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Abstract — A near-field scanning millimeter-wave frequency 

microscope built inside a scanning electron microscope is 

described. The proposed instrumentation can provide 

simultaneous atomic force and millimeter-wave images together 

with the scanning electron microscopy image of the probe / 

sample interaction. In contrast with conventional scanning 

microwave microscopy tools, the instrumentation proposed 

opens the way to achieve traceable measurements by tackling 

issues encountered in traditional near-field scanning microwave 

microscopy tools. First, water meniscus in the vicinity of the 

probe tip is eliminated to reduce parasitic capacitance. 

Secondly, targeted frequency up to 110 GHz results in confined 

electric fields in the vicinity of the probe tip to enhance the 

lateral resolution. Finally, visualization of the tip / sample 

interaction offers unique possibility to support the measured 

millimeter-wave signals by fine FEM modeling.   

Keywords — Near-field scanning microwave microscopy 

(NSMM), scanning electron microscope (SEM), evanescent 

waves, millimeter-wave. 

I.  INTRODUCTION 

The introduction of near-field scanning microwave 

microscopy (NSMM) tools have pioneered many 

applications, notably including mapping and quantitative 

measurement of the electrical properties of materials and 

devices at micro and nano scale [1]-[7]. Basically, the 

scanning microwave microscope (SMM) consists of an 

atomic or scanning tunneling microscope combined with a 

vector network analyzer (VNA) [8]-[9]. The tip scans across 

the sample, emitting a microwave signal scattered by the 

material, altering its amplitude or/and phase properties.  

Most of the reported NSMM tools operate in the 

microwave frequency range, i.e. 300MHz-30GHz. 

Consequently, there is a natural mismatch between the probe 

tip size (tens of nm) compared to the wavelength of operation 

in the order of the cm. When the tip of the probe is held close 

to the surface of a sample, at a distance separation much 

smaller than the wavelength of operation, the evanescent 

electric fields are highly confined in space. In contrast with 

traditional methods based on propagating waves, microscopy 

techniques result in high lateral and depth resolutions 

governed by the tip size [10]-[13] 

There is an urgent need to extend the frequency capabilities 

of microwave microscopy tools to achieve sub-50nm spatial 

resolution combined with sub-aF electrical resolution. In this 

effort, a new NSMM is developed with broadband 

capabilities up to 110 GHz. Consequently, the new 

instrumentation offers the possibilities to adapt the lateral and 

depth resolutions by proper choice of the frequency of 

interest in the range 1-110 GHz. In addition, the 

instrumentation has been designed to operate inside a 

scanning electron microscope for environment control and 

water meniscus elimination [14]-[15]. Finally, SEM image of 

the tip / sample interaction offers the opportunity to achieve 

fine FEM modeling [16]-[17]. In Section II, the design, 

fabrication and validation of the probing structure is 

presented with a preliminary targeted frequency of 40 GHz. 

In Section III, the system integration that requires specific 

design considerations is discussed.  

II. MICROSTRIP PROBING STRUCTURE 

 The NSMM-cantilever consists of a modified 12Pt400B 

microwave probe from Rocky Mountain Nanotechnology® 

(RMN) to achieve 40 GHz frequency operation. This probe 

consists initially in an ultra-sharp solid platinum probe 

tapered down to 50 nm and attached to a ceramic substrate. 

The probe is modified to support a TEM propagation mode 

through a microstrip structure. To that end, a conductive gold 

line of 200 µm is placed under the platinum, and continues to 

the back of the chip as the transmission line (Fig. 1). The back 

side is then completely covered with gold over an adhesive 

layer. This NSMM-Cantilever is embedded into a waveguide 

structure (both coplanar and microstrip structures have been 

realized for further comparisons) which can be exchanged in 

case of destroyed tips by using a solder-less PCB mount 

connector of Rosenberger Corp. with a clamping and 

screwing mechanism (Fig. 2). 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. Scanning electron image of the NSMM-cantilever 
manufactured by RMN®. 



 

 
 

Fig. 2. NSMM-cantilever integration in a dedicated PCB board.  

The NSMM-probe has been assembled and millimeter-wave 

characterization has been performed using a vector network 

analyzer to measure the return loss (Fig. 3).  

 

Fig. 3. Return loss mag(S11) of the modified NSMM-probe. 

 

From the experimental results, Fig.3 shows magnitude of the 

reflection coefficient better than -10 dB up to 40 GHz in 

accordance with simulated data (not shown here). It has to be 

noticed that that three resonances occur in the measured 

response. A time-domain analysis has been used to identify 

the origins of the resonances at 7.7GHz: transition connector-

substrate, 23.1 GHz: Cantilever beam and  

37.8 GHz: transition substrate-cantilever. Although the 

impact of the resonances is minor, optimization of the 

transitions is under investigation to limit resonance effects. 

III. SYSTEM INTEGRATION 

    The block diagram of the system is described in Figure 4. 

The hemisphere above the sample is mainly occupied by the 

electron column and leaves only a very small gap accessible 

for the SMM to achieve a working distance of 20 mm. The 

system presented here has been designed to be as compact as 

possible. The SMM stage is mounted on the chamber 

vertically to the electron beam of the SEM. The SMM 

consists of two main components, a sample scanning stage 

and a probing unit (Fig. 4). The sample scanning stage is 

composed of an AFM scanner positioned onto a coarse 

positioning stage. The positioning stage consists of three 

piezo driven linear actuators manufactured by Smaract 

GmbH with scanning ranges of 26 mm in X and Y directions 

and 11 mm in Z direction. The actuators enable closed-loop 

operation with less than 10 nm resolution and 25 nm 

repeatability in any direction. The AFM scanner 

ANSxyz100/Std from AttocubeTM operates in open-loop on 

scanning ranges of 505024 µm3 with sub-nm positioning 

resolution and 0.1% scan repeatability (Fig. 5). 

 

 
 
Fig. 4. Sketch of the proposed millimeter-wave NSMM. 

 

 

 
 
Fig. 5. Photography of the millimeter-wave NSMM integrated 
inside a Tescan Mira XMU SEM. 

The measuring equipment, i.e. SMM integrated into SEM, 

has been developed and is operational. Fig. 6 gives a picture 

of the equipment. 

 



 
 
Fig. 6. Millimeter-wave NSMM integrated into a SEM. 

The preliminary experimental demonstration considers the 

capacitance reference kit developed my MC2 Technologies® 

and uses a modified probe from Rocky Mountain 

Nanotechnologies® [Fig7(a)]. The topography, amplitude 

and phase images are simultaneously scanned over 30 x 30 

µm2 at the scan rate of 5.8 µm/s (0.19 line/s in a single 

direction) with 512 x 512 pixels resolution.  

Fig. 7(b) demonstrates 2D AFM image of the reference kit of 

the device under test. 

 

          
                     (a)                                                 (b) 

Fig. 7. (a) 25Pt300D modified Rocky Mountain 
Nanotechnologies® [spring constant = 18 N/m (± 40%)]. (b) 2D 
30×30 µm2 image on reference sample (Capacitance reference kit 
from MC2 Technologies®).  

IV. CONCLUSION 

     This study was focused on design, fabrication and 

measurement of new NSMM-cantilevers connected to  

microstrip based PCBs. These NSMM-cantilevers have been 

integrated into a SEM. The new instrument has been fully 

automated using nano-positionning to provide simultaneous 

atomic force and millimeter-wave images of the sample 

under investigation.  
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