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ON AN INEQUALITY OF BRENDLE IN THE HYPERBOLIC

SPACE

OUSSAMA HIJAZI, SEBASTIÁN MONTIEL, AND SIMON RAULOT

Abstract. We give a spinorial proof of a Heintze-Karcher type inequality in
the hyperbolic space proved by Brendle [Br]. The proof relies on a generalized
Reilly formula on spinors recently obtained in [HMR].
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Sur une inégalité de Brendle dans l’espace hyperbolique

Résumé. On donne une nouvelle démonstration d’une inégalité de type Heintze-
Karcher dans l’espace hyperbolique prouvée par Brendle [Br]. Cette preuve re-
pose sur une formule de Reilly généralisée pour l’opérateur de Dirac que nous
avons récemment obtenus dans [HMR].
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1. Introduction

The classical Alexandrov theorem [A] asserts that if Σ is a closed embedded
hypersurface in Rn+1 with constant mean curvature then Σ is a round sphere. There
are different proofs and generalizations of this theorem. Here we are interested in
that of [Ro] (inspired by Reilly’s proof [Re]) which relies on the following Heintze-
Karcher type inequality

n

∫

Σ

1

H
dΣ ≥ −

∫

Σ

〈ξ,N〉dΣ (1)

which holds for all closed embedded mean convex hypersurfaces Σ in Rn+1. Here
ξ, N and H denote respectively the position vector field, the unit inner vector field
normal to Σ and the mean curvature of Σ (with our conventions, the unit sphere in
R

n+1 satisfies H = n). Moreover, equality holds if and only if Σ is a round sphere.
Now assuming the constancy of the mean curvature H , which has to be positive
since Σ is compact, the classical Minkowski formula

n

∫

Σ

dΣ = −

∫

Σ

H〈ξ,N〉dΣ

implies that equality is achieved in (1) and thus the Alexandrov theorem is proved.
More recently, Brendle [Br] generalized this inequality for domains in certain

warped product manifolds which, in particular, include the classical space forms.
This formula is then used to prove some unicity theorems for constant mean cur-
vature hypersurfaces in such manifolds generalizing results from the second author
[M]. In the hyperbolic space, this inequality reads as :
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Theorem 1. Let Ω ⊂ Hn+1 be a compact (n+1)-dimensional domain with smooth
boundary Σ and let V (x) = coshdistHn+1(x, b) for some fixed point b ∈ Ω. If Σ is
mean convex, then

n

∫

Σ

V

H
dΣ ≥ (n+ 1)

∫

Ω

V dΩ. (2)

The equality in (2) holds if and only if Ω is isometric to a geodesic ball.

The proof of this result relies on the fact that the quantity
∫
Σ

V
H
dΣ is monotone

non-increasing along a geometric flow. It is worth noticing that this approach has
recently been successfully adapted in several works. For example, in [WWZ], the
authors obtain an analogous formula for codimension two submanifolds in some
warped products spacetime which admit a conformal Killing-Yano 2-form. Then as
an application, they prove generalizations of the Alexandrov theorem for adapted
curvature conditions in this context. Note that in our work [HMR], we weaken their
assumptions when the spacetime is the Minkowski space. In a same manner, Li and
Xia [LX] (see also [QX]) were able to prove a Heintze-Karcher type inequality for
sub-static manifolds. Their proof relies on a generalization of the classical Reilly
formula and fits more to the approach developed by Reilly and Ros.

In this note, we prove that, in the case of the hyperbolic space, inequality (2) is
a simple consequence of a generalized Reilly type inequality on spinors. It follows
the spinorial proof of the Heintze-Karcher inequality in Rn+1 by Desmonts [D2].

2. An integral inequality from [HMR]

Here we specialize an integral inequality proved in our work [HMR] for certain
boundaries of spacelike domains in spacetimes satisfying the Einstein equation and
the dominant energy condition in the case of the Minkowski spacetime Rn+1,1. For
more details, we refer to [HMR].

Let Ω be a compact (n + 1)-dimensional domain with smooth boundary Σ of
the hyperbolic space Hn+1 realized as the spacelike hypersurface of the Minkowski
spacetime Rn+1,1 defined by

H
n+1 = {(x0, x1, · · · , xn+1) ∈ R

n+2 / − x20 +

n+1∑

i=1

x2i = −1}.

Since Ω ⊂ Hn+1, the position vector ξ in Rn+1,1 is a future-directed timelike
vector field normal to Ω in Rn+1,1. We will also denote by N the inner unit spacelike
vector field normal to Σ in Ω. In this frame, the second fundamental form of Σn in
Rn+1,1 is given by

II(X,Y ) = 〈AX, Y 〉N + 〈X,Y 〉ξ,

for all X,Y ∈ Γ(TΣ) and where AX := −∇Ω
XN denotes the shape operator of Σ in

Ω. Here ∇Ω denotes the Levi-Civita connection of the induced Riemannian metric
〈 , 〉 on Ω. The mean curvature vector field H of Σ in R

n+1,1, defined by H = tr II,
can be expressed as :

H = HN + nξ,

where H = trA is the mean curvature of Σ in Ω.
On Rn+1,1, we define the bundle of complex spinors as being the trivial vec-

tor bundle SR
n+1,1 = R

n+2 × C
m where m = 2[

n+2

2
]. The natural action of ω ∈
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Cl(Rn+1,1), an element of the complex Clifford bundle over Rn+1,1, on a spinor field
ψ ∈ Γ

(
SRn+1,1

)
will be denoted by γ̃(ω)ψ. The existence of a unit timelike vector ξ

normal to Hn+1 (hence to Ω) allows to define the restricted spinor bundle over Ω by
S/Ω = SRn+1,1

|Ω. According to [Ba1], this spinor bundle carries a positive-definite
inner product denoted by 〈 , 〉 and such that

〈γ̃(X)ϕ, ψ〉 = −〈ϕ, γ̃(X)ψ〉 and 〈γ̃(ξ)ϕ, ψ〉 = 〈ϕ, γ̃(ξ)ψ〉 (3)

for all X ∈ Γ(TΩ) and ϕ, ψ ∈ Γ
(
S/Ω

)
. Moreover, they also satisfy the compatibility

relation

∇̃X(γ̃(Y )ψ) = γ̃(∇̃XY )ψ + γ̃(Y )∇̃Xψ (4)

for X,Y ∈ Γ(TΩ) and ψ ∈ Γ(S/Ω).
From a Lorentzian point of view, the Gauß formula gives a relation between the

Levi-Civita connection ∇̃ of Rn+1,1 and the one induced on TΩ. Namely, we have

∇̃XY = ∇Ω
XY + 〈X,Y 〉ξ

for all X,Y ∈ Γ(TΩ). The spin Gauß formula gives the corresponding formula in
the spinorial setting :

∇̃Xψ = ∇/ Ω
Xψ +

1

2
γ̃
(
X
)
γ̃(ξ)ψ (5)

for all X ∈ Γ(TΩ), ψ ∈ Γ
(
S/Ω

)
and where ∇̃ and ∇/ Ω correspond to the spin Levi-

Civita connections obtained by lifting to the spinor bundle S/Ω the Lorentzian and

Riemannian connections ∇̃ and ∇Ω. Moreover, it is also simple to check that the
following compatibility relation holds

X〈ψ, ϕ〉 = 〈∇/ Ω
Xψ, ϕ〉+ 〈ψ,∇/ Ω

Xϕ〉 (6)

for all X ∈ Γ(TΩ) and ψ, ϕ ∈ Γ
(
S/Ω

)
.

The orientation of Ω induces an orientation on Σ which provides the existence of
a unit vector field N ∈ Γ(TΩ|Σ) normal to Σ and pointing inward Ω. The existence
of this vector field allows to induce on Σ a spin structure from that on Ω. It follows
that the bundle S/Σ := S/Ω|Σ is well-defined and is endowed with a spinorial Levi-

Civita connection ∇/ Σ. The latter is induced by the Riemannian connection on Σ
and satisfies

∇/ Ω
Xψ = ∇/ Σ

Xψ +
1

2
γ̃
(
AX

)
γ̃(N)ψ. (7)

It is also important in our result to note that since the map

I : ψ ∈ S/Σ 7→ iγ̃(N)ψ ∈ S/Σ

is a linear involution, the spinor bundle S/Σ splits into S/Σ = S/+Σ ⊕ S/−Σ where
S/±Σ denote the vector bundles over Σ whose fiber is the eigenspaces associated
to the eigenvalues ±1 of I. The projections onto these subbundles are denoted by
P± = (1/2)(Id± i γ̃(N)). Finally we define the extrinsic Dirac operator of Σ as the
first order elliptic linear differential operator acting on S/Σ whose local expression
is given by

D/ Σψ =

n∑

j=1

γ̃(ej)γ̃(N)∇/ Σ
ej
ψ
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for all ψ ∈ Γ
(
S/Σ) and where {e1, · · · , en} is a local orthonormal frame of TΣ. It

is then straightforward to check that D/
Σ

is formally selfadjoint for the L2-scalar
product on S/Σ.

We are now in position to state the result proved in our work [HMR] and from
which Inequality (2) follows. Note that the statement here is much less general than
the original in view of our purpose. In fact, we have :

Theorem 2. Let Σn be a mean convex closed hypersurface bounding a compact
domain Ωn+1 in Hn+1. If D/ is the first order differential operator defined, for all
ψ ∈ Γ(S/Σ), by

D/ ψ := D/ Σψ +
n

2
γ̃(N)γ̃(ξ)ψ (8)

then,
∫

Σ

( 1

H
|D/ ψ|2 −

H

4
|ψ|2

)
dΣ ≥ 0. (9)

Moreover equality occurs if and only if there exists two spinor fields Φ1, Φ2 ∈ Γ(S/Ω)

such that ∇̃XΦ1 = ∇̃XΦ2 = 0 for all X ∈ Γ(TΩ) and with P+Φ1 = P+ψ and
P−Φ2 = P−ψ.

Remark 1. We apply here Proposition 5 in [HMR]. Let us check that this can
be done in our situation. First the Minkowski spacetime obviously satisfies the
Einstein equation with the dominant energy condition. Moreover, the connection

1-form αN (X) := 〈∇̃Xξ,N〉 = 〈X,N〉 is clearly zero for all X ∈ Γ(TΣ). The only
thing which is not satisfied is the fact that Σ is an outer untrapped submanifold
that is H ≥ n. However, it is a simple verification to see that Proposition 5 in
[HMR] also holds under the weaker assumption of mean convexity of Σ in Ω.

3. Proof of Theorem 1

First note that from the definition (8) of the Dirac-type operator D/ and the spin
Gauß formula (5) and (7), the formula

D/ ψ =
1

2
Hψ +

n∑

j=1

γ̃(ej)γ̃(N)∇̃ejψ (10)

holds for all ψ ∈ Γ(S/Σ). Now take φ ∈ Γ(SRn+1,1) a parallel spinor on Rn+1,1, that

is such that ∇̃Xφ = 0 for all X ∈ Γ(TRn+1,1), and consider the restriction to Σ of
the field Φ := γ̃(ξ)φ. Applying formula (10) to Φ, we first compute that

D/Φ =
1

2
HΦ+ nγ̃(N)φ (11)

using (4) and so

|D/Φ|2 =
1

4
H2|Φ|2 + n2|φ|2 + nH Re〈γ̃(ξ)γ̃(N)φ, φ〉.

using (3). Now from the fact that φ is parallel, the Gauß formula (5) and the
compatibility relation (6), we deduce that

Re〈γ̃(ξ)γ̃(N)φ, φ〉 = 2Re〈∇/ Ω
Nφ, φ〉 =

∂|φ|2

∂N
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and so, if we let V = |φ|2, we get

1

H
|D/Φ|2 =

1

4
H |Φ|2 + n2 V

H
+ n

∂V

∂N
.

Integrating this identity on Σ and using Inequality (9) in Theorem 2 yields

0 ≤

∫

Σ

( 1

H
|D/Φ|2 −

1

4
H |Φ|2

)
dΣ = n

∫

Σ

(
n
V

H
+
∂V

∂N

)
dΣ

that is

n

∫

Σ

V

H
dΣ ≥ −

∫

Σ

∂V

∂N
dΣ = −

∫

Ω

∆V dΩ = (n+ 1)

∫

Ω

V dΩ

where the last equality comes from the fact that V satisfies ∆V = −(n + 1)V .
Moreover it is not difficult to see (see [Ba2]) that there exists a (unique) point
b ∈ Hn+1 such that V (x) = coshdistHn+1(x, b) for all x ∈ Hn+1. This concludes the
proof of Inequality (2).

Assume now that equality is achieved and then equality is also achieved in (9)
so that there exists two spinor fields Φ1,Φ2 ∈ Γ(S/Ω) such that

∇̃XΦ1 = ∇̃XΦ2 = 0 and P+Φ1 = P+Φ, P−Φ2 = P−Φ (12)

for all X ∈ Γ(TΩ). A simple calculation shows that D/ P± = P∓D/ and then it follows
from (10) and (12) that

D/Φ = D/ (P+Φ1 + P−Φ2) = P−D/Φ1 + P+D/Φ2 =
H

2
(P−Φ1 + P+Φ2).

This equality leads to 2
H
D/Φ+ Φ = Φ3 where we let Φ3 := Φ1 +Φ2 ∈ Γ(S/Ω). Note

that Φ3 satisfies ∇̃XΦ3 = 0 because of (12). Moreover using (11) we compute

Φ3 = 2γ̃(ξ +
n

H
N)φ.

and then for all X ∈ Γ(TΣ) we have

0 = ∇̃XΦ3 = 2
(
γ̃
(
X +

n

H
∇̃XN

)
φ− n

X(H)

H2
γ̃(N)φ

)
.

However since αN (X) = 0 for all X ∈ Γ(TΣ) (see Remark 1) we deduce that

∇̃XN = −A(X) and so

γ̃
(
X −

n

H
A(X)

)
φ− n

X(H)

H2
γ̃(N)φ = 0.

Taking the scalar product with γ̃
(
X − n

H
A(X)

)
φ in this equality finally gives

∣∣X −
n

H
A(X)

∣∣2|φ|2
︸ ︷︷ ︸

∈R

= n
X(H)

H2
〈γ̃
(
X −

n

H
A(X)

)
φ, γ̃(N)φ〉

︸ ︷︷ ︸
∈iR

.

from which we obtain that A(X) = H
n
X since φ is non zero everywhere on Σ (see

[HMR] for more details). We conclude that Σ is a totally umbilical hypersurface of
the hyperbolic space and so it is a geodesic sphere and Ω is a geodesic ball. The
converse is obvious and follows from the fact that the restriction of any parallel
spinor φ ∈ Γ(SRn+1,1) satisfies the equation D/ φ = 1

2Hφ (by (10)).
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(Simon Raulot) Laboratoire de Mathématiques R. Salem UMR 6085 CNRS-Université
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