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This paper is devoted to logarithmic Hardy-Littlewood-Sobolev inequalities in the two-dimensional Euclidean space, in presence of an external potential with logarithmic growth. The coupling with the potential introduces a new parameter, with two regimes. The attractive regime reflects the standard logarithmic Hardy-Littlewood-Sobolev inequality. The second regime corresponds to a reverse inequality, with the opposite sign in the convolution term, which allows us to bound the free energy of a drift-diffusion-Poisson system from below. Our method is based on an extension of an entropy method proposed by E. Carlen, J. Carrillo and M. Loss, and on a nonlinear diffusion equation.

Main result and motivation

On R 2 , let us define the density of probability µ = e -V and the external potential V by µ(x) := 1

We shall denote by L 1 + (R 2 ) the set of a.e. nonnegative functions in L 1 (R 2 ). Our main result is the following generalized logarithmic Hardy-Littlewood-Sobolev inequality.

Theorem 1.1. For any α ≥ 0, we have that

R 2 f log f M d x + α R 2 V f d x + M (1 -α) 1 + log π ≥ 2 M (α -1) R 2 ×R 2 f (x) f (y) log |x -y| d x d y (1)
for any function f ∈ L 1 + (R 2 ) with M = R 2 f d x > 0. Moreover, the equality case is achieved by f = M µ and f is the unique optimal function for any α > 0.

With α = 0, the inequality is the classical logarithmic Hardy-Littlewood-Sobolev inequality

R 2 f log f M d x + 2 M R 2 ×R 2 f (x) f (y) log |x -y| d x d y + M 1 + log π ≥ 0 . (2) 
In that case f is an optimal function as well as all functions generated by a translation and a scaling of f . As long as the parameter α is in the range 0 ≤ α < 1, the coefficient of the right-hand side of [START_REF] Arnold | On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations[END_REF] is negative and the inequality is essentially of the same nature as the one with α = 0. It can indeed be written as

R 2 f log f M d x + α R 2 V f d x + M (1 -α) 1 + log π + 2 M (1 -α) R 2 ×R 2 f (x) f (y) log |x -y| d x d y ≥ 0 .
For reasons that will be made clear below, we shall call this range the attractive range.

If α = 1, the inequality is almost trivial since

R 2 f log f M d x + R 2 V f d x = R 2 f log f f d x ≥ 0 (3)
is a straightforward consequence of Jensen's inequality. Now it is clear that by adding (2) multiplied by (1-α) and (3) multiplied by α, we recover [START_REF] Arnold | On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations[END_REF] for any α ∈ [0, 1]. As a consequence ( 1) is a straightforward interpolation between ( 2) and (3) in the attractive range.

Now, let us consider the repulsive range α > 1. It is clear that the inequality is no more the consequence of a simple interpolation. We can also observe that the coefficient (α-1) in the right-hand side of ( 1) is now positive. Since

G(x) = - 1 2 π log |x|
is the Green function associated with -∆ on R 2 , so that we can define

(-∆) -1 f (x) = (G * f )(x) = - 1 2 π R 2 log |x -y| f (y) d y ,
it is interesting to write (1) as

R 2 f log f M d x + α R 2 V f d x + 4 π M (α -1) R 2 f (-∆) -1 f d x ≥ M (α -1) 1 + log π . ( 4 
)
If f has a sufficient decay as |x| → +∞, for instance if f is compactly supported, we know that (-∆) -1 f (x) ∼ -M 2 π log |x| for large values of |x| and as a consequence,

αV + 4 π M (α -1) (-∆) -1 f ∼ 2 (α + 1) log |x| → +∞ as |x| → +∞ .
In a minimization scheme, this prevents the runaway of the left-hand side in (4). On the other hand, R 2 f log f d x prevents any concentration, and this is why it can be heuristically expected that the lefthand side of (4) indeed admits a minimizer.

Inequality (2) was proved in [START_REF] Carlen | Competing symmetries, the logarithmic HLS inequality and Onofri's inequality on S n[END_REF] by E. Carlen and M. Loss (also see [START_REF] Beckner | Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality[END_REF]). An alternative method based on nonlinear flows was given by E. Carlen, J. Carrillo and M. Loss in [START_REF] Carlen | Hardy-Littlewood-Sobolev inequalities via fast diffusion flows[END_REF]: see Section 2 for a sketch of their proof. Our proof of Theorem 1.1 relies on an extension of this approach which takes into account the presence of the external potential V . A remarkable feature of this approach is that it is insensitive to the sign of α -1.

One of the key motivations for studying (4) arises from entropy methods applied to drift-diffusion-Poisson models which, after scaling out all physical parameters, are given by

∂ f ∂t = ∆ f + β ∇ • ( f ∇V ) + ∇ • ( f ∇φ) (5) 
with a nonlinear coupling given by the Poisson equation

-ε ∆φ = f . (6) 
Here V =log µ is the external confining potential and we choose it as in the statement of Theorem 1.1, while β ≥ 0 is a coupling parameter with V , which measures the strength of the external potential. We shall consider more general potentials at the end of this paper. The coefficient ε in ( 6) is either ε = -1, which corresponds to the attractive case, or ε = +1, which corresponds to the repulsive case. In terms of applications, when ε = -1, (6) is the equation for the mean field potential obtained from Newton's law of attraction in gravitation, for applications in astrophysics, or for the Keller-Segel concentration of chemo-attractant in chemotaxis. The case ε = +1 is used for repulsive electrostatic forces in semiconductor physics, electrolytes, plasmas and charged particle models.

In view of entropy methods applied to PDEs (see for instance [START_REF] Jüngel | Entropy methods for diffusive partial differential equations[END_REF]), it is natural to consider the free energy functional

F β [ f ] := R 2 f log f d x + β R 2 V f d x + 1 2 R 2 φ f d x (7)
because, if f > 0 solves ( 5)-( 6) and is smooth enough, with sufficient decay properties at infinity, then

d d t F β [ f (t , •)] = - R 2 f ∇ log f + β ∇V + ∇φ 2 d x (8)
so that F β is a Lyapunov functional. Of course, a preliminary question is to establish under which conditions F β is bounded from below. The answer is given by the following result.

Corollary 1.2. Let M > 0. If ε = +1, the functional F β is bounded from below and admits a minimizer on the set of the functions

f ∈ L 1 + (R 2 ) such that R 2 f d x = M if β ≥ 1 + M 8 π . It is bounded from below if ε = -1, β ≥ 1 -M 8 π and M ≤ 8 π. If ε = +1, the minimizer is unique.
As we shall see in Section 3.1, Corollary 1.2 is a simple consequence of Theorem 1.1. In the case of the parabolic-elliptic Keller-Segel model, that is, with ε = -1 and β = 0, this has been used in [START_REF] Dolbeault | Optimal critical mass in the two-dimensional Keller-Segel model in R 2[END_REF][START_REF] Blanchet | Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions[END_REF] to provide a sharp range of existence of the solutions to the evolution problem. In [START_REF] Campos | Asymptotic Estimates for the Parabolic-Elliptic Keller-Segel Model in the Plane[END_REF], the case ε = -1 with a potential V with quadratic growth at infinity was also considered, in the study of intermediate asymptotics of the parabolic-elliptic Keller-Segel model.

Concerning the drift-diffusion-Poisson model ( 5)-( 6) and considerations on the free energy, in the electrostatic case, we can quote, among many others, [START_REF] Gogny | Sur les états d'équilibre pour les densités électroniques dans les plasmas[END_REF][START_REF] Dressler | Steady states in plasma physics -the Vlasov-Fokker-Planck equation[END_REF] and subsequent papers. In the Euclidean space with confinig potentials, we shall refer to [START_REF] Dolbeault | Stationary states in plasma physics: Maxwellian solutions of the Vlasov-Poisson system[END_REF][START_REF] Dolbeault | Free energy and solutions of the Vlasov-Poisson-Fokker-Planck system: external potential and confinement (large time behavior and steady states)[END_REF][START_REF] Biler | Long time behavior of solutions of Nernst-Planck and Debye-Hückel drift-diffusion systems[END_REF][START_REF] Arnold | On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations[END_REF]. However, as far as we know, these papers are primarily devoted to dimensions d ≥ 3 and the sharp growth condition on V when d = 2 has not been studied so far. The goal of this paper is to fill this gap. The specific choice of V has been made to obtain explicit constants and optimal inequalities, but the confining potential plays a role only at infinity if we are interested in the boundedness from below of the free energy. In Section 3.3, we shall give a result for general potentials on R 2 : see Theorem 3.4 for a statement.

Proof of the main result

As an introduction to the key method, we briefly sketch the proof of (2) given by E. Carlen, J. Carrillo and M. Loss in [START_REF] Carlen | Hardy-Littlewood-Sobolev inequalities via fast diffusion flows[END_REF]. The main idea is to use the nonlinear diffusion equation

∂ f ∂t = ∆ f
with a nonnegative initial datum f 0 . The equation preserves the mass M = R 2 f d x and is such that

d d t R 2 f log f d x - 4 π M R 2 f (-∆) -1 f d x = - 8 M R 2 ∇ f 1/4 2 d x R 2 f d x -π R 2 f 3/2 d x .
According to [START_REF] Del Pino | Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions[END_REF], the Gagliardo-Nirenberg inequality

∇g 2 2 g 4 4 ≥ π g 6 6 (9) 
applied to g = f 1/4 guarantees that the right-hand side is nonpositive. By the general theory of fast diffusion equations (we refer for instance to [START_REF] Vázquez | Smoothing and decay estimates for nonlinear diffusion equations[END_REF]), we know that the solution behaves for large values of t like a self-similar solution, the so-called Barenblatt solution, which is given by B (t , x)

:= t -2 f (x/t ).
As a consequence, we find that

R 2 f 0 log f 0 d x - 4 π M R 2 f 0 (-∆) -1 f 0 d x ≥ lim t →+∞ R 2 B log B d x - 4 π M R 2 B (-∆) -1 B d x = R 2 f log f d x - 4 π M R 2 f (-∆) -1 f d x
After an elementary computation, we observe that the above inequality is exactly (2) written for f = f 0 .

The point is now to adapt this strategy to the case with an external potential. This justifies why we have to introduce a nonlinear diffusion equation with a drift. As we shall see below, the method is insensitive to α and applies when α > 1 exactly as in the case α ∈ (0, 1). A natural question is whether solutions are regular enough to perform the computations below and in particular if they have a sufficient decay at infinity to allow all kinds of integrations by parts needed by the method. The answer is twofold. First, we can take an initial datum f 0 that is as smooth and decaying as |x| → +∞ as needed, prove the inequality and argue by density. Second, integrations by parts can be justified by an approximation scheme consisting in a truncation of the problem in larger and larger balls. We refer to [START_REF] Vázquez | Smoothing and decay estimates for nonlinear diffusion equations[END_REF] for regularity issues and to [START_REF] Jüngel | Entropy methods for diffusive partial differential equations[END_REF] for the truncation method. In the proof, we will therefore leave these issues aside, as they are purely technical.

Proof of Theorem 1.1. By homogeneity, we can assume that M = 1 without loss of generality and consider the evolution equation

∂ f ∂t = ∆ f + 2 π ∇ • (x f ) .
1) Using simple integrations by parts, we compute

R 2 1 + log f ∆ f d x = -8 R 2 ∇ f 1/4 2 d x and R 2 1 + log f ∇ • (x f ) d x = - R 2 ∇ f f • (x f ) d x = - R 2 x • ∇ f d x = 2 R 2 f d x = 2 .
As a consequence, we obtain that

d d t R 2 f log f d x = -8 R 2 ∇ f 1/4 2 d x + 8 π R 2 µ 3/2 d x (10) using R 2 µ 3/2 d x = 1 2 π .
2) By elementary considerations again, we find that

4 π R 2 f (-∆) -1 ∆ f d x = -4 π R 2 f 3/2 d x and 4 π R 2 ∇ • (x f ) (-∆) -1 f d x = -4 π R 2 x f • ∇(-∆) -1 f d x = 2 R 2 ×R 2 f (x) f (y) x • x -y |x -y| 2 d x d y = R 2 ×R 2 f (x) f (y) (x -y) • x -y |x -y| 2 d x d y = 1
where, in the last line, we exchanged the variables x and y and took the half sum of the two expressions. This proves that

d d t 4 π R 2 f (-∆) -1 f d x = -8 π R 2 f 3/2 -µ 3/2 d x . ( 11 
)
3) We observe that

µ(x) = 1 π 1 + |x| 2 2 = e -V (x) solves ∆V = -∆ log µ = 8 π µ (12)
and, as a consequence,

R 2 V ∆ f d x = R 2 ∆V f d x = 8 π R 2 µ f d x . Since 2 π R 2 V ∇ • (x f ) d x = -2 π R 2 f x • ∇V d x = -8 π R 2 |x| 2 1 + |x| 2 f d x = -8 π + 8 π R 2 f 1 + |x| 2 d x = -8 π + 8 π R 2 µ f d x , we conclude that d d t R 2 f V d x = 8 π R 2 µ f + µ f -2 µ 3/2 d x . ( 13 
)
Let us define

F [ f ] := R 2 f log f d x + α R 2 V f d x + (1 -α) 1 + log π + 2 (1 -α) R 2 ×R 2 f (x) f (y) log |x -y| d x d y .
Collecting [START_REF] Dolbeault | Stationary states in plasma physics: Maxwellian solutions of the Vlasov-Poisson system[END_REF], ( 11) and ( 13), we find that

d d t F [ f (t , •)] = -8 R 2 ∇ f 1/4 2 d x -π R 2 f 3/2 d x -8 π α R 2 f 3/2 -µ f -µ f + µ 3/2 d x .
Notice that

R 2 f 3/2 -µ f -µ f + µ 3/2 d x = R 2 ϕ f µ µ 3/2 d x with ϕ(t ) := t 3/2 -t -t + 1
and that ϕ is a strictly convex function on R + such that ϕ(1) = ϕ (1) = 0, so that ϕ is nonnegative. On the other hand, by ( 9), we know that

R 2 ∇ f 1/4 2 d x -π R 2 f 3/2 d x ≥ 0
as in the proof of [START_REF] Carlen | Hardy-Littlewood-Sobolev inequalities via fast diffusion flows[END_REF]. Altogether, this proves that t → F [ f (t , •)] is monotone nonincreasing. Hence

F [ f 0 ] ≥ F [ f (t , •)] ≥ lim t →+∞ F [ f (t , •)] = F [ f ] = 0 .
This completes the proof of (1).

3 Consequences

Proof of Corollary 1.2

To prove the result of Corollary 1.2, we have to establish first that the free energy functional F β is bounded from below. Instead of using standard variational methods to prove that a minimizer is achieved, we can rely on the flow associated with ( 5)-( 6).

• Repulsive case. Let us consider the free energy functional defined in [START_REF] Carlen | Hardy-Littlewood-Sobolev inequalities via fast diffusion flows[END_REF] where φ is given by ( 6) with

ε = +1, i.e., φ = -1 2 π log | • | * f . Lemma 3.1. Let M > 0 and ε = +1. Then F β is bounded from below on the set of the functions f ∈ L 1 + (R 2 ) such that R 2 f d x = M if β ≥ 1 + M 8 π . Proof. With g = f M and α = 1 + M 8 π , this means that 1 M F β [ f ] -log M = R 2 g log g d x + β R 2 V g d x - M 4 π R 2 ×R 2 g (x) g (y) log |x -y| d x d y = (β -α) R 2 V g d x + R 2 g log g d x + α R 2 V g d x -2 (α -1) R 2 ×R 2 g (x) g (y) log |x -y| d x d y ≥ (β -α) R 2 V g d x -(1 -α) 1 + log π according to Theorem 1.1; the condition β ≥ α is enough to prove that F β [ f ] is bounded from below.
Proof of Corollary 1.2 with ε = +1. Let us consider a smooth solution of ( 5)- [START_REF] Campos | Asymptotic Estimates for the Parabolic-Elliptic Keller-Segel Model in the Plane[END_REF]. We refer to [START_REF] Li | Asymptotic behavior of Nernst-Planck equation[END_REF] for details and to [START_REF] Arnold | On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations[END_REF] for similar arguments in dimension d ≥ 3. According to [START_REF] Carlen | Competing symmetries, the logarithmic HLS inequality and Onofri's inequality on S n[END_REF], f converges as t → +∞ to a solution of

∇ log f + β ∇V + ∇φ = 0 .
Notice that this already proves the existence of a stationary solution. The equation can be solved as

f = M e -βV -φ R 2 e -βV -φ d x
after taking into account the conservation of the mass. With (6), the problem is reduced to solving

-∆ψ = M e -γV -ψ R 2 e -γV -ψ d x -µ , ψ = β -γ V + φ , γ = β - M 8 π using (12). It is a critical point of the functional ψ → J M ,γ [ψ] := 1 2 R 2 |∇ψ| 2 d x + M R 2 ψ µ d x + M log R 2 e -γV -ψ d x .
Such a functional is strictly convex as, for instance, in [START_REF] Dolbeault | Stationary states in plasma physics: Maxwellian solutions of the Vlasov-Poisson system[END_REF][START_REF] Dolbeault | Free energy and solutions of the Vlasov-Poisson-Fokker-Planck system: external potential and confinement (large time behavior and steady states)[END_REF]. We conclude that ψ is unique up to an additional constant.

• Attractive case. Let us consider the free energy functional (7) F β where φ is given by ( 6) with ε = -1, i.e., φ = 1 2 π log | • | * f . Inspired by [START_REF] Dolbeault | Optimal critical mass in the two-dimensional Keller-Segel model in R 2[END_REF], we have the following estimate.

Lemma 3.2. Let ε = -1. Then F β is bounded from below on the set of the functions

f ∈ L 1 + (R 2 ) such that R 2 f d x = M if M ≤ 8 π and β ≥ 1 -M 8 π . It is not bounded from below if M > 8 π. Proof. With g = f M and α = 1 -M 8 π , Theorem 1.1 applied to 1 M F β [ f ] -log M = (β -α) R 2 V g d x + R 2 g log g d x + α R 2 V g d x + 2 (1 -α) R 2 ×R 2 g (x) g (y) log |x -y| d x d y ≥ (β -α) R 2 V g d x -(1 -α) 1 + log π
proves that the free energy is bounded from below if M ≤ 8 π and β ≥ α. On the other hand, if

f λ (x) := λ -2 f (λ -1 x) and M > 8 π, then F β [ f λ ] ∼ 2 M M 8 π -1 log λ → -∞ as λ → 0 + ,
which proves that F β is not bounded from below.

Proof of Corollary 1.2 with ε = -1. The proof goes as in the case β = 0. We refer to [START_REF] Blanchet | Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions[END_REF] and leave details to the reader.

Remark 3.3. Let us notice that F β is unbounded from below if β < 0. This follows from the observation that lim |y|→∞ F β [ f y ] = -∞ where f y (x) = f (x + y) for any admissible f .

Duality

When α > 1, we can write a first inequality by considering the repulsive case in the proof of Corollary 1.2 and observing that

J M ,γ [ψ] ≥ min J M ,γ
where ψ ∈ W 2,1 loc (R 2 ) is such that R 2 (∆ψ) d x = 0 and the minimum is taken on the same set of functions. When α ∈ [0, 1), it is possible to argue by duality as in [5, Section 2]. Since f realizes the equality case in (1), we know that

R 2 f log f M d x + α R 2 V f d x + M (1 -α) 1 + log π = 2 M (α -1) R 2 ×R 2 f (x) f (y) log |x -y| d x d y
and, using the fact that f is a critical point of the difference of the two sides of (1), we also have that

R 2 log f f ( f -f ) d x + α R 2 V ( f -f ) d x = 4 M (α -1) R 2 ×R 2 f (x) -f (x) f (y) log |x -y| d x d y .
By subtracting the first identity to (1) and adding the second identity, we can rephrase (1) as

F (1) [ f ] := R 2 f log f f d x ≥ 4 π M (1 -α) R 2 ( f -f ) (-∆) -1 ( f -f ) d x := F (2) [ f ] .
Let us consider the Legendre transform

F * (i ) [g ] := sup f R 2 g f d x -F (i ) [ f ]
where the supremum is restricted to the set of the functions f ∈ L 1 + (R 2 ) such that M = R 2 f d x. After taking into account the Lagrange multipliers associated with the mass constraint, we obtain that

M log R 2 e g -V d x = F * (1) [g ] ≤ M 16 π (1 -α) R 2 |∇g | 2 d x + M R 2 g e -V d x = F * (2) [g ] .
We can get rid of M by homogeneity and recover the standard Euclidean form of the Onofri inequality in the limit case as α → 0 + , which is clearly the sharpest one for all possible α ∈ [0, 1).

Extension to general confining potentials with critical asymptotic growth

As a concluding observation, let us consider a general potential W on R 2 such that W ∈ C (R 2 ) and lim

|x|→+∞ W (x) V (x) = β (H W )
and the associated free energy functional

F β,W [ f ] := R 2 f log f d x + β R 2 W f d x + 1 2 R 2 φ f d x
where φ is given in terms of f > 0 by [START_REF] Campos | Asymptotic Estimates for the Parabolic-Elliptic Keller-Segel Model in the Plane[END_REF]. With previous notations, F β = F β,V . Our last result is that the asymptotic behaviour obtained from (H W ) is enough to decide whether F β,W is bounded from below or not. The precise result goes as follows.

Theorem 3.4. Under Assumption (H W ), F β,W defined as above is bounded from below if either ε = +1 and β > 1 + M 8 π , or ε = -1, β > 1 -M 8 π and M ≤ 8 π. The result is also true in the limit case if (W -βV ) ∈ L ∞ (R 2 ) and either ε = +1 and β = 1 + M 8 π , or ε = -1, β = 1 -M 8 π and M ≤ 8 π.

Proof. If (W -βV ) ∈ L ∞ (R 2 ), we can write that

F β,W [ f ] ≥ F β [ f ] -M W -βV L ∞ (R 2 ) .
This completes the proof in the limit case. Otherwise, we redo the argument using βV -βV -W + for some β ∈ (0, β) if ε = -1, and for some β ∈ 1 + M 8 π , β if ε = +1.
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