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Graph matching over Hypothesis Graphs for the
Analysis of Handwritten Arithmetic Operations

Arnaud Lods
Learn&Go, Univ Rennes, CNRS, IRISA
F-35000 Rennes
arnaud.lods @learn-and-go.com

Abstract—This paper presents a preliminary research work for
the analysis of handwritten arithmetic operations in the context
of e-education. Given a mathematical exercise, an answer in the
form of an arithmetical operation is expected from a child. This
answer can be represented by a graph containing both expected
numbers and their corresponding relationship one to another. We
propose to compute several hypotheses Fuzzy Visibility Graph of
symbols over a child’s input. The widely used A* algorithm to
compute exact graph edit distance is applied over those graphs
to match the expected answer. To reduce the search complexity,
simplified graphs of operands are first generated and used. Each
operand is a sub-graph of the original graph, the algorithm is
then applied on the pairs of matched sub-graphs. The hypothesis
graph with the smallest graph edit distance with the expected
graph and the matched differences can be used to produce an
adapted feedback. The result of an experiment over a given
example is presented.

Index Terms—graph edit distance, A* algorithm, handwritten
arithmetic operation, fuzzy visibility graph, graph analysis.

I. INTRODUCTION

The improvement of pen-based devices over the recent years
offers new ways of teaching in school. We now have the
opportunity to provide interfaces with complete liberty for the
children. Thus one can devise an adapted system to create
personalized and extensive feedback on mistakes made without
a costly human analysis. For our domain of application,
learning mathematics, such problem can be represented by
a graph Gr = {Vp,Er} where Vr, the set of vertices,
represents the set of mathematical symbols and Er, the set
of edges, represents the mathematical relationships between
symbols, as displayed in Fig. 1a.

The scientific problematic boils down to a problem of graph
matching. Given a source graph GGg produced from the child’s
input and a target graph G which is the expected solution,
we are looking for the best graph edit distance (GED) that
minimizes the number of required operations to transform G g
into Gp. The community of pattern recognition has since long
tackled the problematic of graph matching. A study in [1]
covers most of the related works on the matter, from exact
graph matching to inexact graph matching. Recent works focus
on the improvement of the computation of a higher bound
for classification purpose. In [2] the authors present several
optimization algorithms. However, to compute the best GED,
the A* algorithm [3] is a robust but costly solution. In [4] an

Eric Anquetil
Univ Rennes, CNRS, IRISA
F-35000 Rennes
eric.anquetil @irisa.fr

Sébastien Macé
Learn&Go
F-35000 Rennes
sebastien.mace @learn-and-go.com

H

(a) Target graph of (b) Target graph of

19 0 1]

symbols G operands GO

Fig. 1: The graph G'r generated with rules over the arithmetic
operation: 954 + 947.

algorithm is presented to compute the exact GED in half the
time and with a lower memory consumption.

As a first milestone for our research work, we present
in Section II the application of a naive A* algorithm on
an intermediate then complete representation of the graph to
reduce overall computational complexity. Then we present a
first experiment in Section III. In Section IV we discuss our
ongoing research work on this problematic.

II. OUR SYSTEM

To produce a graph that can be matched to the target
graph presented earlier, we extend a system previously built
in [5] called Fuzzy Visibility Graph. Fuzzy landscapes, cor-
responding to fuzzy areas in the space each representing an
observed mathematical relationship, are learned over pairs of
symbols and are used to build the graph from a set of symbols.
This set of symbols is produced by two different Random
Forest classifiers to segment the strokes into symbols and to
classify those symbols with two set of geometrical features.
The classifiers give us a probability for each class. As children
are still in the learning process and can have very different and
ambiguous input, instead of generating one graph G'g to match
to the target graph G, we generate a set of hypotheses graphs

= {Gs1,Ggs2..Gg,} for each uncertain classification. As
such the goal is to match each graph Gg; to the target graph
G to find the graph with the lowest GED. Fig. 2 display an
example of two hypotheses graphs made on the same input
where the segmentation was ambiguous.

As stated earlier, a simplified A* algorithm is used to match
each graph Gg; to Gr. The costs of transformations (Eq. 1)
are defined to put more emphasis on sow the child has built his
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Fig. 2: The two Fuzzy Visibility Graphs of symbols hypotheses
G51 and GS2.

operation with a higher cost for edges deletion/insertion rather
than what he has written with a lower cost for different vertices
matching. For vertices substitution, ||l,, — [,|| currently refers
to the Levenshtein distance on the string of symbols labels.
For edges substitution, f(r(u_yv) —T(u,v)) has a cost of 0 if the
relationship is similar or a cost of 1 otherwise. We also impose
a restriction on the deletion and insertion of vertices. Let Np
and Ng be respectively the number of vertices for the target
and source graph considered. We only allow the insertion of
vertices if N > Ng and the deletion of vertices if Np < Ng.
In other words, as we are working with operations that are
expected to contain lots of mistakes from both positioning and
calculus, the goal is to force a matching, even if symbols have
different labels, rather than deleting and adding new vertices
with correct labels if the child made mistakes on numbers.
Thus, if we observe too mane or too few vertices, we allow
a number of insertion/deletion operations as to match exactly
those which are missing/in excess. Once the best GED for the
pairs of graphs of operands is computed, we can compute the
GED on the graph of symbols for each hypothesis.

clu—=v) = |[l, — L]
c(lu—e)=cle=v)=r1
C((U,U) — (ulav/)) = f(r(u,v)ar(u’,v’)) (1)

c((u,v) =€) =0
cle = (v, v")) =27

We now have the matched pairs of operands between each
graph Ggp; and Grp, each operand being a sub-graph of the
original graph of symbols. The algorithm A* is applied to
find the best GED for each pair of matched sub-graphs. We
identify two types of edges: internal edges between symbols of
the sub-graphs, that are matched as usual, and external edges
between symbols and operands. For the latter case, the cost of
edges edition is computed from a symbol vertex to an operand
vertex: {(u, V')}. This allows us to avoid matching larger sub-
graphs of related symbols which would in turn increase a lot
the number of matches. The lowest sum of the GED and its
corresponding edit path on the set of sub-graphs represent the
best matching for each graph G'g; to G. The hypothesis graph
with the lowest cost is kept and the resulting GED represents
the analysis result with the differences on what was expected.

III. EXPERIMENT

We ran the system on the given arithmetic addition
displayed in Fig. 2. Two hypotheses are generated while

producing the fuzzy visibility graph (Fig. 2). These hy-
potheses (Ggs1,Gg2) are converted to two operands graphs
(Gso1,Gso2) using the same rules to produce Gro. The
two matching steps presented in Section II are applied and the
expected hypothesis graph has the lowest GED with a missing
relationship between the + and the horizontal bar. Otherwise if
we were to select the second graph as the best hypothesis, then
the edit path: Insert node, Insert relation, Insert relation on the
carry-over in G give us the information that the carry-over
was forgotten, and thus an adapted feedback can be displayed.

IV. CONCLUSION AND PERSPECTIVES

We presented the first step of a system that make use of
fuzzy visibility graph representation to compute the graph
edit distance from hypotheses graphs to a given target graph.
The standard A* algorithm is used, and an intermediary
representation is used to match sub-graph of the initial pair of
graphs to reduce the computation time. Simple cost functions
for the graph edition are used. On a first sample, the correct
hypothesis graph is matched at a lower cost and the expected
matching between symbols is found in a reasonable time.

In the future we intend to learn the cost functions on
a complete dataset to take into account the probabilities
of the classifiers producing the initial hypotheses graphs.
Then we will be able to produce experimental validation
on a corresponding dataset. Another step is to implement a
more efficient algorithm to reduce computation for complex
operation, and to merge the different hypotheses graphs in
a single graph with vertices and hypotheses edges to avoid
matching the same pairs several times. Other improvement
can be made on the initial graph representation. We also
intend to expand experiments on a large dataset collected from
children aged 6 to 8-years-old to evaluate the effectiveness
of the matching with several methods and different types of
arithmetical operations. Eventually transformations resulting
from the graph edit distance will be used to produce adapted
feedback for the children.
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