
HAL Id: hal-02281541
https://hal.science/hal-02281541

Submitted on 9 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unsupervised Three-Dimensional Image Registration
Using a Cycle Convolutional Neural Network

Ziwei Lu, Guanyu Yang, Tiancong Hua, Liyu Hu, Youyong Kong, Lijun Tang,
Xiaomei Zhu, Jean-Louis Dillenseger, Huazhong Shu, Jean-Louis Coatrieux

To cite this version:
Ziwei Lu, Guanyu Yang, Tiancong Hua, Liyu Hu, Youyong Kong, et al.. Unsupervised Three-
Dimensional Image Registration Using a Cycle Convolutional Neural Network. 2019 IEEE In-
ternational Conference on Image Processing (ICIP), Sep 2019, Taipei, Taiwan. pp.2174-2178,
�10.1109/ICIP.2019.8803163�. �hal-02281541�

https://hal.science/hal-02281541
https://hal.archives-ouvertes.fr


HAL Id: hal-02281541
https://hal.archives-ouvertes.fr/hal-02281541

Submitted on 9 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unsupervised Three-Dimensional Image Registration
Using a Cycle Convolutional Neural Network

Ziwei Lu, Guanyu Yang, Tiancong Hua, Liyu Hu, Youyong Kong, Lijun Tang,
Xiaomei Zhu, Jean-Louis Dillenseger, Huazhong Shu, Jean-Louis Coatrieux

To cite this version:
Ziwei Lu, Guanyu Yang, Tiancong Hua, Liyu Hu, Youyong Kong, et al.. Unsupervised Three-
Dimensional Image Registration Using a Cycle Convolutional Neural Network. 2019 IEEE In-
ternational Conference on Image Processing (ICIP), Sep 2019, Taipei, Taiwan. pp.2174-2178,
�10.1109/ICIP.2019.8803163�. �hal-02281541�

https://hal.archives-ouvertes.fr/hal-02281541
https://hal.archives-ouvertes.fr


Unsupervised three-dimensional image registration using a Cycle 
Convolutional Neural Network

Ziwei Lu and Guanyu Yang and Tiancong Hua and Liyu Hu and Youyong Kong and Lijun tang and Xiaomei 
Zhu and Jean-Louis Dillenseger and Huazhon Shu and Jean-louis Coatrieux

and Jean-Louis Coatrieux

Abstract— In this paper, an unsupervised cycle image regis-
tration convolutional neural network named CIRNet is devel-
oped for 3D medical image registration. Different from most
deep learning based registration methods that require known
spatial transforms, our proposed method is trained in an unsu-
pervised way and predicts the dense displacement vector field.
The CIRNet is composed by two image registration modules
which have the same architecture and share the parameters.
A cycle identical loss is designed in the CIRNet to provide
additional constraints to ensure the accuracy of the predicted
dense displacement vector field. The method is evaluated by
the registration in 4D (3D+t) cardiac CT and MRI images
respectively. Quantitative evaluation results demonstrate that
our method performs better than the other two existing image
registration algorithms. Especially, compared to the traditional
image registration methods, our proposed network can finish
3D image registration in less than one second.

Index Term - Image registration, 3D, unsupervised, non-rigid,
convolutional neural network

I. INTRODUCTION

Image registration is widely used in the medical image
processing. Traditional registration methods are iteratively-
optimized by parametric [1], [2] or nonparametric trans-
formations [3], [4]. However, these traditional methods are
limited by the large amount of computation in optimization.

With the success of deep neural network in image recogni-
tion, classification, segmentation and other computer vision
tasks [5], deep neural networks have been used to solve
the medical image registration. Recently, several supervised
deep neural networks have been proposed to perform image
registration [6], [7], [8]. These methods require supervised
information to train the networks, such as dense displacement
vector field (DVF) [6], [7], reference labels of segmen-
tation [8]. However, these supervised methods could be
influenced by the error or bias existed in the supervised
information.
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In the unsupervised image registration methods based on
the deep learning [9], [10], [11], [12], supervised informa-
tion, such as deformation displacement field or segmentation
label, is not required in the process of training. Bob D et
al. [9] developed a 2D end-to-end unsupervised registration
network. Li H et al. [10] encoded the spatial transformations
of images based on fully convolutional network (FCN) [13].
Balakrishnan et al. [11] implemented a registration net-
work VoxelMorph combining the spatial transformer network
(STN) [14]. Fan J et al. [12] proposed a patch-based method
to achieve unsupervised registration using generative adver-
sarial nets (GAN) [15]. Patch-based methods are fast to be
trained, however, global information could be missed. The
time required for image registration of these deep learning
based unsupervised registration methods are much less than
that of the traditional method, but some of these methods are
inferior to traditional methods in terms of accuracy.

In this paper, we propose a convolutional neural network,
i.e. CIRNet that can predict non-rigid spatial transform be-
tween the moving image and the fixed image. The proposed
network is trained on the entire 3D image directly without
any supervised information. The CIRNet consists of two
registration modules that perform a cycle registration for
the moving image. A cycle identical loss is introduced
to improve the accuracy of the registration. Preliminary
experiments on cardiac MR and CT images show that our
method can generate accurate 3D registration results.

II. METHODS

The task of image registration is to find the DVF φ
between the moving image M and the fixed images F , then
deform the moving image with the DVF so that the two
images are aligned in the spatial coordinate system. Image
registration can be described as an optimization problem by
minimizing an energy function P , The energy function P is
described as below:

P = S(M(φ), F ) +Reg(φ) (1)

where M(φ) denotes the warped image obtained by de-
form the moving image M with the DVF φ, function S(x, y)
measures the dissimilarity between two images, and Reg(φ)
is a smooth regularization constraint on the DVF.

A. Network structure

We proposed the CIRNet that learns details of the spatial
transformation relationship between moving image and fixed



Fig. 1. Illustration of the CIRNet. The two 3D images A and B are inputs
into the network. Dotted line represents back propagation. Lcyc is the cycle
identical loss, measuring similarity between the image A and the warped
image A(φ1 ◦ φ2).

image directly. The network takes 3D fixed and moving
images as input and outputs the warped moving image.

As shown in Fig. 1, the CIRNet is composed of two
cascaded registration modules R1, R2. The module R1 and
R2 are identical in architecture. The parameters of the two
modules are shared so that the number of total parameters
in the whole network will not increase.

The moving image A and the fixed image B are con-
catenated into 2-channel input and fed into the module R1.
The module R1 estimates the DVF φ to generate the warped
image A(φ1), which is similar to the image B in spatial
coordinate domain. The module R2 takes the warped image
A(φ1) and the image A as input. In this stage, the difference
to the module R1 is that the image A(φ1) and the image A
serve as moving and fixed images respectively. The DVF φ2

and the warped image A(φ1 ◦ φ2) are the output of module
R2. Thus, our network is able to perform a cycle registration
by R1 : ΩA → ΩB and R2 : ΩB → ΩA , where ΩA and
ΩB refer to spatial coordinate domain of the image A and
the image B respectively.

Assuming that the registration network is trained well,
the warped image A(φ1 ◦ φ2) should be consistent with the
original image A not only in spatial coordinate domain but
also in gray-level distribution. The similarity measurement
between the warped image A(φ1 ◦ φ2) and the image A
is deduced as A(φ1 ◦ φ2) ≈ A, which helps to improve
the training of the modules R1 and R2. Details about this
similarity measurement Lcyc will be described in the section
of loss function. It is worth to be mentioned that the training
process of the cascaded network is performed end-to-end
on the entire 3D image directly. Such a cycle registration
network can provide additional constraints to give a more
precise prediction of the local non-rigid deformation between
two images. It is also helpful to the convergence of the
network training for such an unsupervised machine learning
method. In addition, the testing process will be done in one
shot by the output of a registration module R1 or R2 without
computing the auxiliary module.

The architecture of the modules R1 or R2 are mainly based

on the network presented in [11] as shown in Fig. 2. The
module is composed of two parts. The first part is a convo-
lutional neural network (ConvNet), which predicts the DVF
φ. The second part performs tri-linear interpolation on image
based on spatial transformation network [14]. ConvNet fol-
lows an encoder-decoder architecture which is similar to the
UNet [16]. The encoder layers include four down-sampling
operations which are applied by stride convolutions. The
decoder layers include four up-sampling operations. There
are four short-connections in the ConvNet module that allows
concatenating the feature maps obtained by the encoder
layers to the feature maps obtained by the corresponding
decoder layers. Therefore, the low-level features and high-
level features are integrated. We added batch normalization
layer [17] and Leaky ReLU activation after each convolution
layer. The last layer of the ConvNet is a 3D convolution layer
with 3 convolutional kernels that parameterize the DVF φ in
the X , Y , and Z axis.

Fig. 2. Illustration of the architecture of the registration module R1 and
R2.

B. Loss Function
The loss function designed for the CIRNet contains three

terms: LNCC , Lcyc and Lreg. The first two terms measure
the image similarities and the last term penalizes the discon-
tinuity of the estimated DVF.

In the CIRNet, cycle registrations were performed by the
modules R1 and R2. The warped images generated by each
registration module are consistent with the corresponding
moving images in the spatial coordinate domain. As the
other image registration methods, the normalized correlation
coefficient (NCC) [18] is used in the LNCC to measure the
similarity between A(φ1) and B. The NCC is calculated
using a sliding window of 9*9*9. If the LNCC equals to 0,
it means that the two images are nearly uncorrelated. On the
contrary, if LNCC equals to 1, it means that the two images
are highly positively correlated.

For the image A, the CIRNet should be able to deform
A back to the original image A after the cycle registration
performed by modules R1 and R2. Therefore, the cycle
identical loss Lcyc enforces A(φ1 ◦ φ2) equivalent to the
image A. Considering that two images should be identical
in gray-level distribution and spatial coordinate domain,
L2 regularization is used in the Lcyc, which is defined as
follows,

Lcyc(A(φ1 ◦ φ2), A) =
1

N

∑
i=Ω

(A(φ1 ◦ φ2)(i)−A(i))2 (2)



where N is the number of all voxels, Ω refers to all the
voxels in the image.

In order to ensure the continuities of the warped image,
gradient optimization is used to smooth the DVF φ. For each
voxel i, the smooth regularization Lreg is defined as follow:

Lreg(φ) =
∑
i=Ω

∇φ(i)2 (3)

Based on the above analysis, the loss functions of the two
registration modules R1 and R2 are designed as below:

LR1(A,B) = −LNCC(A(φ1), B) + αLreg(φ1)

+βLcyc(A(φ1 ◦ φ2), A)
(4)

LR2(A,B) = −LNCC(A(φ1 ◦ φ2, A) + αLreg(φ1)

+βLcyc(A(φ1 ◦ φ2), A)
(5)

Where A(φ1) denotes the warped image produced by
the module R1, and A(φ1 ◦ φ2) denotes the warped image
obtained from the module R2, α and β controls the relative
importance of the three terms. Lcyc is used for backpropa-
gation of both R1 and R2 modules to enhance the training
process.

III. EXPERIMENTS AND RESULTS

A. Dataset

We evaluated our method by inter-frame registration in 4D
(3D+t) cardiac CT and MRI images respectively.

The first dataset includes the short-axis cine MRI images
from 100 patients used in Automated Cardiac Diagnosis
Challenge (ACDC) [19]. The pixel resolution is from 1.37
to 1.68 mm2. Each 4D MRI image contains 28 to 40
volumetric frames in one heartbeat. The slice spacing is
5 mm or 8 mm. Manual segmentation labels of the left
ventricular endocardium (LVE), pericardium (LVP) and the
right ventricular endocardium (RVE) at end-diastolic (ED)
and endsystole (ES) phases are provided. In the paper, we
divided these 100 patients into 80 and 20 patients for training
and testing respectively. The pairs of two frames with the
time interval of 4 in one 4D sequence, i.e. (t0, t4), (t1, t5),
(t2, t6), etc., were extract as the pair of the fixed and moving
images for the registration. The total number of 472 and
58 image pairs were used for network training and testing
respectively.

The second dataset contains cardiac CTA images of 20
patients, acquired on a Siemens Dual-source 64-detector CT
scanner. Each 4D CT image consists of 10 volumetric frames
in a cardiac cycle. The pixel size ranges from 0.314 to 0.4
mm2 and the slice spacing is 0.5 mm. The dataset was split
into 15 and 5 patients for network training and testing. Every
two consecutive frames in one 4D image, i.e. (t0, t1), (t1, t2),
(t2, t3), etc., were extracted as the fixed and moving image
for the registration. The total number of 135 and 45 image
pairs were used for network training and testing.

Considering of the limitation of GPU memory, the 3D
ROIs of heart were cropped from the original images and

resampled to the same axial size of 128× 128. The number
of slices of the ROI extracted from MR and CT datasets
are fixed to 10 and 112 respectively. The voxel intensity
of all the images from these two datasets was normalized
to [0, 1] before fed into the network. The segmentation
labels at ED and ES phases in the first dataset were only
used for computing quantitative measurements to evaluate the
performance of the registration and not used for the training
of our network respectively.

B. Training details

The proposed network was implemented in the Tensor-
Flow framework on a workstation of Intel i5-7500 CPU, 8G
RAM and NVIDIA GTX1080 GPU. We trained the network
using Adam solver with a learning rate of 0.0001 for the
first 100 epochs and then linearly declined over the next 50
epochs. The batch size equals to 8 for ACDC dataset and 1
for cardiac CT dataset due to the limitation of GPU memory.
We set α = 1 and β = 5 in Eq. (4) and Eq. (5). In addition,
considering that the number of images in the Z-axis of the
ACDC dataset is relatively small, only one down-sampling
operation is performed in the Z-axis direction in ConvNets
part, and four down-sampling operations are still performed
in the X-axis and Y -axis direction.

C. Evaluation

For the test images in the first dataset, the reference
segmentation labels at ED phase were deformed to generate
the LVE, LVP and RVE labels at ES phase by a series of pre-
dicted DVFs φ. Dice coefficients [20] between the deformed
segmentation labels and the reference segmentation labels
were computed to evaluate the accuracy of the registration
algorithm.

We compared our method with two existing methods.
The first one is a traditional B-spline non-rigid registration
algorithm with Elastixs [21], advanced Mattes mutual infor-
mation was used as similarity metric. The other one is a deep
learning based unsupervised image registration algorithm
VoxelMorph [11] implemented in Keras framework.

The dice coefficients computed in the ACDC dataset are
summarized in Table I. We let α = 1 and β = 5 in Eq.
(4) and Eq. (5) to demonstrate the effectiveness of the cycle
identical loss Lcyc. As shown in Table I, our method without
cycle identical loss in CIRNet-1 outperforms Voxelmorph,
which means that the cascaded network architecture of
CIRNet can better predict the DVF. After combing cycle
identical loss in CIRNet-2, our method has achieved the
best dice coefficients of LVE, LVM and RVE, which are
83.56%, 80.81% and 72.58% respectively. Furthermore, all
deep learning-based methods have large improvement of
computation time compared to the traditional one, especially
running on GPU. Compared to the Voxelmorph, our proposed
method does not have significant increase of computational
cost.

In the second dataset, considering that manual delineation
of cardiac chambers is a large amount of labor work, we
compared the image similarity of two images by subtracting



TABLE I
DICE COEFFICIENTS AND COMPUTATION TIME OF THE REGISTRATION IN THE ACDC DATASET .

Methods Dice coefficients GPU time(ms) CPU time(ms)LVE(ES) LVM(ES) RVE(ES)
Before registration 64.43% 53.25% 63.72%

Elastix 79.43% 78.38% 70.31% · · · 12396.97
Voxelmorph 80.86% 77.74% 71.29% 201.23 3347.03

CIRNet-1 (w/o Lcyc) 81.24% 79.46% 71.79% 221.01 4502.78
CIRNet-2 (w/ Lcyc) 83.56% 80.81% 72.58% 245.45 4535.84

Fig. 3. Original images and difference images of five patients. The
difference of image intensity in five testing CT images are displayed in color.
The first two columns show fixed image and moving image respectively. The
third column shows the difference between the moving image and the fixed
image. The next three columns display the difference between the warped
image and the fixed image obtained by the Elaxtix, the VoxelMorph and the
CIRNet.

the warped image from the fixed image. Fig. 3 shows the
fixed image, the moving image and the difference between
the warped image and the fixed image in color for three
different methods. As displayed in Fig. 3, the results of the
CIRNet achieved the best results with the minimum mean
and the variance of 0.022 ± 0.0007. The average mean and
the variance obtained by the Elastix and the Voxelmorph
are 0.035 ± 0.0020 and 0.035 ± 0.0015 respectively. It
indicates that the CIRNet with the loss Lcyc achieved the
best performance among three image registration methods.

IV. CONCLUSION

In this paper, an end-to-end unsupervised convolutional
neural network CIRNet for registration of 3D medical im-
ages is presented. The CIRNet adopted cascaded network
architecture to estimate the DVF. The cycle identical loss
introduced in this paper can further improve the accuracy of
image registration. Our network CIRNet has been tested on
the datasets of cardiac CT and MRI. Quantitative evaluation
results show that our method achieves the best registration

accuracy than the other two registration methods. In addition,
the CIRNet can perform image registration much faster than
the traditional methods.
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