) and V(xn) 6= Accepted do
6: Set V(xn)← Trial.
7: UPDATEFRONTDISTANCE(xn,U ,V, p,a,b).
8: end for
9: end while

Algorithm 2 UPDATEFRONTDISTANCE(xn,Us, p,a,b)
1: Update the feature vector p(xn) by a via Eq. (7).
2: Update Td(xn) by the reference point b via Eq. (9).
3: Estimate the distance value Utem(xn) by evaluating (12).
4: Set Us(xn)← min{Utem(xn),Us(xn)}.

developed in this paper mainly differs to [21] in two ways: (i)
we take into account a new adaptive anisotropy tensor field
Taniso (see Eq. (10)) to enhance the geodesics computation.
(ii) the tubular appearance feature is built by the smoothed OS
map instead of using the vesselness map2 itself in [21].

V. EXPERIMENTAL RESULTS

We compare our model to the anisotropic radius-lifted
Riemannian (ARLR) metric [6] and the Finsler elastica (FE)
metric [8] on both synthetic and real images.

In Fig. 4, we compare the dynamic metric against the ARLR
metric and the FE metric. Our goal is to extract a tubular
structure with weak appearance features between the two
points which are indicated by dots. Both the geodesics from
the ARLR metric (Fig. 4b) and the FE metric (Fig. 4c) favour
to pass through the way with stronger appearance, whereas
the proposed method is able to delineate the desired structure,
which can be seen from Fig. 4d.

In Fig. 5, we illustrate the minimal path extraction results
derived from the ARLR metric, the FE metric and the proposed
dynamic metric on retinal images, which are shown in columns
1 to 3, respectively. The user given points are indicated by
dots. From column 1, we can observe the short branches
combination problem suffered by the ARLR metric, where the
extracted paths prefer to pass through vessel segments with
strong appearance feature. In the first two rows of column 2,
we can see the curvature-penalized geodesics pass by wrong
vessel segments due to the complicated structures of the vessel
network. In the third column, our model can get the desired
results thanks to the feature coherence-penalized nature.

2The vesselness map is defined as: maxr ρ̂(x, r).
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Fig. 4. Comparison results on a synthetic image. a A synthetic image which
includes a tubular shape. b-d Minimal paths obtained via the ARLR metric,
the FE metric and the proposed metric. The dots indicate the user-provided
points.

Fig. 5. Comparison results on retinal images. Columns 1-3 Minimal paths
derived from the ARLR metric , the FE metric and the dynamic metric,
respectively.

We validate the proposed dynamic minimal path model on
45 retinal patches from the DRIVE dataset [22]. Each patch
includes a retinal artery vessel which is near a stronger retinal
vein vessel or crosses it. Our goal is to extract the artery
vessel between two user-provided points. The artery-vein (A-
V) groundtruth for the DRIVE dataset can be found in [23].
Let A be the set of the grid points inside the desired regions
(such as the artery vessels) and let |A| ∈ R+

0 be the number

TABLE I
QUANTITATIVE COMPARISONS OF DIFFERENT METRICS ON DRIVE.

A Θ ARLR FE Dynamic

A-V Groundtruth

Avg. 0.32 0.66 0.93
Max. 0.97 1.0 1.0
Min. 0.02 0.15 0.59
Std. 0.21 0.29 0.08

Dilated Skeleton

Avg. 0.28 0.51 0.77
Max. 0.95 0.91 0.95
Min. 0.02 0.14 0.33
Std. 0.21 0.24 0.13

of elements of the set A. In addition, we define a set Γ of
grid points such that each grid point involved in Γ is passed
by a continuous geodesic. Thus, a measure Θ ∈ [0, 1] can be
simply defined by Θ = |Γ∩A|/|Γ|. For the DRIVE dataset, we
provide two ways to construct the set A, where the first way is
directly set A as the artery vessel map which can be identified
from the A-V groundtruth. In this case, the measurement Θ
evaluates the ability of reducing the risk of short branches
combination problem for each geodesic metric. The second
way is to skeletonise the artery regions (derived from the A-V
groundtruth) via morphological operators. Following that we
perform a dilation operation with radius ~ = 1 on the artery
vessel skeletons. Finally, the set A is obtained by identifying
all the grid points which simultaneously belong to the dilated
regions and the vessel groundtruth regions (including both
artery and vein vessels). In this case, the measurement Θ is
able to evaluate the alignment between the extracted geodesic
and the desired vessel centerlines in a more restrict manner.

VI. CONCLUSION

In this paper, we propose a new dynamic Riemannian
metric for geodesic computation with application to tubularity
centerline delineation. The dynamic metric can benefit from
the tubular appearance feature coherence property and adaptive
anisotropy enhancement, by which we can extract a tubular
structure with low variations of appearance features from an
image with complicated tree structures. The tubular appear-
ance features are estimated using the tool of orientation scores.
The proposed dynamic Riemannian metric is constructed
during the fast marching front propagation in terms of the
respective reference points. The results show that our method
indeed outperforms state-of-the-art minimal path methods.
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