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Tunable VVC Frame Partitioning based on
Lightweight Machine Learning

Thomas Amestoy, Alexandre Mercat, Wassim Hamidouche, Daniel Menard and Cyril Bergeron

Abstract—Block partition structure is a critical module in
video coding scheme to achieve significant gap of compression
performance. Under the exploration of the future video coding
standard, named Versatile Video Coding (VVC), a new Quad
Tree Binary Tree (QTBT) block partition structure has been
introduced. In addition to the QT block partitioning defined
in High Efficiency Video Coding (HEVC) standard, new hori-
zontal and vertical BT partitions are enabled, which drastically
increases the encoding time compared to HEVC. In this paper,
we propose a lightweight and tunable QTBT partitioning scheme
based on a Machine Learning (ML) approach. The proposed
solution uses Random Forest classifiers to determine for each
coding block the most probable partition modes. To minimize
the encoding loss induced by misclassification, risk intervals
for classifier decisions are introduced in the proposed solution.
By varying the size of risk intervals, tunable trade-off between
encoding complexity reduction and coding loss is achieved. The
proposed solution implemented in the JEM-7.0 software offers
encoding complexity reductions ranging from 30% to 70% in
average for only 0.7% to 3.0% Bjøntegaard Delta Rate (BD-
BR) increase in Random Access (RA) coding configuration, with
very slight overhead induced by Random Forest. The proposed
solution based on Random Forest classifiers is also efficient to
reduce the complexity of the Multi-Type Tree (MTT) partitioning
scheme under the VTM-5.0 software, with complexity reductions
ranging from 25% to 61% in average for only 0.4% to 2.2%
BD-BR increase.

Index Terms—Video Compression, VVC, JEM, VTM, QTBT,
Complexity Reduction, Machine Learning, Random Forest

I. INTRODUCTION

The expansion of Internet coupled with the rapid introduc-
tion of Ultra High Definition (UHD), High Dynamic Range
(HDR) and 360° video contents in daily life have caused
the explosion of video traffic. Recent study published in
Cisco [1] has predicted that video traffic will increase from
61% of the global IP traffic in 2016 to 82% in 2021. This
increasing demand for video contents brings new challenges
to compression, especially to enhance the coding efficiency
and enable a high quality of experience of video services.
Moreover, in the context of embedded systems with limited
computing and energy resources, the complexity of video
codecs is a crucial challenge to reach real time processing
with low energy consumption.
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The ITU-T Video Coding Experts Group and ISO/IEC
Moving Picture Expert Group have released in 2013 the High
Efficiency Video Coding (HEVC) standard [2]. HEVC reduces
the bitrate up to 60% compared to its predecessor Advanced
Video Coding (AVC) standard [3] for the same subjective
video quality [4], [5]. The Joint Video Exploration Team
(JVET) has been recently established to investigate several
new coding tools under the Joint Exploration Model (JEM)
software [6] [7] in order to show the interest of developing
a new video coding standard called Versatile Video Coding
(VVC), with coding capability beyond HEVC. These new
coding tools already increase the coding efficiency by up to
40% compared to HEVC [8]. However, bitrate savings come
with a significant complexity increase compared to HEVC.

At the encoder side, computationally expensive tools have
been added in the JEM, especially for intra prediction and
frame partitioning scheme that select the appropriate block
size according to the local activity of the pixels. The new Quad
Tree Binary Tree (QTBT) partitioning scheme introduced in
the JEM improves the coding efficiency by approximately
5% [9] in Random Access (RA) configuration. However,
the coding gain is achieved at the expense of considerable
complexity increase. This complexity becomes a bottleneck
for the development of the VVC standard and may interfere
with its deployment especially on embedded platforms and
live applications.

To reduce the computational complexity of encoders, several
techniques propose to reduce the tested intra mode candidates.
These techniques use features such as gradients of luminance
samples [10]–[12] or Machine Learning (ML) techniques [13]
to predict a reduced set of likely intra modes. Other tech-
niques reduce the complexity of the encoding process by
focusing on the partitioning scheme and testing a reduced
number of partition configurations. In HEVC, to predict the
most probable Quad Tree (QT) partitions, these techniques
leverage intermediate encoding information [14]–[18], tex-
ture characteristics [19]–[21], motion divergence [22]–[24]
or ML solutions [24]–[28]. More recently, some techniques
have already investigated the complexity reduction of QTBT
partitioning scheme [29]–[34]. Even though Random Forest
(RF) is a classical method in ML that offers high classification
performance with slight overhead and is widely used in many
applications such as image classification [35] and 3D pose
estimation [36], none of the previously mentioned QT or
QTBT fast partitioning techniques rely on RF. Furthermore,
tunable complexity reduction for QTBT partitioning has not
yet been investigated in previous works.

In this paper, we propose a tunable ML solution based on
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RF classifiers to speed up the QTBT partitioning scheme in
RA coding configuration. The proposed solution explores a
novel approach to solve a 4 classes classification problem
inherent to QTBT partition scheme, which has not been fully
studied in related works. The decision of QTBT partition mode
for the Coding Unit (CU) is modeled as three distinct binary
classification problems. Thus, three binary RF classifiers are
trained independently off-line, with separate training for each
CU size. The goal of the classifiers is to skip expensive
exploration of the partition modes classified as unlikely. Fur-
thermore, the classifiers take as input only features from the
current CU, making the solution parallel-friendly. To limit
the Rate Distorsion (RD) loss induced by misclassification,
risk intervals are introduced to control the classifier decisions.
When the classifier decision falls into the risk interval, all
possible partitioning modes are processed. The risk intervals
are set by the encoder based on the encoding of a reference
frame, adapting the RD loss induced by misclassification to the
encoded content. By varying the size of risk intervals, tunable
complexity reduction is achieved.

To the best of our knowledge, the proposed solution is
the first tunable complexity reduction solution applied on an
encoder post HEVC. It includes various Complexity Reduction
Configurations (CRCs), each offering a new trade-off between
complexity reduction and Bjøntegaard Delta Rate (BD-BR) in-
crease. In JEM-7.0 software, encoding complexity reductions
vary from 30% to 70% in average at the expense of only
0.7% to 3.0% BD-BR increase. The proposed solution based
on RF classifiers is also efficient to reduce the complexity of
the Multi-Type Tree (MTT) partitioning scheme in the VVC
Test Model (VTM)-5.0 software, with complexity reductions
varying from 25% to 61% in average for limited BD-BR
increase of 0.4% to 2.2%. Moreover, the proposed solution
induces a very low overhead between 0.2% and 1.8% of the
encoding time according to the video content, which is a
key point to adopt this solution in a real-time and embedded
framework.

The rest of the paper is organized as follows. Section II
describes the frame partitioning decision in HEVC and JEM,
and then reviews the related works. Section III goes through
background of RF classifiers and presents the proposed clas-
sification problem. Section IV depicts the training dataset.
The training process to build RF classifiers is described in
Section V. Section VI details how tunable encoding com-
plexity reduction is achieved using various configurations
of the risk intervals. Experimental results are presented and
analyzed for both JEM-7.0 and VTM-5.0 in Section VII.
Finally, Section VIII concludes this paper.

II. RELATED WORKS

A. Overview of Frame Partitioning Scheme in HEVC and JEM

HEVC relies on the classic hybrid video coding combin-
ing intra/inter image predictions and transform coding. Intra
prediction exploits spatial redundancy within the same frame
whereas Inter prediction exploits temporal redundancy in the
video sequence. First, each frame is split into Coding Tree
Units (CTUs) of equal sizes. As shown in Fig. 1a, each CTU is

(a) QT partition of a CTU.

M/2xM MxM/2

MxM/4(U) MxM/4(D)M/4xM(L) M/4xM(R)

MxM M/2xM/2

(b) Allowed PU modes in HEVC.

Fig. 1: QT partition scheme of a CTU in HEVC. QT partition
modes in red and further PU modes in blue.

(a) QTBT partition of a
CTU.

 QT

BT Ver

BT Hor

No Split

(b) QTBT partition tree. Leaf boxed
in green corresponds to CU filled with
green in Fig. 2a.

Fig. 2: QTBT partition scheme in JEM. In red QT partition
mode and in green BT partition modes.

then recursively split into square CUs, following a QT partition
scheme. To perform the prediction, the CUs can be divided
into Prediction Units (PUs) of smaller size following one of
the eight PU modes illustrated in Fig. 1b.

After performing prediction, residual blocks can be further
split recursively with a second QT partition scheme into Trans-
form Units (TUs) on which transform is performed. However,
the QT scheme suffers from the following limitations:
• CUs can only be square, with no flexible shape to cover

all block characteristics.
• Luma and Chroma components of the encoded sequence

have the same QT splitting which is rarely optimal for
chroma.

• Residual can only be split into TUs with square shapes,
reducing the potential impact of transformation.

To overcome these limitations, a QTBT partitioning scheme
has been proposed in the JEM [37]. QTBT is an extension
to the QT partitioning that enables symmetric binary partition
modes CUs in both horizontal (Binary Tree Horizontal (BTH))
and vertical (Binary Tree Vertical (BTV)) directions, as shown
in Fig. 2a. When Binary Tree (BT) partition mode is used in
a CU, QT partition mode is no longer allowed. In the JVET
Common Test Conditions (CTC) [38], BTdepth parameter is
set to 3, enabling only 3 successive BT partitions. Fig. 2b
shows the tree representation of QTBT partition, where the
leaf surrounded by a green square corresponds to the green
CU of Fig. 2a.

The flexibility brought by BT partition modes covers the PU
modes. In JEM, CUs are directly used to perform prediction.
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Rectangular transforms have also been adopted so that the
transform can be applied on the CUs without any further
splitting of residual blocks [39]. Moreover, different partition
trees can be applied on Luma and Chroma components for
intra predicted slices. For inter predicted slices, the partition
trees of Luma are used for Chroma.

B. Complexity Reduction of Frame Partitioning
QTBT partitioning scheme has not yet been fully studied

from the perspective of complexity reduction. Reason
why in this section, the techniques proposed to speed up
the QT partitioning scheme in HEVC are first described.
Subsequently, papers that have investigated the complexity
reduction of QTBT partitioning scheme are presented.

1) Partitioning Scheme in HEVC: the techniques proposed
to speed up the QT partitioning scheme in HEVC are divided
into four categories, whether they involve: intermediate en-
coding information, texture characteristics, motion divergence,
and ML.

Intermediate encoding information: techniques of the
first category are based on intermediate information computed
during the encoding process such as depths of previously
encoded blocks, encoding flags or RD cost of PU modes.
Pan et al. [14] use the motion estimation and all-zero block
detection informations of M×M PU mode (Fig. 1a), coupled
with merge mode informations of previous depths to determine
if early merge can save computational time. A threshold based
on Sum of Absolute Transform Differences (SATD) of M×M
PU mode has been proposed in [15]. The technique ignores
the unlikely remaining PU modes or early terminating QT
partitioning mode. In [16], Correa et al. figure out that some
QT depths tend to be used in co-located areas of adjacent
frames and exploit this correlation to target a computational
complexity reduction. Same authors adapt this principle to
speedup the coding of motion sequences in [17] by using a
motion compensated area as reference in previously encoded
frame (instead of co-located area) and by using depths of
spatial neighboring CTUs. In [18], a thresholding process
applied on RD cost of M ×M merge mode determines if the
skip mode shall be used for the PU. These techniques [15]
[17] [18] reduce the encoding complexity between 30% and
50% with a BD-BR increase in the range 0.4% to 1.4%.

Texture characteristics: second category covers tech-
niques exploiting the correlations between spatial information
of a sequence, also called texture, and the QT partitioning
scheme. Usually, areas having complex textures are split into
small blocks in order to fit better its local variations. Authors
in [19] apply thresholds on local and global edge filters
of luminance samples in 4 directions (0°, 45°, 90°, 135°) to
determine if a CU shall be split, non-split or undetermined. A
similar principle is applied in [20], where the authors compute
adaptive thresholds based on texture homogeneity for early
determination of QT depth of CTUs. Mercat et al. propose
in [21] a technique that determines at each step if the 4 smaller
CUs shall be merged into one CU. This bottom-up approach
exploits correlation between the QT partitioning scheme and
texture variance.

Motion divergence: techniques of the third category
explore the correlation between motion divergence in a frame
and the QT partitioning scheme. Areas of the frame with
continuous motion tend to be split into larger blocks. Reason
why in [22], authors detect motion continuity by applying
Sobel operators to a pre-computed optical flow and use this
information to predict block size and save computational time.
In [23], a score called Pyramid Motion Divergence (PMD)
based on variance of Motion Divergence Field is assigned to
every CU. The authors show that CUs with similar PMD tend
to be encoded with the same partitioning. Blasi et al. [24]
propose a bottom-up approach to ignore certain CU partition
modes based on a motion vector variance distance, computed
on the four QT sub-CUs.

Machine Learning: techniques of last category use ML
approaches to reduce encoding complexity. They either take
as input features extracted from one or more of previous
categories, or rely on Deep Learning (DL) approaches such as
Convolution Neural Networks (CNNs). Liu et al. [25] propose
a technique based on CNN for All Intra (AI) configuration
that determine if a CU must be early terminated or early
split. A CNN is separately trained for every QT CU size
from 32x32 to 8x8 pixels. In [26], Duanmu et al. focus on
Screen Coding Content (SCC), an extension of HEVC that
targets typical screen contents. Separate CNN classifiers are
separately trained for different Quantization Parameter (QP)
values and CU sizes to output a variable between 0 and 1,
representing the probability that a CU is early terminated. In
[27], to reduce RA encoding complexity in HEVC, Support
Vector Machines (SVM) classifiers are separately trained
for every CU size in order to determine if a CU should
be early terminated. The SVM classifier takes as an input
features such as pixel gradients, sub-CUs Movement Vectors
(MVs) and intermediate encoding information (encoding
flags, CU depth of neighboring blocks and the RD cost). The
technique proposed by Correa et al. [24] is based on decision
trees, each relying on spatial features and intermediate RA
configuration encoding information. The decision trees are
trained separately for every CU size from 64x64 to 8x8. In
[28], Shen et al. propose a Bayesian rule classifier employing
features of M ×M PU mode such as SATD, RD cost and
MV to determine the PU mode of a CU. Finally, Mercat et
al. [40] compares features used in state of the art techniques
to predict HEVC partition, considering both information gain
and computational complexity.

2) QTBT Partitioning Scheme: QTBT partitioning scheme
in the JEM allows two more partition modes compared to
QT partitioning scheme, considerably increasing the encoding
complexity. Furthermore, intermediate PU splitting modes,
that provides useful information for early termination or early
skip decision in HEVC, have been removed in the JEM. For
these reasons, most of previously mentioned techniques can
not be directly used to speedup the JEM encoder.

In [29], Yamamoto proposes to reduce the encoding com-
plexity in RA configuration by setting high value of BTdepth
on frames with low Temporal ID, whereas frames with high
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Temporal ID use smaller value of BTdepth. In the QTBT
partition scheme the same CU can be generated by different
block partition choices. Huang et al. [30] reduce the encoding
complexity by re-using the encoder decisions of the same
CU explored in previous partition choices. The technique
proposed by Lin et al. [31] skips the BT Rate Distorsion
Optimization (RDO) process of the second sub-CU, when
the RD cost of the parent CU and the first sub CU fulfil
certain constraints. Authors in [32] and [33], use CNNs to
predict a depth description of QTBT partition of the CTUs.
In [32], the CNN takes as an input the 32 × 32 pixels
blocks of the frame, as well as QP value, and outputs a
class from 0 to 5 describing QTBT partition depth for AI
configuration. In [33], the false prediction risk of CNN is
controlled based on temporal correlation for RA configuration.
Wang et al [34] use a combination between Motion Divergence
Field and gradient of luminance samples to model the RD
cost of a CU. A probabilistic model is then proposed to
determine unlikely partition modes of the QTBT partitioning
scheme. Complexity reduction techniques [29], [33] and [34]
can reduce encoding complexity in RA configuration by
17%, 32% and 52% for 0.5%, 0.5% and 1.4% of BD-BR
increase in average, respectively. These results depend on the
encoder version of the used software, encoding parameters and
hardware configuration. They nevertheless provide an order of
magnitude of the techniques efficiencies.

Unlike previously mentioned techniques speeding up the
QTBT partition scheme, the proposed solution is tunable and
offers various complexity reduction opportunities, from 30%
to 70% in average. Moreover, this solution can be considered
as lightweight since it relies on RF classifiers, inducing much
smaller overhead compared to CNN based techniques [32]
[33].

III. RANDOM FORESTS FOR PARTITION DECISION
CLASSIFICATION PROBLEM

This section introduces RF classifiers and presents the three
binary classification problems proposed in this work to reduce
the number of processed partition modes.

A. Background for Random Forests

Classification by RF [41] is a classical method in ML. RF
classifiers predict the value of a target variable, named class,
from values of several input variables, named features. They
bag many single little-correlated decision trees and gather the
results from all the trees to make the final decision.

1) Build Decision Trees: Decision trees are constructed by
a recursive partitioning of the data set into subsets called
nodes. At each node, a threshold that achieves optimal separa-
tion of the classes is selected among the input features. Each
child-node corresponds to a set of values of the selected input
features, so that the totality of child-nodes cover all possible
values of this input features.

The criterion used in this work to select the best split for
a node in decision trees is Mutual Information (MI). The

differential entropy H of a continuous random variable X is
computed as follows:

H(X) = −
∫
R
fX(x) log2 (fX(x)) dx, (1)

where fX : R→ [0,+∞] is the Probability Density Function
(Pdf) of X . The entropy H measures the quantity of infor-
mation delivered by the knowledge of X . MI of class C and
feature F , noted I(F,C), is defined as the entropy decreasing
of C when F is known [42]. The value of I(F,C) is comprised
between 0 and H(C), and is expressed by Equation (2)

I(F,C) = H(C)−H(C|F ). (2)

In other words, I(F,C) measures the information shared
by C and F . Therefore, the higher I(F,C), the more the
feature F is relevant to estimate class C. When MI is used
as a criterion, the optimal threshold of a feature F to split a
decision tree node is the threshold that maximizes I(F,C) on
both subsets of child-nodes.

2) Benefits of Random Forests: Let the error rate be the
percentage of wrong classification on the training dataset. By
de-correlating trees, RF classifiers achieve a better trade-off
between error rate and training data over-fitting compared to
a single decision tree classifier.

In order to de-correlate the decision trees of the RF, a
random subset of the training dataset is selected to build each
decision tree. The decision trees in the RF take as an input
all the features. However, the splitting threshold of each node
in the decision tree is selected among a random subset of the
input features. This random selection decreases the probability
that two decision trees in the RF select the same set of features
in the same order, and therefore is crucial to de-correlate one
decision tree from another.

The following example illustrates the interest of RF clas-
sifiers in term of error rate compared to single decision
tree classifiers. Assume the RF classifier is composed of 10
perfectly de-correlated decision trees, each with error rate εi
of 0.3: εi = ε = 0.3,∀i ∈ {1, . . . , 10}.
If a RF classifier makes a wrong prediction when more than
half of the base decision tree classifiers are wrong, the error
rate εRF of the RF classifier is computed by Equation (3)

εRF =
10∑
j=6

(
10

j

)
εj(1− ε)10−j ≈ 0.05. (3)

It is not possible to de-correlate perfectly the decision trees
of the RF as they are trained on the same data. Nonetheless,
the more the decision trees are de-correlated, the closer the
error rate of the RF classifier is to εRF .

B. Classification Problem

To find the CU partition mode that achieves the best RD
performance, the encoder recursively explores all possible
partition modes. This process is called full or exhaustive RDO
search. For each CU, the encoder computes the RD cost of
the whole CU, QT and BT partition modes, BT partition
modes being composed of BTH and BTV partition modes.

Acc
ep

ted
 M

an
us

cri
pt



IEEE TRANSACTIONS ON IMAGE PROCESSING, AUGUST 2019 5

The encoder selects the partition mode that minimizes the RD
cost J , expressed as a trade-off between distortion D and rate
R, with λ the Lagrangian multiplier:

J = D + λR. (4)

The aim of the proposed solution is to predict for every
encountered CU the partition mode that minimizes the RD
cost. Several partition modes are ignored reducing the number
of processed partition modes. As shown in Fig. 3, the problem
to solve is a four classes classification problem including the
following partition modes: NoSplit, QT, BTH and BTV.

NoSplit QT BTH BTV

Fig. 3: Four classes of the CU classification problem.

In this work, instead of creating a RF classifier that solves
directly the four classes classification problem, the partition
decision is divided into three successive binary classification
problems. This division adds flexibility into the decision
structure and allows a separate training of the classifiers on
specific features, improving global classification performance.

Split

NoSplit

BT

QT

BTV

BTH

classifier
QT-BT

classifier
S-NS

classifier
BH-BV

RDO process

Input Data
Decision

Features S-NS

Features QT-BT

Features BH-BV

Fig. 4: Convert Four Classes Problem into Three Binary
Problems

The three binary classifiers are named S-NS, QT-BT and
BH-BV. As shown in Fig. 4, each classifier takes as input
a different set of features and the classifiers are used in the
following order:

1) Classifier S-NS: The two output classes of classifier S-
NS are either NoSplit partition mode or Split partition
modes, where Split partition modes include QT, BTH
and BTV partition modes. When the Classifier S-NS out-
puts class NoSplit, NoSplit partition mode is processed
and Split partition modes are ignored. Otherwise, NoS-
plit partition mode is ignored, and the second classifier
QT-BT is requested.

2) Classifier QT-BT: The output classes of classifier QT-
BT are either QT partition mode or BT partition modes,
where BT partition modes include BTH and BTV par-
tition modes. When the classifier QT-BT outputs QT
partition mode, QT partition mode is processed and BT
partition modes are ignored. Otherwise, QT partition
mode is ignored, and the third classifier BH-BV is
requested.

3) Classifier BH-BV: The output classes of classifier BH-
BV are either BTH partition mode or BTV partition
mode. When the classifier BH-BV outputs BTH partition
mode, BTH partition mode is processed and BTV par-
tition mode is ignored. Otherwise, BTV partition mode
is processed and BTH partition mode is ignored.

IV. DATASET CREATION

Let us define a training instance as the entity composed of
the chosen set of input features and the associated output class.
This section details the creation of the training dataset, i.e. the
set that contains all the training instances used to train the RF
classifiers.

A. Training Setup

The effectiveness of ML is highly linked to the diversity
and relevance of the training dataset. To characterize a video
content, Spatial Information (SI) and Temporal Information
(TI) metrics are used [43]. The SI estimates the amount of
spatial details whereas the TI measures the quantity of motion
in the sequence. In Fig. 5, 25 sequences extracted from JVET
CTC [38] are represented under the SI TI coordinates.
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Fig. 5: SI and TI of the CTC sequences according the classes.

To cover a wide range of these two content types, the train-
ing dataset is extracted from 10 training sequences spanning a
large range of SI and TI space and distributed across 6 classes
(A1, A2, B, C, D, E). The training sequences are circled
in black in Fig. 5 including: DaylightRoad and CatRobot1
(class A1), Traffic (class A2), BasketballDrive and BQTerrace
(class B), Flowervase and BQMall (class C), BQSquare and
Keiba (class D), Johnny (class E). The training instances are
extracted from encodings carried-out with the JEM-7.0 in RA
configuration across the 4 QP values used in CTC: 22, 27, 32
and 37. The corresponding output class of a CU is defined as
the optimal partition mode selected after a exhaustive RDO
process.
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Let the size category of a CU depend only on the number
of pixels in the CU. TABLE I gives the dimensions in width
and height of the CUs composing the 7 size categories. The
category S0 corresponds to the largest CUs and the category
S6 to the smallest CUs. For each CU size category, a separate
training dataset is created and a separate RF classifier is
trained. With this separation, the features are computed on
the same number of pixels in each training dataset.

TABLE I: Width and Height of the CUs composing the size
categories.

S0 S1 S2 S3 S4 S5 S6

128x128 128x64 64x64 64x32 32x32 32x16 16x16
64x128 128x32 32x64 64x16 16x32 32x8

32x128 128x16 16x64 64x8 8x32
16x128 128x8 8x64

8x128

Sequences with high resolution and high frame rate provide
more CTUs to the training datasets compared to the low
resolution and low frame rate sequences. To avoid being biased
by these particular training sequences, the datasets used for
training are composed of a fixed number of CTUs by training
sequence. To ensure a fixed number of CTUs by training
sequence, the number of frames used for training in a sequence
differs according to the sequence class: 7 frames for class A1,
13 frames for class A2, 25 frames for class B, 55 frames for
class E, 125 frames for class C and 500 frames for class D.
To avoid temporal bias, the CTUs come from frames evenly
distributed in their sequence time-line.

Furthermore, to reduce the problem of imbalanced data,
the training datasets are composed randomly with the same
amount of training instances classified into each output class.

B. Feature Evaluation and Selection

Let a feature be a property of the CU used to determine
which output class shall be selected by the RF classifiers.
In related works, features are extracted among others from
intermediate encoding information [28], texture of pixel lu-
minance samples [26] or motion divergence [34], as men-
tioned in Section II. Features based on intermediate encoding
information have been shown to be effective for the S-NS
classification problem in HEVC [24][28]. In this work, we
choose to build a parallel friendly set of features as an input
of the RF classifiers, since intense parallelization will be
compulsory to achieve real time encodings for VVC standard.
The features must not add dependencies between regions of
the frame, in order to preserve the opportunities of high level
parallelism and CU level parallelism. Therefore, the selected
features are only designed based on current CU data, such
as texture of pixel luminance samples and motion divergence.
This choice forces to neglect features based on intermediate
encoding informations. This section first introduces Motion
Divergence Field (MDF), then explains the feature evaluation
and selection.

1) Motion Divergence Field: In the following, motion
divergence in a frame is considered through the MDF. The

(a) Original frame.

(b) Visual representation of the MDF. The MVs with different motion
directions are displayed with different colors

Fig. 6: Correlation between MDF and frame QTBT partition,
frame #9 RaceHorses, at QP=32.

MDF is the array of MVs of every 4x4 pixels block of the
frame. The MVs point to the closest reference frame in term
of temporal distance. In this work, a separate motion search
process is needed to compute the MDF. Without optimization
and parallelization, the motion search process of the MDF
induces an average 0.8% overhead of the encoding complexity.
However, many real-time encoders x265 [44] already use look-
ahead techniques. A look-ahead technique consists in a pre-
analysis of the video sequence, generally including a motion
search on small blocks of the frame. For encoders using look-
ahead techniques, the overhead to compute the MDF is null.

Fig. 6a displays the original frame #9 of sequence Race-
Horses, while Fig. 6b gives a visual representation of its
MDF. MVs with different motion directions are displayed
with different colors, separating visually regions of the frame
with different movement. The optimal QTBT partition selected
by JEM-7.0 encoder after a exhaustive RDO process is also
displayed. Areas with similar colors tend to be merged together
in a CU, showing the correlation between frame’s optimal
QTBT partition and the MDF. Some edge-examples CUs
containing distant colors are recognized, and one of them is
highlighted with a yellow square. Indeed, this CU is not further
split and the blue zone is not separated from the purple zone.
The goal of the feature selection is to determine which features
extracted from the MDF and from pixel luminance samples are
the most relevant to determine the best partition mode of a CU.

2) Evaluated Features: Evaluated features are divided into
3 categories: features computed on whole CU, features com-
puted on sub-quarters of the CU and features based on
inconsistency among CU sub-quarters.
Features computed on the whole CU are the following:
• QP: Quantization parameter used to encode CU slice.
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• VarPix: Variance of luminance samples.
• Grad: Gradients in horizontal (gradx) and vertical

(grady) directions of the luminance samples (2 features).
• RatioGrad: ratio of gradients gradx

grady
.

• VarMv: σ2
MVx + σ2

MVy with σ2
MVx and σ2

MVy respectively
variances of horizontal and vertical MVs of MDF.

• MaxDiffMv: maximum 1-norm distance between MVs
of MDF, noted mv, and their mean, noted mv, as in
Equation (5).

MaxDiffMv = max
mv∈MDF

(||mv −mv||1),

= max
mv∈MDF

(|mvx −mvx|+ |mvy −mvy|).
(5)

Features based on sub-quarters of the CU are the following:
• QuarterVarPix: VarPix on 4 sub-quarters (4 features).
• QuarterVarMv: VarMv on 4 sub-quarters (4 features).
• QuarterMaxDiffMv: MaxDiffMv on 4 sub-quarters (4

features).
For any feature f , f1 is the feature computed on top-left sub-

quarter, f2 on top-right, f3 on bottom-left and f4 on bottom-
right. Let δH(f) and δV (f) be Horizontal Inconsistency (HI)
and Vertical Inconsistency (VI) as defined by Equation (6)

δH(f) = |f1 − f2|+ |f3 − f4|,
δV (f) = |f1 − f3|+ |f2 − f4|.

(6)

The aim of HI and VI is to highlight which rectangular
parts of the CU have the highest differences. Features based
on inconsistency among sub-quarters of the CU are the
following:
• InconsPix: HI and VI of mean, variance and gradients-

ratio of luminance samples (6 features).
• InconsMv: HI and VI of mean and variance of MDF (4

features).
• DiffInconsPix: difference between HI and VI for lumi-

nance based features (3 features).
• DiffInconsMv: difference between HI and VI for MDF

based features (2 features).
3) Feature Selection: As decision trees node splitting relies

on MI (see Section III-A), the feature evaluation is conducted
with MI as metric. Fig. 7 gives the MI of all evaluated features
according to the classifier and CU size. Only MI for CU
size categories S0, S2, S4 and S6 are displayed to avoid
overloading the figure as these values are representative of
MI of other CU sizes.

Fig. 7a shows that for classifier S-NS, the larger the CU,
the higher the MI, independently of the evaluated feature.
Therefore, the larger the CU, the more relevant are the
evaluated features to determine whether the optimal partition
mode of a CU is NoSplit or one of the Split partition modes.

For QT-BT and BH-BV classifiers, Fig. 7b and Fig. 7c
respectively show that features based on texture have higher
MI than features based on the MDF, independently of CU size.
In other words, features based on texture are more relevant
than features based on the MDF to estimate the partition modes
to process, independently of CU size. It can also be noted that
the MI of features are lower for classifiers QT-BT and BH-BV
than for classifier S-NS. The maximum MI reaches 0.22 for
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(b) QT-BT Classifier
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(c) BH-BV Classifier

Fig. 7: Mutual Information of evaluated features according to
classifier and CU sizes.

classifier S-NS whereas the maximum MI is 0.07 and 0.14 for
classifiers QT-BT and BH-BV, respectively.

For each classifier, only one set of features is selected to
create the training datasets of the various CU size categories.
Let the classification rate be the percentage of correct clas-
sification given by the 4-fold cross-validation on the training
dataset. The selected features are those providing the highest
MI and improving the classification rate when added to the
set of features.
The set of features for classifier S-NS is composed of the 24
features: QP, VarPix, Grad (2 features), RatioGrad, VarMv,
MaxDiffMv, QuarterVarPix (4 features), InconsPix (6 fea-
tures), InconsMv (4 features), DiffInconsPix (3 features).
The set of features for classifier QT-BT is composed of
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the 19 features: QP, VarPix, Grad (2 features), RatioGrad,
MaxDiffMv, QuarterVarPix (4 features), InconsPix (6 features)
and DiffInconsPix (3 features).
For classifier BH-BV, the set of features is composed of the 21
features including VarPix, Grad (2 features), RatioGrad, Quar-
terVarPix (4 features), QuarterVarMv (4 features), InconsPix
(6 features) and DiffInconsPix (3 features).

V. CLASSIFIERS TRAINING PROCESS

The training process consists in building the classifier
through maximizing classification rate on the training dataset.
In addition to classification rates, the losses of RD perfor-
mance induced by misclassification are considered in the
training process.

A. Impact of Misclassification on RD-cost Errors

To assess the impact of misclassification on the encoding
efficiency, the RD error εRD caused by a misclassification is
introduced. In the following, the misclassification A|B is when
the partition mode A is chosen by the RF classifier, whereas
B is the optimal partition mode selected by the encoder after
exhaustive RDO process. RD error of misclassification A|B
is defined by Equation (7)

εRD(A|B) =
JA − JB
JB

(7)

JA and JB are the RD costs resulting from RDO process for
partition modes A and B, respectively. In our case,

(A,B) ∈ {(NS, S), (S,NS), (QT,BT ), (BT,QT ),

(BTV,BTH), (BTH,BTV )},
JS = min(JQT , JBTH , JBTV ) and
JBT = min(JBTH , JBTV ).

Fig. 8 shows the average εRD according to the classifier
and the CU size. Results are averaged across 4 sequences
(BasketballDrive, BQMall, Flowervase, Johnny) and 4 QP
values.

A statistical study in Fig. 8a shows that εRD caused by
classifier S-NS is in average 3.4 times higher compared to
εRD caused by classifiers QT-BT and BH-BV. In other words,
the partition modes S and NS are in average more divergent in
terms of RD cost, compared to partition modes QT and BT and
partition modes BTH and BTV. Therefore S-NS classification
problem is easier to solve compared to classification problems
QT-BT and BH-BV, explaining why the MI of selected features
in Section IV-B are lower for classifiers QT-BT and BH-BV
compared to classifier QT-BT.

Concerning the first classifier S-NS, Fig. 8a shows that the
smaller the CU, the higher εRD(S|NS). When the classifier
selects Split partition modes instead of the correct NoSplit
partition mode selected by exhaustive RDO process, the mis-
classification has a higher RD impact for small CUs.
On the other hand, larger CU generate higher values of
εRD(NS|S). This is due to the fact that the larger the CU,
the greater the number of partitioning possibilities. Therefore,
for large CUs, the NoSplit partition mode is more divergent

in average from the optimal partitioning after exhaustive RDO
process, compared to small CUs.

For the second classifier QT-BT, Fig. 8b shows that
εRD(BT |QT ) is higher for large CUs (128×128 and 64×64)
than small CUs (32 × 32 and 16 × 16). When the classifier
selects BT partition modes instead of the correct QT partition
mode, selected by exhaustive RDO process, the misclassi-
fication has stronger impact on RD cost on the large CUs
than small CUs in average. Indeed, when BT partition mode
is selected on large CUs, QT partition mode is no longer
available, as detailed in Section II. Combined with the limit of
3 successive BT partitions, fine grain partitioning is no longer
achievable. On the other hand, εRD(QT |BT ) is higher for
small CUs than for large CUs. This is due to the fact that
rectangular BT partition modes offer more partitioning shapes
than square QT partition mode on small areas in the frame.

Concerning the third classifier BH-BV, Fig. 8c shows that
εRD are symmetric for misclassification BTH|BTV and
BTV |BTH . Moreover, misclassification has very small im-
pact in average on RD cost losses (below 2%) for S0 category
CUs and quite higher impact (around 10%) for S2, S4 and S6

category CUs.

B. Weighting of Training Dataset

Previous section shows that the impact of misclassification
on RD cost losses depends highly on the classifier and the CU
size. From this observation, all the training instances for classi-
fier A-B with (A,B) ∈ {(S,NS), (QT,BT ), (BH,BV )} are
assigned a weight w(A,B). The value of w(A,B) is computed
by Eq (8).

∀(A,B) ∈ {(S,NS), (QT,BT ), (BH,BV )},
w(A,B) = max(εRD(A|B), εRD(B|A)).

(8)

By assigning a weight to the training instances, the RF clas-
sifiers are built in order to minimize the sum of misclassified
weights w(A,B), instead of minimizing the classification error
rate. Therefore the training process has more probability to
classify well training instances with high weights, i.e training
instances that induce high RD losses. Note that the weights
are needed only during the training process, and not when the
trained model is used to reduce the complexity of encoding
process.

C. Classification Rates

As mentioned in Section IV-B, the classification rate is
the percentage of correct classification given by the 4-fold
cross-validation on the training dataset, carried out with the
weighting of training instances described in Section V-B. In
the following, the number of decision trees of the RFs has
been set to 40 which represents a good trade-off between high
classification rate and low inference time. TABLE II gives the
average classification rates of the three classifiers according to
the CU size category, with 40 decision trees by RF.

In TABLE II, the classification rates of classifier S-NS
are between 69% and 83%. The larger the CU, the higher
the classification rate for classifier S-NS. In the literature,
classification rates of techniques using ML to reduce the
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Fig. 8: Average RD misclassification error according to the classifier and CU size category. Data from 4 Sequences
(BasketballDrive, BQMall, Flowervase, Johnny), encoded with QP = 22, 27, 32, 37

TABLE II: Classification rate (in %) according to the classifier
and the CU size category.

S0 S1 S2 S3 S4 S5 S6 Average

S-NS 83 82 78 76 73 72 69 76

QT-BT 69 - 70 - 67 - 60 67

BH-BV 62 64 70 67 69 68 67 67

complexity of the QT partitioning in HEVC are close to
80% [40], [45]. The classifier S-NS has therefore classification
rate performance comparable to previous works on HEVC.

Section V-A shows that the S-NS classification problem is
easier to solve compared to classification problems QT-BT and
BH-BV. For this reason the classification rates of classifiers
QT-BT and BH-BV are in average 67%, which is in 9% lower
than the average classification rate of classifier S-NS.

VI. TUNABLE COMPLEXITY REDUCTION

In order to control RD losses induced by misclassification,
risk intervals of classification are introduced for each binary
classifier. In the risk interval of the binary classifier, both
output partition modes are processed, limiting RD efficiency
losses at the expense of complexity reduction. By varying the
size of risk intervals, tunable complexity reduction is achieved.

A. Definition of Risk Interval

A score value, deduced from the votes of individual decision
trees, is used to determine the risk interval of a given classifier.
The associated score Score(A) corresponds to the percentage
of decision trees of the RF classifier that predicts the class A
which is defined by Equation (9)

Score(A) =
Nvotes(A)

Ntrees

(9)

where Nvotes(A) is the number of trees voting for class A
and Ntrees is the total number of trees constituting the RF
classifier. Score(A) takes values between 0 and 1 and the
value of Score(A) quantization step is 1/Ntrees. The closer
Score(A) is to 1, the more predominantly the RF classifier
selects class A.

In our specific case, all the classification
problems are between two classes A and B, with
(A,B) ∈ {(NS, S), (QT,BT ), (BTV,BTH)}. For binary
classification, as Nvotes(A) + Nvotes(B) = Ntrees, then
Score(A) + Score(B) = 1. Using this relation, the
classification decision of the binary RF classifier is A if
Score(A) > 0.5 and B otherwise (see Section III-A).

An example of risk interval is illustrated in red color in
Fig. 9. The risk interval is the range [0.5 − dS(A), 0.5 +
dS(B)] of Score(A), with dS(A) and dS(B) the risk interval
boundaries dS for decisions A and B, respectively. The risk
interval boundary dS are included in the range [0, 0.5]. When
Score(A) is inside the risk interval, the classifier makes
no decision and both output partition modes A and B are
processed.

10.50 10.5-dS(A) 0.5+dS(B)

Score(A)

class Aclass A & Bclass B

Fig. 9: Risk interval for binary classification.

B. Computation of Risk Interval Boundaries

The values of the risk interval boundaries dS for every
classifier and CU size category are computed at encoding
time. Every 32 frames, 1 reference frame is encoded with
the exhaustive RDO process of JEM-7.0, enabling the RF
classifiers only to gather misclassification RD statistics. No
complexity reduction is achieved on the encoding of the
reference frames. The complexity of the reference frames
is included in the final results and is compensated by the
complexity reduction achieved on frames constrained by the
RF classifiers.

In the reference frames, the RD costs of all partition modes
are computed, making it possible to compute the sum of εRD

error induced by misclassification, further called cumulative
εRD. The risk interval boundaries dS are computed in order to
limit cumulative εRD on the reference frame. The computation
of the the dS values at encoding time adjusts the RD efficiency
losses to video content variations, across different sequences
and scenes.
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Fig. 10: Cumulative εRD of QT |BT and BT |QT misclassi-
fications in function of Score(QT ). Data from S6 category
CUs of first frame of sequence BasketballDrill, QP = 22.

In Fig. 10, the blue and green histograms correspond to a
concrete example of cumulative εRD(QT |BT ) and cumulative
εRD(BT |QT ), respectively, in function of Score(QT ). The
cumulative εRD are computed from the RD costs of S6

category CUs, extracted from the RDO process of sequence
BasketballDrill reference frame. The maximum cumulative
εRD error tolerated on the reference frame is further noted L
and represented by the red line in Fig. 10. Depending on the L
value, the boundaries of the risk interval dS(QT ) and dS(BT )
are determined such as both cumulative εRD(QT |BT ) and
cumulative εRD(BT |QT ) are below L. Note that dS(QT )
is greater than dS(BT ) in this example, since the errors
εRD(BT |QT ) are greater than the errors εRD(QT |BT ).

C. Individual Performance of Classifiers

As explained in Section V-A, average RD losses induced
by misclassification depend highly on the classifier. Reason
why the possibility is left for the user to select a different
threshold L by classifier, further noted LS-NS, LQT-BT, LBH-BV.
For a given classifier, the same threshold is applied on all CU
size categories.

The performance of a complexity reduction solution is
evaluated by measuring the trade-off between RD efficiency
using the BD-BR increase [46] and encoding complexity
reduction ∆T , defined by Equation (10)

∆T =
1

4

∑
QPi∈{22,27,32,37}

TA(QPi)− TR(QPi)

TA(QPi)
, (10)

where TA(QPi) and TR(QPi) are the anchor (encoded with
exhaustive RDO process) and reduced time required to encode
the video with QP = QPi, respectively.

In order to evaluate the performance of the classifiers
individually, encodings are run activating only one classifier at
a time with different values of L: 0.0%, 0.01%, 0.02%, 0.05%,
0.10%, 0.15%, 0.20%, 0.30%. The value L = 0.0% means
that the classifier is disabled. The performance is gathered
across the encodings of the 32 first frames of 10 training
sequences over 4 QP values.
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(b) BTdepth = 2
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(c) BTdepth = 1

Fig. 11: Average ∆T and BD-BR, according to the BTdepth
and classifier. Average computed across the encodings of 32
first frames of 10 training sequences with 4 QP values. Points
correspond to different values of L: 0.0%, 0.01%, 0.02%,
0.05%, 0.10%, 0.15%, 0.20%, 0.30%.

Fig. 11 shows the average ∆T versus the average BD-
BR, according to the classifier for BTdepth equals to 1, 2
and 3. As explained in Section II-A, BTdepth is the encoding
parameter that specifies the number of successive allowed BT
partitions. In the CTC [38], BTdepth value is set to 3, reason
why the conducted experiences only consider BTdepth values
lower than 3. The blue, green and red curves correspond
to performance obtained with the individual activation of
classifiers S-NS, QT-BT and BH-BV, respectively. The points
of the curves are obtained from left to right for the following
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values of L: 0.0%, 0.01%, 0.02%, 0.05%, 0.10%, 0.15%,
0.20%, 0.30%. In Fig. 11, the higher left the curve, the
better the classifier performance, as it minimizes BD-BR while
maximizing ∆T .

Fig. 11a shows that for BTdepth = 3, when BD-BR is lower
than 1.2%, the curve of classifier BH-BV is below the curve
of classifier QT-BT and above the curve of classifier S-NS.
Classifier QT-BT has therefore the best performance. Even
though classifier S-NS has the best successful classification
rates (see Section V-C), it has the worst performance in
term of trade-off between ∆T and BD-BR. This is due to
the fact that misclassification induces much higher RD errors
in average for classifier S-NS compared to other classifiers, as
explained in Section V-A.

For BTdepth = 2, Fig. 11b shows that classifiers QT-
BT and BH-BV have equivalent performance as their curves
overlap from 0% to 30% ∆T . Classifier S-NS has the lowest
performance as its curve is the rightmost from 0% to 40%
∆T .

Finally, when BTdepth = 1, BT partition modes are avail-
able for less CUs compared to BTdepth = 3 and BTdepth =
2. Classifiers QT-BT and BH-BV have therefore less CUs
to address, meaning less complexity reduction opportunities
compared to classifier S-NS. This explains why in Fig. 11c,
the curve of classifier QT-BT is lower compared to the
curve of classifier S-NS when BD-BR is between 0% and
1.7%. This also enlighten why ∆T for classifier BH-BV only
reaches 20%, whereas it reaches 30% for BTdepth = 3 and
BTdepth = 2.

D. Optimal Selection of Complexity Reduction Configurations

In order to activate the three classifiers simultaneously at
encoding time, three values of L are required. The triplet
(LS-NS, LQT-BT, LBH-BV) is further called Complexity Reduction
Configuration (CRC).

For a given CRC, knowing the individual complexity reduc-
tions of classifiers ∆T (LS-NS), ∆T (LQT-BT) and ∆T (LBH-BV)
presented in Section VI-C, this section first explains how to
estimate the expected complexity reduction (called ∆Tcrc)
when the three classifiers are used simultaneously. In the
following, ∆Tcrc is computed considering an example where
∆T (LS-NS) = 15%, ∆T (LQT-BT) = 25% and ∆T (LBH-BV) =
20%. Intermediate values ∆TS , ∆TQ and ∆TB are introduced
by Equation (11)

∆TS = ∆T (LS-NS) = 15%,

∆TQ = (1.0−∆TS) ·∆T (LQT-BT)

= 0.85 · 25% = 21%,

∆TB = (1.0−∆TS −∆TQ) ·∆T (LBH-BV)

= 0.64 · 20% = 13%.

(11)

The expected complexity reduction ∆Tcrc is given by Equa-
tion (12)

∆Tcrc = ∆TS + ∆TQ + ∆TB = 49%. (12)

Over all CRCs achieving an expected complexity reduction
∆Tcrc, a CRC is considered optimal when it obtains the

lowest sum of BD-BR after exhaustive search. The optimal
CRCs, noted from C0 to C4, are given in TABLE III each
corresponding to a target ∆Tcrc, according to the BTdepth.

TABLE III: Optimal CRCs and associated expected ∆Tcrc,
according to BTdepth.

CRC BTdepth = 3 BTdepth = 2 BTdepth = 1
Name ∆Tcrc LS-NS LQT-BT LBH-BV LS-NS LQT-BT LBH-BV LS-NS LQT-BT LBH-BV

C0 30% 0.0 0.01 0.02 0.0 0.01 0.02 0.01 0.0 0.05

C1 35% 0.0 0.05 0.02 0.0 0.02 0.05 0.01 0.0 0.15

C2 40% 0.0 0.10 0.05 0.0 0.05 0.10 0.02 0.0 0.20

C3 45% 0.0 0.10 0.15 0.0 0.10 0.15 0.05 0.0 0.20

C4 50% 0.0 0.15 0.15 0.0 0.15 0.15 0.10 0.0 0.20

For both BTdepth = 3 and BTdepth = 2, in all optimal
CRCs the value of LS-NS is 0.0, meaning classifier S-NS is
not used to reduce encoding complexity. This is explained by
the results of Section VI-C, where classifier S-NS has lower
performance in term of trade-off between BD-BR and ∆T
compared to classifiers QT-BT and BH-BV, for BTdepth = 3
and BTdepth = 2,.

When BTdepth = 1, the value of LQT-BT is 0.0 for all optimal
CRCs. It is therefore more efficient in term of BD-BR to use
only classifiers S-NS and BH-BV when BTdepth = 1.

VII. EXPERIMENTAL RESULTS

This section gives the experimental setup and the results
obtained for the proposed tunable complexity reduction solu-
tion. Sections VII-B and VII-C present the results obtained on
JEM-7.0, while Section VII-D present the results obtained on
VTM-5.0.

A. Experimental Setup

The selected set test sequences is composed of 18
video sequences different from training set sequences (see
Section IV-A), selecting 3 sequences by class: Campfire,
ParkRunning3, ToddlerFountain, PeopleOnStreet, SteamLoco-
motiveTrain, NebutaFestival, Cactus, RitualDance, Kimono,
RaceHorsesC, PartyScene, BasketballDrill, ParkScene, Kris-
tenAndSara, FourPeople, BlowingBubbles, RaceHorsesD and
BQSquare.

The experiments are carried-out under the CTC [38] in
RA coding configuration at four QP values: 22, 27, 32 and
37. The performance of the proposed complexity reduction
solution is evaluated by measuring the trade-off between BD-
BR increase and encoding complexity reduction ∆T , defined
in Section VI-C. In the following, the complexity overhead
induced by the RF inference during partition scheme is noted
θ. The proposed complexity reduction solution is implemented
in both JEM-7.0 and VTM-5.0. In order to limit the encoding
time, JEM-7.0 encoder compares the RD cost of the whole
current CU with those of the BTH and BTV partition modes
to prune the QT partition mode. As our solution does not
compute all the RD costs of the BT partition mode, this
condition is removed in the experiments.
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TABLE IV: BD-BR(%) and ∆T (%) for JEM-7.0 exhaustive
RDO process encodings with different BTdepth values. Results
averaged across 18 test sequences.

JEM-7.0 Exhaustive RDO

BTdepth = 3 BTdepth = 2 BTdepth = 1 BTdepth = 0
BD-BR ∆T BD-BR ∆T BD-BR ∆T BD-BR ∆T

+0.0% 0% +0.6% 20% +2.0% 50% +5.1% 79%

B. Performance Evaluation of the Proposed Solution in the
JEM-7.0.

In order to set the upper bound in term of complexity
reduction of the proposed solution, the maximum complexity
reduction opportunity ∆Tmax for QTBT partitioning scheme
in JEM-7.0 is computed. ∆Tmax is the value of ∆T achieved
when the only tested QTBT partition is the optimal partition.
The average ∆Tmax value across the 18 test sequences in RA
configuration is:

∆Tmax = 90%.

TABLE IV shows the average BD-BR and ∆T values across
the 18 test sequences, encoded with exhaustive RDO process
according to the BTdepth value. Reducing BTdepth value
and allowing exhaustive RDO process is a straightforward
technique to reduce complexity of QTBT partition scheme.
For a fixed value of BD-BR, if the average ∆T value of the
proposed solution is lower than the average ∆T value obtained
simply by allowing exhaustive RDO process with a reduced
value of BTdepth, the CRC is considered as non-efficient for
this value of BD-BR.
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Full RDO

Fig. 12: Average BD-BR and ∆T for optimal CRCs and
exhaustive RDO with different BTdepth. CRCs adopted in the
proposed solution are circled in black. All results averaged
across 18 test sequences and 4 QP values.

The performance of the CRCs in term of BD-BR and ∆T
is displayed in Fig. 12. The upper bound ∆Tmax, as well as
BD-BR and ∆T for exhaustive RDO process with different
BTdepth values, are also displayed in red. In Fig. 12, the
blue stars correspond to CRCs with BTdepth = 3, as in the
CTC. With BTdepth = 3, the optimal CRCs offer an average
∆T value between 30% and 57% for an average BD-BR

TABLE V: Average BD-BR, ∆T and complexity overhead θ
of the CRCs adopted in the proposed solution.

Proposed Solution in the JEM-7.0

BTdepth Adopted CRC BD-BR (%) ∆T (%) θ (%)

C0 0.7 30.2 1.4
BTdepth = 3 C1 1.0 37.3 1.2

C2 1.3 44.1 1.1

C0 1.6 48.2 0.7
BTdepth = 2 C1 1.9 54.3 0.7

C2 2.3 59.4 0.6

BTdepth = 1
C0 2.5 63.2 0.5
C1 3.0 70.0 0.5

increase comprised between 0.67% and 2.22%. The yellow
crosses and green hexagons correspond to CRCs with reduced
values BTdepth = 2 and BTdepth = 1, respectively. With
BTdepth = 2, the ∆T of the optimal CRCs are in average
comprised between 48% and 66% with BD-BR increase
between 1.48% and 3.40%. With BTdepth = 1, the optimal
CRCs offer an average ∆T value between 63% and 78% for
BD-BR increase between 2.45% and 5.21%.

The 8 CRCs adopted in the proposed solution are circled
in black in Fig. 12. They are located on the pareto front,
i.e. the CRCs with lower BD-BR for a given value of ∆T .
The CRC inducing a BD-BR increase superior than 3% are
not adopted in the proposed solution since they offer a trade-
off between ∆T and BD-BR not considered good enough.
The adopted CRCs include: C0(BT3), C1(BT3), C2(BT3),
C0(BT2), C1(BT2), C2(BT2), C0(BT1) and C1(BT1). TA-
BLE V summarizes the average BD-BR, ∆T and θ of the
CRCs adopted in the proposed solution. TABLE V shows that
in order to achieve complexity reductions higher than 43%
in average, it is more efficient to apply our solution with a
value of BTdepth < 3, compared to applying our solution
with BTdepth = 3. With these adopted CRCs, the proposed
tunable solution offers a range of average ∆T between 30%
and 70% for an average BD-BR increase between 0.7% and
3.0%.

C. Comparison with Related Works in JEM-7.0.

The proposed solution is evaluated and compared to pre-
vious techniques on QTBT partition scheme in RA config-
uration [29], [31], [33] and [34]. Previous techniques [29]
and [31] offer an average encoding complexity reduction of
17% and 10% for an average BD-BR increase of 0.5% and
0.2%, respectively. The encoding complexity reductions are
much lower compared to the encoding complexity reductions
proposed in our solution, which is in minimum equals to 30%
for C0(BT3).

For a fairer comparison with the two most recent tech-
niques [33] and [34], TABLE VI details the performance of 2
CRCs of the proposed solution - C0(BT3) and C0(BT1) - with
respect to the performance announced by Wang et al. in papers
[33] and [34]. The performance in TABLE VI is shown by test
sequence, in terms of BD-BR increase, encoding complexity
reduction ∆T and θ induced by the respective techniques.
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TABLE VI: BD-BR, ∆T and complexity overhead θ of CRCs C0(BT3) and C0(BT1) of the proposed solution with respect
to the performance announced by Wang et al. in papers [33] and [34]. The results are shown by test sequence.

Proposed Solution Related Work Proposed Solution Related Work
CRC C0(BT3) Wang CNN [33] CRC C0(BT1) Wang Proba [34]

Class Sequence name BD-BR
(in %)

∆T
(in %)

θ
(in %)

BD-BR
(in %)

∆T
(in %)

θ
(in %)

BD-BR
(in %)

∆T
(in %)

θ
(in %)

BD-BR
(in %)

∆T
(in %)

A1 Campfire 0.36 35.1 0.5 0.66 40.6 2.4 3.4 68.8 0.2 1.7 46.7
A1 ParkRunning3 0.49 21.1 1.0 - - - 2.0 57.4 0.4 - -
A1 ToddlerFountain 0.58 18.2 0.8 - - - 1.8 59.5 0.3 1.2 48.4

A2 PeopleOnStreet 0.22 21.8 1.5 - - - 2.2 58.0 0.5 - -
A2 SteamLocomotiveTrain 0.57 24.6 1.0 - - - 2.7 63.5 0.3 - -
A2 NebutaFestival 1.37 35.1 0.9 - - - 2.2 68.0 0.3 - -

B Cactus 1.18 34.1 1.2 - - - 2.8 64.1 0.4 1.5 48.2
B RitualDance 0.90 32.0 0.7 0.55 32.6 4.2 3.9 64.7 0.2 - -
B Kimono 0.79 23.1 1.0 - - - 4.0 65.3 0.3 1.4 54.7
B ParkScene 0.63 30.8 1.6 - - - 2.5 68.1 0.5 1.2 45.7

C RaceHorsesC 0.42 32.8 0.9 0.47 30.7 1.7 2.1 63.1 0.3 1.6 60.5
C PartyScene 0.45 29.2 1.5 0.54 34.6 2.2 1.6 62.8 0.5 1.7 62.3
C BasketballDrill 0.61 30.2 1.2 - - - 2.4 63.5 0.4 1.5 62.3

D RaceHorsesD 0.41 28.8 1.2 0.51 36.3 2.7 2.3 61.5 0.6 1.3 56.5
D BQSquare 0.64 25.1 1.8 0.44 26.0 2.1 1.5 57.5 0.8 1.3 51.8
D BlowingBubbles 0.46 31.6 1.6 0.60 35.7 1.9 1.9 60.0 0.8 1.2 50.3

E FourPeople 0.76 40.8 1.8 0.32 28.9 4.1 2.5 68.3 0.5 1.3 47.7
E KristenAndSara 1.17 46.6 1.2 0.38 33.8 3.6 2.7 70.2 0.4 1.0 45.6

Same Sequences Average 0.62 33.5 1.4 0.50 32.8 2.8 2.42 64.0 0.5 1.38 52.3
Global Average 0.67 30.2 1.3 2.45 63.4 0.5

TABLE VI shows that configuration C0(BT3) applied to the
same sequences as technique [33], offers in average the same
encoding complexity reduction (∆T ≈ 33%) for a BD-BR
increase 0.12% higher in average. However, technique [33] is
based on CNNs to reduce the encoding complexity without
specifying his implementation, whereas CNNs are known to
have high computational overhead. For C0(BT3), θ has values
between 0.7% and 1.8%, whereas θ for technique [33] has
values between 1.7% and 4.2% according to the sequence. θ
is included in the encoding complexity reductions of of the
proposed solution. These overhead performance confirms the
lightweight of our approach and highlights that RF classifiers
consume few computing resources, which is a key point to use
this solution in a real-time or embedded framework.

TABLE VI also shows that configuration C0(BT1) achieves
higher encoding complexity reductions for all tested sequences
compared to considered previous techniques, and achieves in
average 12% higher encoding complexity reduction compared
to technique [34], with tolerable BD-BR increase of 2.45%
in average. Moreover, the fact that the proposed solution is
tunable offers more flexibility for concrete use-cases compared
to previous techniques that aim to reduce the complexity of
QTBT partition scheme.

D. Performance Evaluation of the Proposed Solution in the
VTM-5.0

The VTM-5.0 is the latest reference software for VVC
standardization. Several new coding tools have been added
compared to the JEM-7.0 reference software. For instance,
the VTM-5.0 includes the MTT partitioning scheme, more
complex than QTBT in JEM-7.0. Thus, the proposed solution

TTH TTV

Fig. 13: Additional partition modes in MTT partition scheme.

has also been implemented in the VTM-5.0 in order to verify
its performance. The following section first introduces the
MTT partitioning scheme and second presents the results of
the proposed solution integrated in the VTM-5.0.

The MTT partitioning scheme is an extension to QTBT
that enables Ternary Tree (TT) partition modes, including
Ternary Tree Horizontal (TTH) partition mode and Ternary
Tree Vertical (TTV) partition mode. When TT partition modes
are used, the CU is divided either horizontally or vertically
into three blocks and the size of the middle block is half
the size of the CU, as shown in Fig. 13. The MTdepth
parameter defines the maximum number of successive BT or
TT partitions allowed for the encoding of a CTU.

The proposed solution has originally been designed for
complexity reduction of QTBT partitioning scheme. MTT
partitioning scheme is more complex than QTBT partitioning
scheme, as it enables two additional partition modes. In order
to adapt the proposed solution to MTT partitioning scheme,
horizontal partition modes including TTH and BTH, and
vertical partition modes including TTV and BTV, are both
grouped as outputs of the BH-BV classifier, as shown in
Figure 14. The same classifier BH-BV is used to classify both
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BTV

BTH classifier
BH-BV

RDO process

Input Data
Decision

Features BH-BV

Fig. 14: Outputs modification of BH-BV classifier in VTM-5.0.
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Fig. 15: Average BD-BR and ∆T for optimal CRCs and
exhaustive RDO with different BTdepth. CRCs adopted in
proposed solution are circled in black. All results averaged
across 18 test sequences and 4 QP values.

BT and TT partition modes in the VTM-5.0. This choice is
supported by the fact that partition modes TTH and BTH, as
well as partition modes TTV and BTV, generate partitions
with the same directions.

The same features selected in Section IV-B are used as an
input of the RF classifiers. Moreover, CRC assessed under
the VTM-5.0 are selected with the same process described in
Section VI-D. Instead of applying the CRCs with different
values of BTdepth as in JEM-7.0, the CRCs are applied with
different values of MTdepth in the VTM-5.0. The performance
of the CRCs in term of BD-BR and ∆T is illustrated in
Fig. 15. The BD-BR and ∆T for exhaustive RDO process
with different MTdepth values, are also displayed in red. In
Fig. 15, the blue stars correspond to CRCs with MTdepth = 3,
while the yellow crosses and green hexagons correspond to
CRCs with reduced values MTdepth = 2 and MTdepth = 1,
respectively.

Fig. 15 shows that for a similar ∆T complexity reduction,
the proposed solution offers a BD-BR value 1.0% lower
compared to exhaustive RDO process with MTdepth = 1.
This result confirms that our approach is relevant compared
to the most straightforward complexity reduction technique,
that allows exhaustive RDO process with reduced values of
MTdepth.

The 7 CRCs circled in black in Fig. 12 are adopted in
the proposed solution. As for the JEM-7.0 in Section VII-B,
the CRC inducing a BD-BR increase superior than 3% are

TABLE VII: Average BD-BR, ∆T and complexity overhead
θ of the CRCs adopted in the proposed solution for VTM-5.0.

Proposed Solution in the VTM-5.0

Adopted CRC BD-BR (%) ∆T (%) θ (%)

MTdepth = 3

C0 0.43 25.5 0.6
C1 0.61 30.1 0.6
C2 0.75 33.4 0.6
C3 0.97 38.6 0.5

C0 1.32 50.7 0.3
MTdepth = 2 C1 1.67 56.3 0.3

C2 2.22 61.5 0.3

TABLE VIII: BD-BR, ∆T and complexity overhead θ of
CRCs C1(MT3) and C2(MT2) of the proposed solution in
the VTM-5.0, according to the test sequence.

Proposed Solution Proposed Solution
CRC C1(MT3) CRC C0(MT2)

Sequence name BD-BR
(in %)

∆T
(in %)

θ
(in %)

BD-BR
(in %)

∆T
(in %)

θ
(in %)

Campfire 0.95 29.3 0.4 3.06 65.1 0.2
ParkRunning3 0.46 30.9 0.4 1.91 62.9 0.2
ToddlerFountain 0.74 23.2 0.4 1.95 64.2 0.2

PeopleOnStreet 0.72 25.6 0.6 3.13 62.2 0.2
SteamLocomotive 0.92 44.9 0.4 1.71 69.5 0.2
NebutaFestival 0.25 36.3 0.5 0.83 75.8 0.2

Cactus 1.00 36.7 0.5 2.45 64.5 0.2
RitualDance 0.93 27.5 0.5 3.26 61.5 0.2
Kimono 1.16 33.7 0.5 2.74 64.7 0.2
ParkScene 0.29 30.3 0.6 1.93 59.2 0.3

RaceHorsesC 0.35 26.9 0.6 2.77 64.1 0.2
PartyScene 0.42 19.6 0.8 2.05 58.0 0.3
BasketballDrill 1.00 29.9 0.7 2.96 62.8 0.3

RaceHorsesD 0.17 26.6 0.7 2.19 57.1 0.4
BQSquare 0.16 26.2 1.0 1.55 49.1 0.6
BlowingBubbles 0.54 31.3 0.8 1.79 57.7 0.5

FourPeople 0.46 31.6 0.7 1.90 55.6 0.5
KristenAndSara 0.53 30.5 0.6 1.74 54.3 0.4

Average 0.61 30.1 0.6 2.22 61.5 0.3

not adopted in the proposed solution since they do not offer
a relevant trade-off between ∆T and BD-BR. TABLE VII
summarizes the average BD-BR, ∆T and θ of the CRCs
adopted in the proposed solution. TABLE VII shows that the
complexity reductions vary from 25% to 61% in average for
0.4% to 2.2% BD-BR increase. Moreover, the RF inference
overhead θ is below 0.7% for all the CRCs, which confirms
the lightweight overhead of our approach.

TABLE VIII shows the BD-BR, ∆T and θ of CRCs
C1(MT3) and C0(MT2) of the proposed solution under the
VTM-5.0, according to the test sequence. We can notice that
the scores given in TABLE VIII differ slightly according
to the test sequence. For instance, the lowest resolution se-
quences (class D), including RaceHorsesD, BQSquare and
BlowingBubbles, achieves in average 54.6% ∆T for C2(MT2)
configuration. The ∆T values of class D sequences are in
average 7% lower compared to the average ∆T value of all
test sequences for C2(MT2). Indeed, the lowest resolution
sequences tend to have a finer grained partitioning, which
offers less complexity reduction opportunities compared to
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higher resolution sequences.
In conclusion, this section has shown that it is possible

to apply the proposed solution in the VTM-5.0. The perfor-
mance under the VTM-5.0 prove that the proposed solution
is scalable to two different encoders and does not over-fit
the JEM-7.0 encoding characteristics. The good performance
achieved under VTM-5.0, the latest reference software of VVC
standard, also attests the reliability of the proposed solution
for future encoders, compliant with VVC standard. Finally,
to the best of our knowledge, this contribution is the first
to propose a complexity reduction technique for the VTM
reference software in Inter coding configuration.

VIII. CONCLUSION

In this paper, a tunable ML solution based on RF classifiers
to speed up the QTBT partitioning scheme in RA configuration
is proposed. Three binary RF classifiers are trained off-line in
order to ignore expensive exploration of the partition modes
classified as unlikely. By varying the size of risk intervals
for classification decision, tunable complexity reduction is
achieved, offering an average encoding complexity reduction
varying from 30% and 70% for an average BD-BR increase
between 0.7% and 3.0% in the JEM-7.0, with very low
overhead. The proposed solution as also been implemented in
the JVET software post JEM, named VTM. To this end, the
proposed solution as been extended to the new TT partition
modes included in the VTM partition scheme. In VTM-5.0
software, encoding complexity reductions vary from 25% to
61% in average for only 0.4% to 2.2% BD-BR increase.

Tunable encoding complexity reduction being the first step
for encoding time control, future works will investigate the
possible modification in the proposed solution in order to
achieve encoding time control.
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