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Abstract. In this work, we present a study of the nonlinearity of building thermal behavior based on a 

metamodel for cooling energy needs. We studied the nonlinearity of the thermal behavior of an office. The 

building quadratic behavior and interactions between its components were analyzed based on the 

metamodel coefficients. The metamodel was fitted with a reduced number of dynamic simulations. The 

nonlinearity was first assessed as function of the mean outdoor air temperature in fifteen typical European 

climates and then as function of the internal heat gains for the coldest and hottest climates. The metamodel 

provided highly accurate results with fast calculation time. However, a higher accuracy was generally 

obtained for hot climates, high internal heat gains and lightweight thermal mass. Conversely, the 

nonlinearity of thermal behavior was accentuated in cold climates and with low internal heat gains. 

Moreover, the interactions between the building components were found to be more influential on cooling 

energy needs than quadratic behavior. We propose a classification of thermal behavior into three regimes: 

Highly nonlinear when the energy needs are close to zero; intermediate with decreasing nonlinearities that 

can be expressed by power functions; and finally, a quasi-linear regime with almost-steady nonlinearities. 

1 Introduction  

Dynamic models describe the thermal behavior of a 

building with relatively high fidelity and can be used to 

explore design alternatives. However, despite their great 

potential, extensive studies such as those for building 

optimization, may require excessive computation times. 

In addition, their capacity to provide insight into thermal 

behavior is limited by the implicit nature of the heat 

transfer equations. Furthermore, their use during early 

design stages is constrained by the large amount of data 

required. 

Metamodels have been developed to approximate 

simulation models [1], with a resulting improvement in 

computation efficiency and a better understanding of the 

original model. The simulations are simplified by the 

low computational expense of the metamodels. In 

addition, metamodels generally have explicit forms 

which provide insight into the nature of the simulation 

response as a function of the influential parameters. 

Moreover, they only require small amounts of data, 

which makes them suitable for early design stages 

The most common metamodeling strategy is to 

construct polynomial approximations [2, 3]. They are the 

simplest, require the lowest computational effort and 

give useful insight into the behavior of the model. Their 

coefficients are easy to interpret, highlighting the effects 

of the input parameters. The number of runs needed to fit 

them can be drastically reduced with the use of the 

Design of Experiments method [4]. The choice of an 

experimental design determines the number of runs and 

the value of the design parameters in each run. 

Several alternative metamodeling techniques can be 

used to approximate a model, notably artificial neural 

networks, radial basis functions, kriging, Multivariate 

Adaptive Regression Splines (MARS), support vector 

machines and Gaussian processes [2, 3].  

Generally, these techniques provide better fits than 

polynomials. However, they can be computationally 

intensive and provide less insight. 

Hence, metamodels can improve the computation 

efficiency of building energy performance. They can 

also provide an interpretation of the dynamic model, 

especially when using polynomials. This allows a better 

understanding of the relationship between building 

design, environmental parameters and energy 

performance indicators.  

Consequently, the development of metamodels to 

investigate building energy performance has become an 

active area of research. Polynomial regressions are the 

most widely used metamodels. They have been used to 

study the energy needs for cooling and heating [5-7], 

energy consumption [8-10] and CO2 emissions [7].  

Moreover, polynomial regressions have been 

developed to assess the impact of building energy 

consumption with climate change [11] and to estimate 

the energy consumption of a building stock [12].  

Artificial neural networks have been also widely used 

for building energy performance metamodeling [13-15]. 

Furthermore, various metamodeling techniques have 
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been investigated to study building energy performance 

including support vector machines [16, 17], Gaussian 

process [18] and MARS [19, 20].  

Finally, metamodels have recently been introduced in 

Brazilian energy regulations to assess the energy 

performance of air-conditioned and naturally ventilated 

buildings [10], and they have been recommended for 

future Chilean energy standards [7].  

The thermal behavior of a building is affected by 

nonlinearities. Heat transfer through walls is nonlinear in 

a transient regime. Heat transfer by convection and 

radiation is inherently nonlinear, although it is often 

linearized. The thermal behavior of the energy systems 

of a building is generally nonlinear. 

There are also interactions between heat transfers 

because the effect of one heat transfer on energy needs 

can depend on the level of another. For instance, the 

effect of a ventilation heat transfer in reducing the 

energy needs for cooling is greater when the solar and 

internal gains are high. 

Consequently, understanding the nonlinearities in the 

thermal behavior of a building and assessing the 

relevance of linear calculation methods are interesting 

subjects for research. Nonlinearity has been investigated 

by simply changing one variable at time, such as in 

studying the impact of passive design measures on the 

building energy consumption for heating and cooling 

[21], the impact of uncertainties in building parameters 

on energy and economic performance [22] and energy 

consumption as a function of the U-values of [23].  

Nonlinearity has also been highlighted in sensitivity 

analysis studies using the Morris method, for instance in 

the sensitivity analysis of the heating energy needs with 

respect to building parameters [24] and of the heating 

energy demand and overheating hours with respect to 

weather variables [25].  

Comparative studies have been conducted to confront 

linear and nonlinear regression metamodels, highlighting 

the higher accuracy of the latter. For instance, linear and 

quadratic regression metamodels have been developed to 

predict energy consumption as a function of the building 

and HVAC system parameters [26]. However, the 

literature shows that there is a need for a general and 

simple method to assess the nonlinearities of thermal 

behavior. 

Thus, extensive work has been carried out on 

metamodels for the study of the energy performance of a 

building and its energy systems. These studies 

emphasized the accuracy and computational efficiency 

of metamodels, but their capability to provide insight 

into thermal behavior has not been sufficiently 

investigated. In particular, there is a lack of methods that 

use metamodels to study nonlinearities in thermal 

behavior. 

Recently, we presented a general metamodel that can 

be used as a common framework for metamodeling 

building energy performance [27]. Here we present a 

method for the study of nonlinearities in the thermal 

behavior of a building based on a metamodel for the 

cooling energy needs derived from the general one. 

 In order to assess these nonlinearities, we introduced 

two measures based on the metamodel coefficients 

highlighting the importance of the quadratic and 

interaction effects.  

The method was applied to analyze the nonlinearity 

of the thermal behavior of an office for fifteen typical 

European climates. Moreover, the method was applied to 

the cold climate of Helsinki and the hot climate of 

Athens with various levels of internal heat gains. 

2 Methods  

2.1 Metamodeling 

The metamodel was derived from the general metamodel 

for building energy performance that we presented 

previously [27]. The derivation was achieved by 

considering the cooling energy needs Qc as a 

performance indicator. Hence, the energy needs are a 

second-order polynomial of the individual energy needs 

for cooling Q = (Q1, Q2,…, Qn) of the building 

components, which is expressed as follows: 

                  (1) 

where Qi and Qj are two individual energy needs 

equal to two heat transfers (kWh year-1), a0, ai, aii, and aij 

are the linear, quadratic and interaction effects, 

respectively and ε is the residual. 

The coefficients a0, ai, aii, and aij are assumed to 

depend on climate, the thermal mass of the building, its 

use, the type of energy system and possibly the 

individual energy needs that are assumed to be constant. 

When all the individual energy needs of all the building 

components vary, a0 is equal to zero.  

A transmission energy need for a wall is calculated, 

in a quasi-steady-state assumption as 

                          (2) 

where U and A are the U-value (W m-2 k-1) and the 

area of the wall (m2), respectively, θis is the indoor set-

point temperature (°C), oe is the equivalent outdoor 

temperature to which the wall is exposed (°C) and ∆t is 

the time step (h). 

The energy need of an air change is given by 

                                (3)  

where  is the airflow rate (m3 s-1), ρa and cpa are 

the air density (kg m-3) and specific heat capacity (J kg-1 

k-1), respectively, θoa is the outdoor air temperature (°C). 

The individual energy need of a solar heat gain 

through a window can be expressed as 

                  (4) 

where SHGCw and Aw are the solar heat gain 

coefficient and the area of the window (m2), 

respectively, Isw is the solar irradiance in the direction of 

the window (W m-2) and Fish and Fesh are the shading 

reduction factors of the internal and external shading 

devices, respectively. 
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2.2 Nonlinearity measures 

The nonlinearities in thermal behavior were analyzed 

based on the interpretation of the metamodel 

coefficients. To this end, we introduce the following 

measures, which quantify the importance of the 

quadratic and the interaction effects. 

The ratio of the quadratic to the linear effects is given 

by  

                             (5) 

where ai is the effect of a linear term, aij is the effect 

of a quadratic term and n is the number of linear terms 

equal to the number of the quadratic terms. 

The ratio of the interaction to the linear effects is 

calculated from 

                        (6) 

where aij is the effect of an interaction term and 

 is the number of interaction terms. 

2.3 Case study 

The metamodel for cooling energy needs was used to 

study the nonlinearity of the thermal behavior of the 

office shown in Fig. 1. The energy needs were assessed 

for the period from June to September. The office has a 

concrete structure.  

Two types of thermal mass were considered: a 

lightweight thermal mass with insulation from the inside, 

and a heavy thermal mass with insulation from the 

outside. 

The office is occupied from Monday to Friday from 

8h to 18h. The ventilation air flow is equal to 50 m3 h-1 

when the office is occupied. The cooling set-point 

temperatures is 26 °C when the office is occupied and 

30 °C when it is unoccupied.  

Moreover, the basic value of the internal heat gains is 

20 W m-2 when the office is occupied and 2 W m-2 when 

it is unoccupied.  

We studied the impact of the facade components on 

cooling energy needs. Consequently, we analyzed 

individual energy needs corresponding to four heat 

transfers. These are shown in Table 1, with the 

parameters in Eqs. (2)-(4) varied to fit the metamodel. 

 

 

Fig. 1. The studied office. 

Moreover, an external shading device was included. 

It provides a shading factor Fom = 0.2 when the solar 

irradiance Isw is higher than 300 W m-2. 

The metamodel was fitted from dynamic simulations 

performed with TRNSYS software. To this end, the 

individual energy needs were varied using upper and 

lower levels of the physical parameters, as shown in 

Table 2. 

The Box-Behnken experimental design was used to 

plan the simulations [28]. Hence, 25 dynamic 

simulations were needed to fit the metamodel compared 

with 81 when using a full factorial design. In addition, 

the metamodel coefficients were obtained by multiple 

regression analysis. 

Next, the metamodel fit was tested by comparing the 

results with those of the TRNSYS dynamic simulations. 

The comparison was performed for 100 additional 

dynamic simulations with a random combination of the 

physical parameters of Table 2. 

Once the metamodel had been fitted and validated, 

the nonlinearities in thermal behavior were studied using 

the measures of Eqs. (5)-(6). The values of these 

measures were calculated using coded variables of the 

individual energy needs ranging from -1 to +1. The 

nonlinearities were hence analyzed using individual 

energy needs having the same variation range. 

The metamodel was first applied to fifteen typical 

European climates, then for the cold climate of Helsinki 

and the hot climate of Athens. 

 In the second part, the cooling energy needs and the 

nonlinearities in thermal behavior were studied in 

relation to internal heat gains pig,o of between 5 and 40 

W m-2 during the occupation, at increments of 5 W m-2. 

In addition, internal heat gains when unoccupied were 

10% of pig,o.  

In each case, the mean value of cooling energy needs 

was considered to be equal to the mean of the 100 

dynamic simulations used to test the metamodel fit.

Table 1.  Heat transfers, individual energy needs and the parameters varied to fit the metamodel. 

Heat transfer Individual energy need Varied parameter 

Transmission through the opaque wall 

incorporating the effect of the thermal bridges 
Qtr,wo (kWh year-1) Uow (W m-2 K-1) 

Transmission through the window Qtr,w (kWh year-1) Uw (W m-2 K-1) 

Solar heat gain through the window Qso,w (kWh year-1) qv,inf  (m3 h-1) 

Heat transfer due to infiltration Qac,inf (kWh year-1) SHGCw 
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Fig. 2. Mean outdoor air temperature and mean cooling energy needs for fifteen typical European climates. 

Table 2. Lower and upper levels of the physical parameters. 

Parameter 
Uow 

(W m-2 K-1) 

Uw 

(W m-2 K-1) 

qv,inf 

(m3 h-1) 

SHGCw 

- 

Lower level 0.1 0.7 8.1 0.3 

Upper level 0.5 2.7 32.4 0.7 

3 Results and discussions  

3.1 Application to typical European climates 

As specified previously, the metamodel was applied to 

fifteen typical European climates. The mean outdoor air 

temperature in the corresponding locations and the mean 

cooling energy needs are presented in Fig. 2. The 

cooling energy needs varied between 271.1 and 810.9 

kWh year-1 for the lightweight thermal mass and 

between 215.3 and 871.8 kWh year-1 for the heavy 

thermal mass. In addition, the results indicate that the 

thermal mass decreased the energy needs in cold 

climates and increased it in hot climates. 

The variation of the root mean square error (RMSE) 

of the metamodel versus the mean outdoor air 

temperature in the different locations for the lightweight 

and heavy thermal masses is presented in Fig. 3. The 

RMSE generally decreased with the temperature and 

thermal mass. Moreover, the RMSE varied between 0.4 

and 1.4 kWh year-1 for the lightweight thermal mass 

between 0.9 and 3.5 kWh year-1 for the heavy thermal 

mass. It was, in general, very low compared to the 

energy needs, especially for the lightweight thermal 

mass. 

One reason for the higher accuracy with the 

lightweight thermal mass could be the quasi-steady state 

calculation of the individual energy needs in Eqs. (2)-(4), 

which may be more accurate with a lightweight thermal 

mass. 

An association was found between the RMSE and the 

outdoor air temperature following a power law. The 

corresponding coefficients of determination R2 were 

0.90718 and 0.76261 for the lightweight and heavy 

thermal mass, respectively, which indicates that almost 

91% and 76%, respectively, of the variation in the RMSE 

was associated with the outdoor air temperature. 

The weaker association with the heavy thermal mass 

can be explained by the fact that with a heavy thermal 

mass, other climate factors have more influence on the 

nonlinearities, notably solar irradiation and the 

temperature difference between day and night. 
The nonlinearity was also calculated for each 

climate. The ratio of the quadratic to the linear effects 

QL as function of the mean outdoor air temperature is 

illustrated in Fig. 4. Similarly, the ratio of the interaction 

to the linear effects IL is illustrated in Fig. 5. 

The results indicate that nonlinearities decreased, 

following a similar pattern, as a function of the outdoor 

air temperature. 

In addition, for a given climate, when the ratio of the 

quadratic to the linear effects was above or below the 

fitted curve, the corresponding ratio of the interaction to 

the linear effects generally followed the same tendency.  

It is interesting to observe that, for each climate, the 

ratio of the interaction to the linear effects was higher 

than the quadratic to the linear effects. Thus, despite the 

quadratic behavior, the interaction between the 

components had a greater effect on energy needs. In 

addition, little variation was observed in the ratios above 

19 °C, especially for the heavy thermal mass, indicating 

that the nonlinearities in thermal behavior become quasi-

stable. 
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Fig. 3. RMSE of the metamodel for cooling energy needs 

versus the mean outdoor air temperature for the fifteen 

European climates. 
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Fig. 4.  Ratio of the quadratic to the linear effects versus mean 

outdoor air temperature for the fifteen European climates. 

 

Fig. 5.  Ratio of the interaction to the linear effects versus the 

mean outdoor air temperature for the fifteen European 

climates. 

Furthermore, there was generally a strong association 

between the ratios and the outdoor air temperature, 

which varied between 76% and 96% depending on the 

measure. However, this temperature is not the only 

climate factor that impacted the nonlinearities in thermal 

behavior. The influence of other parameters such as the 

temperature difference between day and night, solar 

irradiation and wind speed could be significant. Further 

studies to investigate these effects would be interesting.  

3.2 Application to cold and hot climates  

3.2.1 Cooling energy needs 

The metamodel was used to study the nonlinearities in 

thermal behavior in the cold climate of Helsinki and the 

hot climate of Athens with internal heat gains during 

occupation pig,o varying from 5 to 40 W m-2. 

The mean cooling energy needs as given by dynamic 

simulation versus internal heat gains are illustrated in 

Fig. 6 for both climates and for lightweight and heavy 

thermal masses. The variation of the energy needs as a 

function of pig,o fitted almost perfectly with quadratic and 

linear polynomials for Helsinki and Athens, respectively. 

It should be noticed that the heavy thermal mass 

reduced the cooling energy needs in Helsinki but 

increased them in Athens. The difference in energy 

needs was higher when the internal heat gains were 

intermediate in Helsinki and high in Athens. 

The results also showed that, for Helsinki, when pig,o 

are equal to 5 w m-2, the energy needs were close to zero 

for both thermal masses. Hence, in this case, the solar 

and internal heat gains were almost completely 

compensated by heat transfer by transmission and air 

change. 

3.2.2 Metamodel coefficients 

The metamodel coefficients were obtained by multiple 

regression analysis. A metamodel fit was achieved for 

each level of internal heat gains pig,o. However, the 

metamodel coefficients are presented only for the case 

where pig,o were 20 W m-2. The coefficients for both 

climates and both thermal masses are shown in Table 3. 

These values are related to the metamodel with coded 

variables of the individual energy needs (varying from -1 

to +1). 

The coefficient a0 corresponds to the cooling energy 

needs when all the coded values of the individual energy 

needs are null, i.e., when they are equal to their mean 

level. Obviously, these energy needs were very high in 

the hot climate of Athens compared to the climate of 

Helsinki. In addition, at this level, the thermal mass 

reduced the energy needs in Helsinki and, conversely, 

increased them in Athens. 

Furthermore, at this level, the thermal mass reduces 

the energy needs in Helsinki and conversely increases 

them in Athens. The coefficients a1, a2 and a3, which 

correspond to the linear effects of the energy needs of 

heat transfer by transmission and air change Qtr,ow, Qtr,w 

and Qac,inf, were higher with a heavy thermal mass, in 

accordance with the fact that the reduction in cooling 

energy needs is more sensitive to heat loss with a heavy 

thermal mass. 

y	=	0.2294x2 +	10.888x	- 35.444

R²	=	0.9992

y	=	0.35x2 +	5.8254x	- 37.81
R²	=	0.99851

0

200

400

600

800

0 10 20 30 40

M
e
a
n
	e
n
e
rg
y	
n
e
e
d
s

(k
W
h
	y
e
a
r-
1
)

Internal	heat	gains	(W	m-2)

Lightweight	thermal	mass

Heavy	thermal	mass

a)  

y	=	26.78x	+	277.54
R²	=	0.99995

y	=	29.306x	+	287.48

R²	=	0.99998

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40

M
e
a
n
	e
n
e
rg
y	
n
e
e
d
s

(k
W
h
	y
e
a
r-
1
)

Internal	heat	gains	(W	m-2)

Lightweight	thermal	mass

Heavy	thermal	mass

b)
 

Fig. 6. Mean cooling energy needs as given by dynamic 

simulation versus internal heat gains: a) Helsinki and b) 

Athens. 

Table 3. Coefficients of the metamodels using coded variables 

for Athens and Helsinki with internal heat gains of 20 W m-2. 

  

    
 

, 0 (201Web of Conferences https://doi.org/10.1051/e3sconf/20191110409)
201

E3S 111
CLIMA 9

4039 39

5



 

 

Location Helsinki Athens 

Thermal 

mass 

Lightweight  Heavy Lightweight  Heavy 

a0 267.4 209.2 810.4 872.6 

a1 -38.0 -51.4 -13.3 -19.8 

a2 -92.0 -126.3 -37.4 -57.0 

a3 -58.3 -86.7 -13.5 -27.9 

a4 101.3 113.4 127.1 134.5 

a11 2.4 4.6 0.6 0.9 

a22 17.2 23.5 4.8 6.6 

a33 8.2 12.7 2.6 3.8 

a44 6.0 7.4 2.3 0.2 

a12 14.8 20.0 3.4 5.6 

a13 9.2 14.3 2.1 3.9 

a14 -8.9 -12.4 -2.8 -4.1 

a23 21.4 33.3 6.3 9.9 

a24 -18.8 -27.7 -5.9 -7.8 

a34 -12.2 -19.7 -3.7 -5.3 

In addition, all of each quadratic term had a positive 

effect aii, suggesting that the cooling energy needs varied 

as a convex function of the individual energy needs. 

3.2.3 Metamodel validation 

The metamodel fit was checked for each value of the 

internal heat gains pig,o by comparing the results with 

those of TRNSYS software. The RMSE of the fits are 

shown in Fig. 7 for both climates and both thermal 

masses. As expected, the metamodels were more 

accurate for the hot climate of Athens than for the cold 

climate of Helsinki and for the lightweight thermal mass. 

For Helsinki, the RMSE was relatively high when the 

internal heat gains were low, i.e. when the cooling 

energy needs were close to zero. However, when these 

gains were high, the RMSE was low, comparable to the 

RMSE obtained for Athens. In addition, the RMSE 

became stable, with approximately the same values for 

both thermal masses. Finally, the RMSE can be 

accurately expressed by a power regression, especially 

for the heavy thermal mass (R2 = 0.98092). 

For Athens, a high level of agreement was observed 

between the results of the metamodel and the dynamic 

simulations, with errors below 0.5 kWh year-1 for the 

lightweight thermal mass and below 1.6 kWh year-1 for 

the heavy thermal mass. Furthermore, the RMSE for the 

lightweight thermal mass was almost constant. Although 

the RMSE increased linearly as a function of pig,o for the 

heavy thermal mass (R2 = 0.95338), the slop was 0.0255 

kWh year-1 W-1 m2, which is less than 1/1000 of that of 

the energy needs of 29.306 kWh year-1 W-1 m2.  

3.2.4 Nonlinearity study 

The nonlinearity of thermal behavior was studied as a 

function of internal heat gains pig,o using the measures of 

Eqs. (5-6). 
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Fig. 7. RMSE of the metamodel for cooling energy needs 

versus internal heat gains: a) Helsinki and b) Athens. 

The variations of the ratios of the quadratic to the 

linear effects QL (Eq. (5)) versus pig,o are illustrated in 

Fig. 8 for both climates and both thermal masses.  

For the cold climate of Helsinki, the results show that 

QL was high when pig,o are equal to 5 and 10 W m-2, i.e. 

when the cooling energy needs were close to zero. In 

addition, they were strongly associated with pig,o using 

power laws with coefficients of determination R2 higher 

than 0.96.  

However, a better fit was again found for the 

lightweight thermal mass. Furthermore, when the 

internal gains were low, the quadratic behavior was more 

pronounced with a heavy thermal mass; above 20 W m-2 

the difference was lower and even the behavior with a 

lightweight thermal mass was slightly more quadratic 

above 30 W m-2.  

For the hot climate of Athens, there was a slight 

linear variation of QL varying from 4.8% to 6.6% for the 

lightweight thermal mass and from 4.0% to 6.2% for the 

heavy thermal. We deduced that the nonlinearities were 

low and almost stable in these conditions. 

The ratios of the interaction to the linear effects IL 

(Eq. (6)) versus pig,o are illustrated in Figs. 9. For 

Helsinki, this ratio followed similar patterns to QL. They 

were also strongly associated with pig,o with coefficients 

of determination R2 higher than 0.97. For Athens, IL 

were quasi-constant, with higher values for heavy 

thermal mass. 

Finally, the ratio of the interaction to the linear 

effects IL was higher than for quadratic to linear effects 

QL whatever the internal heat gains. This was also 

shown previously in relation to the mean outdoor air 

temperature of the climates. Thus, the interaction 

between the building components had a stronger effect 

than quadratic behavior. 
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Fig. 8. Ratio of the quadratic to the linear effects versus 

internal heat gains: a) Helsinki and b) Athens. 

 

 

Fig. 9. Ratio of the interaction to the linear effects versus 

internal heat gains: a) Helsinki and b) Athens. 

Conclusion 

A metamodeling method to study nonlinearities in the 

thermal behavior of a building was presented. Two 

nonlinearity measures were introduced using the 

metamodel coefficients allowing to assess the relative 

importance of the quadratic and interaction effects in the 

metamodel. 

The method was applied to the analysis of the 

nonlinearities in the thermal behavior of an office in 

relation to the mean outdoor air temperature of fifteen 

typical European climates and to different levels of 

internal heat gains for the coldest and hottest climates. 

It was observed that metamodel errors generally 

decreased with mean outdoor air temperature and 

internal heat gains, i.e. when the cooling energy needs 

were high. When the climate was hot and internal heat 

gains were high, there was practically no difference 

between the results of the metamodel and dynamic 

simulation.  

The nonlinearity of thermal behavior was 

accentuated when the climate was cold, with low internal 

heat gains, i.e. when energy needs were low and the 

metamodel errors high. The nonlinearity measures were 

accurately associated with the mean outdoor air 

temperature of the climates in accordance with 

decreasing power laws. Similar patterns were observed 

with internal heat gains for cold climates. However, for 

hot climates, the nonlinearities were quasi-stable, with a 

linear variation with respect to internal heat gains. It 

should be noticed that the interactions between the 

building components was found to be more influential on 

cooling energy needs than quadratic behavior. 

Following the results of this study, we propose to 

classify building thermal behavior into three regimes: 

highly nonlinear close to zero energy needs; intermediate 

with decreasing nonlinearities that can be expressed by 

power functions; and, finally, a quasi-linear regime with 

almost-steady nonlinearities. 

When the energy needs were close to zero, the 

thermal behavior was highly nonlinear with a relatively 

low metamodeling accuracy. The analysis of the 

nonlinearities in such conditions would require further 

investigation. For instance, alternative metamodels (e.g. 

artificial neural networks, radial basis functions, support 

vector machines, kriging) might produce more accurate 

approximations. However, some metamodels are 

computationally intensive and their coefficients would 

provide less insight than our metamodel that is based on 

a polynomial assumption.  

Further metamodeling studies would be necessary to 

understand the nonlinearities in thermal behavior using 

metamodeling. In particular, the study of the influence of 

climate factors and energy systems is an interesting 

subject for research. In addition, it would be useful to 

identify the conditions in which nonlinear terms would 

be necessary to ensure the accuracy of simplified 

methods for use in future building standards. 
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