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Generalized logarithmic Hardy-Littlewood-Sobolev inequality
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Place de Lattre de Tassigny, 75775 Paris 16, France

Correspondence to be sent to: dolbeaul@ceremade.dauphine.fr

This paper is devoted to logarithmic Hardy-Littlewood-Sobolev inequalities in the two-dimensional Euclidean space, in

presence of an external potential with logarithmic growth. The coupling with the potential introduces a new parameter,

with two regimes. The attractive regime reflects the standard logarithmic Hardy-Littlewood-Sobolev inequality. The

second regime corresponds to a reverse inequality, with the opposite sign in the convolution term, which allows us to

bound the free energy of a drift-diffusion-Poisson system from below. Our method is based on an extension of an

entropy method proposed by E. Carlen, J. Carrillo and M. Loss, and on a nonlinear diffusion equation.

1 Main result and motivation

On R
2, let us define the density of probability µ= e−V and the external potential V by

µ(x) :=
1

π
(

1+|x|2
)2

and V (x) :=− logµ(x)= 2 log
(

1+|x|2
)

+ logπ ∀x ∈R
2 .

We shall denote by L1
+(R2) the set of a.e. nonnegative functions in L1(R2). Our main result is the following

generalized logarithmic Hardy-Littlewood-Sobolev inequality.

Theorem 1.1. For any α≥ 0, we have that

∫

R2
f log

(

f

M

)

d x +α

∫

R2
V f d x +M (1−α)

(

1+ logπ
)

≥
2

M
(α−1)

Ï

R2×R2
f (x) f (y) log |x − y |d x d y (1)

for any function f ∈ L1
+(R2) with M =

∫

R2 f d x > 0. Moreover, the equality case is achieved by f⋆ = M µ

and f⋆ is the unique optimal function for any α> 0.

With α= 0, the inequality is the classical logarithmic Hardy-Littlewood-Sobolev inequality

∫

R2
f log

(

f

M

)

d x +
2

M

Ï

R2×R2
f (x) f (y) log |x − y |d x d y +M

(

1+ logπ
)

≥ 0. (2)

In that case f⋆ is an optimal function as well as all functions generated by a translation and a scaling

of f⋆. As long as the parameter α is in the range 0 ≤ α < 1, the coefficient of the right-hand side of (1)
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is negative and the inequality is essentially of the same nature as the one with α = 0. It can indeed be

written as

∫

R2
f log

(

f

M

)

d x +α

∫

R2
V f d x +M (1−α)

(

1+ logπ
)

+
2

M
(1−α)

Ï

R2×R2
f (x) f (y) log |x − y |d x d y ≥ 0.

For reasons that will be made clear below, we shall call this range the attractive range.

If α= 1, the inequality is almost trivial since

∫

R2
f log

(

f

M

)

d x +
∫

R2
V f d x =

∫

R2
f log

(

f

f⋆

)

d x ≥ 0 (3)

is a straightforward consequence of Jensen’s inequality. Now it is clear that by adding (2) multiplied by

(1−α) and (3) multiplied by α, we recover (1) for any α ∈ [0,1]. As a consequence (1) is a straightforward

interpolation between (2) and (3) in the attractive range.

Now, let us consider the repulsive range α > 1. It is clear that the inequality is no more the

consequence of a simple interpolation. We can also observe that the coefficient (α−1) in the right-hand

side of (1) is now positive. Since

G(x)=−
1

2π
log |x|

is the Green function associated with −∆ on R
2, so that we can define

(−∆)−1 f (x)= (G ∗ f )(x)=−
1

2π

∫

R2
log |x − y | f (y)d y ,

it is interesting to write (1) as

∫

R2
f log

(

f

M

)

d x +α

∫

R2
V f d x +

4π

M
(α−1)

∫

R2
f (−∆)−1 f d x ≥ M (α−1)

(

1+ logπ
)

. (4)

If f has a sufficient decay as |x| → +∞, for instance if f is compactly supported, we know that

(−∆)−1 f (x)∼− M
2π

log |x| for large values of |x| and as a consequence,

αV +
4π

M
(α−1)(−∆)−1 f ∼ 2(α+1) log |x|→+∞ as |x|→+∞ .

In a minimization scheme, this prevents the runaway of the left-hand side in (4). On the other hand,
∫

R2 f log f d x prevents any concentration, and this is why it can be heuristically expected that the left-

hand side of (4) indeed admits a minimizer.

Inequality (2) was proved in [8] by E. Carlen and M. Loss (also see [2]). An alternative method based

on nonlinear flows was given by E. Carlen, J. Carrillo and M. Loss in [7]: see Section 2 for a sketch of their

proof. Our proof of Theorem 1.1 relies on an extension of this approach which takes into account the

presence of the external potential V . A remarkable feature of this approach is that it is insensitive to the

sign of α−1.

One of the key motivations for studying (4) arises from entropy methods applied to drift-diffusion-

Poisson models which, after scaling out all physical parameters, are given by

∂ f

∂t
=∆ f +β∇· ( f ∇V )+∇· ( f ∇φ) (5)
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with a nonlinear coupling given by the Poisson equation

− ε∆φ= f . (6)

Here V =− logµ is the external confining potential and we choose it as in the statement of Theorem 1.1,

while β ≥ 0 is a coupling parameter with V , which measures the strength of the external potential. We

shall consider more general potentials at the end of this paper. The coefficient ε in (6) is either ε= −1,

which corresponds to the attractive case, or ε = +1, which corresponds to the repulsive case. In terms

of applications, when ε = −1, (6) is the equation for the mean field potential obtained from Newton’s

law of attraction in gravitation, for applications in astrophysics, or for the Keller-Segel concentration

of chemo-attractant in chemotaxis. The case ε = +1 is used for repulsive electrostatic forces in semi-

conductor physics, electrolytes, plasmas and charged particle models.

In view of entropy methods applied to PDEs (see for instance [15]), it is natural to consider the free

energy functional

Fβ[ f ] :=
∫

R2
f log f d x +β

∫

R2
V f d x +

1

2

∫

R2
φ f d x (7)

because, if f > 0 solves (5)-(6) and is smooth enough, with sufficient decay properties at infinity, then

d

d t
Fβ[ f (t , ·)]=−

∫

R2
f

∣

∣∇ log f +β∇V +∇φ
∣

∣

2
d x (8)

so that Fβ is a Lyapunov functional. Of course, a preliminary question is to establish under which

conditions Fβ is bounded from below. The answer is given by the following result.

Corollary 1.2. Let M > 0. If ε = +1, the functional Fβ is bounded from below and admits a minimizer

on the set of the functions f ∈ L1
+(R2) such that

∫

R2 f d x = M if and only if β≥ 1+ M
8π . It is bounded from

below if ε=−1, β≥ 1− M
8π

and M ≤ 8π. If ε=+1, the minimizer is unique.

As we shall see in Section 3.1, Corollary 1.2 is a simple consequence of Theorem 1.1. In the case

of the parabolic-elliptic Keller-Segel model, that is, with ε= −1 and β= 0, this has been used in [12, 4]

to provide a sharp range of existence of the solutions to the evolution problem. In [6], the case ε = −1

with a potential V with quadratic growth at infinity was also considered, in the study of intermediate

asymptotics of the parabolic-elliptic Keller-Segel model.

Concerning the drift-diffusion-Poisson model (5)-(6) and considerations on the free energy, in the

electrostatic case, we can quote, among many others, [14, 13] and subsequent papers. In the Euclidean

space with confinig potentials, we shall refer to [10, 11, 3, 1]. However, as far as we know, these papers

are primarily devoted to dimensions d ≥ 3 and the sharp growth condition on V when d = 2 has not

been studied so far. The goal of this paper is to fill this gap. The specific choice of V has been made

to obtain explicit constants and optimal inequalities, but the confining potential plays a role only at

infinity if we are interested in the boundedness from below of the free energy. In Section 3.3, we shall

give a result for general potentials on R
2: see Theorem 3.4 for a statement.

2 Proof of the main result

As an introduction to the key method, we briefly sketch the proof of (2) given by E. Carlen, J. Carrillo

and M. Loss in [7]. The main idea is to use the nonlinear diffusion equation

∂ f

∂t
=∆

√

f
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with a nonnegative initial datum f0. The equation preserves the mass M =
∫

R2 f d x and is such that

d

d t

(∫

R2
f log f d x −

4π

M

∫

R2
f
(

(−∆)−1 f
)

d x

)

=−
8

M

(∫

R2

∣

∣∇ f 1/4
∣

∣

2
d x

∫

R2
f d x − π

∫

R2
f 3/2 d x

)

.

According to [9], the Gagliardo-Nirenberg inequality

∥

∥∇g
∥

∥

2
2

∥

∥g
∥

∥

4
4 ≥π

∥

∥g
∥

∥

6
6 (9)

applied to g = f 1/4 guarantees that the right-hand side is nonpositive. By the general theory of fast

diffusion equations (we refer for instance to [17]), we know that the solution behaves for large values

of t like a self-similar solution, the so-called Barenblatt solution, which is given by B (t , x) := t−2 f⋆(x/t ).

As a consequence, we find that

∫

R2
f0 log f0 d x −

4π

M

∫

R2
f0

(

(−∆)−1 f0

)

d x

≥ lim
t→+∞

∫

R2
B log B d x −

4π

M

∫

R2
B

(

(−∆)−1B
)

d x =
∫

R2
f⋆ log f⋆ d x −

4π

M

∫

R2
f⋆

(

(−∆)−1 f⋆
)

d x

After an elementary computation, we observe that the above inequality is exactly (2) written for f = f0.

The point is now to adapt this strategy to the case with an external potential. This justifies why

we have to introduce a nonlinear diffusion equation with a drift. As we shall see below, the method

is insensitive to α and applies when α > 1 exactly as in the case α ∈ (0,1). A natural question is

whether solutions are regular enough to perform the computations below and in particular if they

have a sufficient decay at infinity to allow all kinds of integrations by parts needed by the method. The

answer is twofold. First, we can take an initial datum f0 that is as smooth and decaying as |x| → +∞
as needed, prove the inequality and argue by density. Second, integrations by parts can be justified by

an approximation scheme consisting in a truncation of the problem in larger and larger balls. We refer

to [17] for regularity issues and to [15] for the truncation method. In the proof, we will therefore leave

these issues aside, as they are purely technical.

Proof of Theorem 1.1. By homogeneity, we can assume that M = 1 without loss of generality and

consider the evolution equation
∂ f

∂t
=∆

√

f +2
p
π∇· (x f ) .

1) Using simple integrations by parts, we compute

∫

R2

(

1+ log f
)

∆

√

f d x =−8

∫

R2

∣

∣∇ f 1/4
∣

∣

2
d x

and
∫

R2

(

1+ log f
)

∇· (x f )d x =−
∫

R2

∇ f

f
· (x f )d x =−

∫

R2
x ·∇ f d x = 2

∫

R2
f d x = 2.

As a consequence, we obtain that

d

d t

∫

R2
f log f d x =−8

∫

R2

∣

∣∇ f 1/4
∣

∣

2
d x + 8π

∫

R2
µ3/2 d x (10)

using
∫

R2
µ3/2 d x =

1

2
p
π

.
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2) By elementary considerations again, we find that

4π

∫

R2
f (−∆)−1

(

∆

√

f
)

d x =−4π

∫

R2
f 3/2 d x

and

4π

∫

R2
∇· (x f ) (−∆)−1 f d x =−4π

∫

R2
x f ·∇(−∆)−1 f d x

= 2

Ï

R2×R2
f (x) f (y) x ·

x − y

|x − y |2
d x d y

=
Ï

R2×R2
f (x) f (y) (x − y) ·

x − y

|x − y |2
d x d y = 1

where, in the last line, we exchanged the variables x and y and took the half sum of the two expressions.

This proves that
d

d t

(

4π

∫

R2
f
(

(−∆)−1 f
)

d x

)

=−8π

∫

R2

(

f 3/2 − µ3/2
)

d x . (11)

3) We observe that

µ(x)=
1

π
(

1+|x|2
)2

= e−V (x)

solves

∆V =−∆ logµ= 8πµ (12)

and, as a consequence,

∫

R2
V ∆

√

f d x =
∫

R2
∆V

√

f d x = 8π

∫

R2
µ

√

f d x .

Since

2
p
π

∫

R2
V ∇· (x f )d x =−2

p
π

∫

R2
f x ·∇V d x =−8

p
π

∫

R2

|x|2

1+|x|2
f d x

=−8
p
π+8

p
π

∫

R2

f

1+|x|2
d x =−8

p
π+ 8π

∫

R2

p
µ f d x ,

we conclude that
d

d t

∫

R2
f V d x = 8π

∫

R2

(

µ
√

f +p
µ f − 2µ3/2

)

d x . (13)

Let us define

F [ f ] :=
∫

R2
f log f d x +α

∫

R2
V f d x + (1−α)

(

1+ logπ
)

+2(1−α)

Ï

R2×R2
f (x) f (y) log |x − y |d x d y .

Collecting (10), (11) and (13), we find that

d

d t
F [ f (t , ·)]=−8

(∫

R2

∣

∣∇ f 1/4
∣

∣

2
d x − π

∫

R2
f 3/2 d x

)

− 8πα

∫

R2

(

f 3/2 −µ
√

f −p
µ f +µ3/2

)

d x .

Notice that

∫

R2

(

f 3/2 −µ
√

f −p
µ f +µ3/2

)

d x =
∫

R2
ϕ

(

f

µ

)

µ3/2 d x with ϕ(t ) := t 3/2− t −
p

t +1



6 J. Dolbeault and X. Li

and that ϕ is a strictly convex function on R
+ such that ϕ(1) =ϕ′(1) = 0, so that ϕ is nonnegative. On the

other hand, by (9), we know that

∫

R2

∣

∣∇ f 1/4
∣

∣

2
d x − π

∫

R2
f 3/2 d x ≥ 0

as in the proof of [7]. Altogether, this proves that t 7→F [ f (t , ·)] is monotone nonincreasing. Hence

F [ f0] ≥F [ f (t , ·)]≥ lim
t→+∞

F [ f (t , ·)]=F [ f⋆]= 0.

This completes the proof of (1).

3 Consequences

3.1 Proof of Corollary 1.2

To prove the result of Corollary 1.2, we have to establish first that the free energy functional Fβ is

bounded from below. Instead of using standard variational methods to prove that a minimizer is

achieved, we can rely on the flow associated with (5)-(6).

• Repulsive case. Let us consider the free energy functional defined in (7) where φ is given by (6) with

ε=+1, i.e., φ=− 1
2π log | · |∗ f .

Lemma 3.1. Let M > 0 and ε = +1. Then Fβ is bounded from below on the set of the functions

f ∈ L1
+(R2) such that

∫

R2 f d x = M if and only if β≥ 1+ M
8π

.

Proof. With g = f
M

and α= 1+ M
8π

, this means that

1

M
Fβ[ f ]− log M =

∫

R2
g log g d x +β

∫

R2
V g d x −

M

4π

Ï

R2×R2
g (x) g (y) log |x − y |d x d y

= (β−α)

∫

R2
V g d x +

∫

R2
g log g d x +α

∫

R2
V g d x − 2(α−1)

Ï

R2×R2
g (x) g (y) log |x − y |d x d y

≥ (β−α)

∫

R2
V g d x − (1−α)

(

1+ logπ
)

according to Theorem 1.1; the condition β≥α is enough to prove that Fβ[ f ] is bounded from below.

Reciprocally, let us assume that β < 1+ M
8π

and let fε(x) := ε2 f⋆(εx). It is then straightforward to

check that Fβ is not bounded from below because

Fβ[ fε]∼−2 M
(

β−α
)

logε→−∞ as ε→ 0+ .

Proof of Corollary 1.2 with ε=+1. Let us consider a smooth solution of (5)-(6). We refer to [16] for

details and to [1] for similar arguments in dimension d ≥ 3. According to (8), f converges as t →+∞ to

a solution of

∇ log f +β∇V +∇φ= 0.

Notice that this already proves the existence of a stationary solution. The equation can be solved as

f = M
e−βV −φ

∫

R2 e−βV −φ d x
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after taking into account the conservation of the mass. With (6), the problem is reduced to solving

−∆ψ= M

(

e−γV −ψ
∫

R2 e−γV −ψ d x
−µ

)

, ψ=
(

β−γ
)

V +φ , γ=β−
M

8π

using (12). It is a critical point of the functional ψ 7→ JM ,γ[ψ] := 1
2

∫

R2 |∇ψ|2 d x + M
∫

R2 ψµd x +
M log

(∫

R2 e−γV −ψ d x
)

. Such a functional is strictly convex as, for instance, in [10, 11]. We conclude that

ψ is unique up to an additional constant.

• Attractive case. Let us consider the free energy functional (7) Fβ where φ is given by (6) with ε = −1,

i.e., φ= 1
2π log | · |∗ f . Inspired by [12], we have the following estimate.

Lemma 3.2. Let ε = −1. Then Fβ is bounded from below on the set of the functions f ∈ L1
+(R2) such

that
∫

R2 f d x = M if M ≤ 8π and β≥ 1− M
8π . It is not bounded from below if M > 8π.

Proof. With g = f
M

and α= 1− M
8π

, Theorem 1.1 applied to

1

M
Fβ[ f ]− log M

= (β−α)

∫

R2
V g d x +

∫

R2
g log g d x +α

∫

R2
V g d x + 2(1−α)

Ï

R2×R2
g (x) g (y) log |x − y |d x d y

≥ (β−α)

∫

R2
V g d x − (1−α)

(

1+ logπ
)

proves that the free energy is bounded from below if M ≤ 8π and β ≥ α. On the other hand, if

fε(x) := ε−2 f (ε−1 x) and M > 8π, then

Fβ[ fε]∼ 2 M

(

M

8π
−1

)

logε→−∞ as ε→ 0+ ,

which proves that Fβ is not bounded from below.

Proof of Corollary 1.2 with ε=−1. The proof goes as in the case β= 0. We refer to [4] and leave details

to the reader.

Remark 3.3. Let us notice that Fβ is unbounded from below if β< 0. This follows from the observation

that lim|y |→∞Fβ[ fy ] =−∞ where fy (x)= f (x + y) for any admissible f .

3.2 Duality

When α> 1, we can write a first inequality by considering the repulsive case in the proof of Corollary 1.2

and observing that

JM ,γ[ψ] ≥ minJM ,γ

where ψ∈ W
2,1
loc

(R2) is such that
∫

R2 (∆ψ)d x = 0 and the minimum is taken on the same set of functions.

When α ∈ [0,1), it is possible to argue by duality as in [5, Section 2]. Since f⋆ realizes the equality

case in (1), we know that

∫

R2
f⋆ log

(

f⋆

M

)

d x +α

∫

R2
V f⋆ d x +M (1−α)

(

1+ logπ
)

=
2

M
(α−1)

Ï

R2×R2
f⋆(x) f⋆(y) log |x − y |d x d y
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and, using the fact that f⋆ is a critical point of the difference of the two sides of (1), we also have that

∫

R2
log

(

f

f⋆

)

( f − f⋆)d x +α

∫

R2
V ( f − f⋆)d x =

4

M
(α−1)

Ï

R2×R2

(

f (x)− f⋆(x)
)

f⋆(y) log |x − y |d x d y .

By subtracting the first identity to (1) and adding the second identity, we can rephrase (1) as

F(1)[ f ] :=
∫

R2
f log

(

f

f⋆

)

d x ≥
4π

M
(1−α)

∫

R2
( f − f⋆) (−∆)−1( f − f⋆)d x :=F(2)[ f ] .

Let us consider the Legendre transform

F∗
(i )[g ] := sup

f

(∫

R2
g f d x −F(i )[ f ]

)

where the supremum is restricted to the set of the functions f ∈ L1
+(R2) such that M =

∫

R2 f d x . After

taking into account the Lagrange multipliers associated with the mass constraint, we obtain that

M log

(∫

R2
e g−V d x

)

=F∗
(1)[g ]≤

M

16π(1−α)

∫

R2
|∇g |2 d x +M

∫

R2
g e−V d x =F∗

(2)[g ] .

We can get rid of M by homogeneity and recover the standard Euclidean form of the Onofri inequality

in the limit case as α→ 0+, which is clearly the sharpest one for all possible α ∈ [0,1).

3.3 Extension to general confining potentials with critical asymptotic growth

As a concluding observation, let us consider a general potential W on R
2 such that

W ∈C (R2) and lim
|x|→+∞

W (x)

V (x)
=β (HW )

and the associated free energy functional

Fβ,W [ f ] :=
∫

R2
f log f d x +β

∫

R2
W f d x +

1

2

∫

R2
φ f d x

where φ is given in terms of f > 0 by (6). With previous notations, Fβ =Fβ,V . Our last result is that the

asymptotic behaviour obtained from (HW ) is enough to decide whether Fβ,W is bounded from below

or not. The precise result goes as follows.

Theorem 3.4. Under Assumption (HW ), Fβ,W defined as above is bounded from below if either

ε = +1 and β > 1 + M
8π , or ε = −1, β > 1 − M

8π and M ≤ 8π. The result is also true in the limit case if

(W −βV ) ∈ L∞(R2) and either ε=+1 and β= 1+ M
8π

, or ε=−1, β= 1− M
8π

and M ≤ 8π.

Proof. If (W −βV ) ∈ L∞(R2), we can write that

Fβ,W [ f ] ≥Fβ[ f ]− M
∥

∥W −βV
∥

∥

L∞(R2) .

This completes the proof in the limit case. Otherwise, we redo the argument using β̃V −
(

β̃V −W
)

+ for

some β̃ ∈ (0,β) if ε=−1, and for some β̃ ∈
(

1+ M
8π

,β
)

if ε=+1.
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