Shaheen R Tonse

A PRIME-GENERATING ALGORITHM WHICH FOLLOWS FROM A WELL-KNOWN PROPERTY OF QUADRATIC RESIDUES

Keywords: 1991 Mathematics Subject Classification. Primary 11A07, 11A41 prime number, quadratic residue, generate prime

An algorithm that generates prime numbers of the form 4k+1 is introduced and described. It is based on the congruence equation x 2 ≡ -1 (mod p) which has exactly 2 solutions for upper primes. The algorithm directly uses this property, working with the solutions a and b of the congruence equations a 2 ≡ b 2 ≡ -1 (mod p). The mathematics behind the algorithm is explained, efficiency and performance are discussed. In comparison to a segmented sieve method the algorithm outperforms the sieve by a factor of ≈ 300 in speed.

Introduction

We introduce an algorithm that generates primes which are upper numbers, i.e. of the form 4k + 1. It is based on the property of quadratic congruences that for an upper prime number p the congruence equation x 2 ≡ -1 (mod p) has exactly 2 solutions. For lower primes (of the form 4k + 3) the equation has no solutions.

In sub-section 2.1 we focus on the two least non-negative solutions of x 2 ≡ -1 (mod p), a and b ∈ {2, 3, 4, . . . p -2}. E.g. for p = 13 : a = 5 and b = 8. We show that each a and each b only serve in this manner for a single UP (upper prime) and no other.

In sub-section 2.2 this one-to-one relation between p and a is exploited to develop the algorithm, generating UPs from the sequence a = 2, 3, 4, 5, . . . by searching for a factor of A = a 2 + 1 that is larger than 2 √ A, and using for the factorization only primes uncovered on earlier iterations of a. Pseudocode is included in the description. Performance is discussed, as is memory usage and parallelisability.

An Appendix contains a list of symbols/notation and a few miscellaneous derivations.

Method and Results

Solutions of the Congruence Equation.

For prime number p (2.1)

x 2 ≡ -1 (mod p) has exactly two solutions for upper primes (UP), and zero solutions for lower primes (LP). This is most easily seen by applying Euler's Criterion for Quadratic Residues (EC) [START_REF] Burton | Elementary Number Theory[END_REF][START_REF] Crisman | Number Theory: In Context and Interactive[END_REF], which tests whether or not some q is a quadratic residue (QR) of p:

q is a QR of p ⇐⇒ q p-1 2

≡ +1 (mod p) q is not a QR of p ⇐⇒ q p-1 2

≡ -1 (mod p)

It follows that (p -1) is always a QR for UP and never for LP: p-1 2 is even for UPs and odd for LPs, so applying EC and evaluating (p -1) p-1 2

(mod p) demonstrates that solutions exist for UP only:

(p -1) p-1 2 ≡ (-1) p-1 2 (mod p)
EC is a formula and does not prove that such solutions actually exist. Theorems that demonstrate the existence of the two solutions for UP and zero for LP commonly use group theory [START_REF] Burton | Elementary Number Theory[END_REF][START_REF] Crisman | Number Theory: In Context and Interactive[END_REF], 1 while a different approach [START_REF] Crisman | Number Theory: In Context and Interactive[END_REF][START_REF] Burton | Elementary Number Theory[END_REF] utilising Wilson's Theorem within its proof, additionally delivers the two solutions via the (admittedly impractical) formula:

x = ± p-1 2 ! While congruence equation 2.1 has an infinite number of solutions we are not interested in the whole equivalence class but only the two least non-negative remainders a, b ∈ {2, 3, 4, . . . , p -2}. Since

a 2 ≡ b 2 ≡ -1 (mod p), p | (a 2 -b 2) or p | (a -b) • (a + b).
Since both a and b are less than p it is easy to see that a + b = p. We adopt from this point the convention that a is the lesser of the two, therefore 1 < a < p 2 < b < p -1. Although a and b are strictly the square roots of (p -1), often we will casually refer to them as the "roots of p". Roots for the first 10 UP, tabulated as p : (a, b): Observation, at least for this small sample, shows that roots appear to be used for a single UP and not multiple times, raising two questions: (1) Does every integer {2, 3, 4, 5, . . .} serve as a root for some UP? (2) Can an integer {2, 3, 4, 5, . . .} serve as a root for more than one UP?. The first is easily addressed by counter-example: some numbers such as 7, 18, and 21 never serve in this way. For 7 to serve as a root for a prime p, i.e. 7 2 ≡ -1 (mod p), p would have to be larger than 7 and to divide 7 2 + 1 (= 2 × 5 × 5), which does not occur. The second is addressed here: Lemma 2.1. A root of the quadratic residue -1 of a prime may not serve as a root of the quadratic residue -1 for any other prime.

Proof. Let p be an UP with roots (a, b), taking a < b. Let c be either a or b, whichever the case: p > c. c 2 ≡ -1 (mod p) ⇒ p is a prime factor of c 2 + 1. c 2 + 1 may be a composite number with multiple prime factors but only a single one of these can be greater than its square root. Since √ c 2 + 1 lies between c and c + 1, and p > c, that prime factor is p. Let there exist another UP q for which c is also a root. Then using the same arguments used for p above, q > c and q is a factor of c 2 + 1 and is greater than its square root. But this is impossible since a composite number can have only a single prime factor greater than its square root.

The lemma above is based on p being a factor of (a 2 + 1) and (b 2 + 1). Its 3 corollaries below are crucial for the algorithm developed later. The proofs for the latter two corollaries are similar to the first: Corollary 2.2. If c is a (the lesser root) then p is the sole prime factor of c 2 + 1 greater than 2 √ c 2 + 1. Conversely if a number of the form c 2 + 1 has a prime factor p > 2 √ c 2 + 1 then c is the lesser root of p.

Proof. If c is a ⇒ p ≥ (2c + 1) ⇒ p > 2 √ c 2 + 1.
Conversely, let p be a prime factor of (c 2 + 1) and p > 2 √ c 2 + 1. Then p > 2c. So we have c 2 ≡ -1 (mod p) and c < p/2. Since there are only 2 integers less than p which have the first property, viz. the two roots, and only one of those viz. the lesser root, has the second property ⇒ c = a.

Corollary 2.3. If c is b (the greater root), then p is the sole prime factor of c 2 + 1 greater than its square root and further, p lies between

√ c 2 + 1 and 2 √ c 2 + 1. Conversely if a number of the form c 2 + 1 has a prime factor p such that √ c 2 + 1 < p < 2 √ c 2 + 1 then c is the greater root of p.
Corollary 2.4. If a number of the form c 2 + 1 has no prime factor greater than its square root, then c does not serve as a root for any prime.

Finally, note that if c is odd, then c 2 + 1 contains a single instance of the factor 2 and also note our algorithm will require that c 2 + 1 have no LP factors which is well-known from Euler's primitive-hypoteneuse proof [START_REF] Burton | Elementary Number Theory[END_REF][START_REF] Friedberg | An Adventurer's Guide to Number Theory[END_REF]:

Lemma 2.5 (Simplified special case of Euler's primitive-hypoteneuse proof). For any integer c: c 2 + 1 has no lower prime number factors. .

Proof. Let q be a prime factor of c 2 +1 ⇒ c 2 ≡ -1 (mod q). q and c are relatively prime. Express q = 2n + 1.

c q-1 = c 2n = (c 2) n ≡ (-1) n (mod q)
If q is LP then n odd ⇒ c q-1 ≡ -1 (mod q) (violates Fermats Little Theorem) If q is UP then n even ⇒ c q-1 ≡ +1 (mod q)

At this point we have established that for every UP p, p -1 has two square roots a and b unique to it, i.e. they do not serve as roots for any other UP and p is the sole prime factor of a 2 + 1 greater than 2 √ a 2 + 1. This raises the possibility of stepping through the sequence a = {2, 3, 4, 5, . . .} and searching for such a factor of a 2 + 1 using for the factorization only UP obtained from earlier iterations of the sequence, to generate a complete set of upper primes in an automatic fashion. We develop in sub-section 2.2 an algorithm to implement this concept, but before that discuss a few more points that contribute to the algroithm's efficiency.

By Lemma 2.1 an integer may serve as a or b for only a single UP; once that UP has been uncovered for a particular a, it would be wasteful to leave b in the sequence as it would simply give us the same UP after an expensive factorization. So upon finding a new UP p, the associated b can be skipped when its turn comes in the sequence. In a similar vein neither of the quantities (p + a) and (p + b) can never result in a UP later by serving as the lesser root for some later prime (proofs in Appendix Lemmas B.5 and B.6). Being able to pre-identify and skip these saves some computational expense.

Finally, at any point during the "a" iteration it is essential that S UP always contain sufficient UP to factorize (a 2 + 1), otherwise a candidate (a 2 + 1)s could be mistaken for a prime. This is confirmed in Appendix Lemma B.2.

2.2. Prime Generation from "a 2 + 1". Denote A = a 2 + 1, where a is the lesser root of p. By Corollary 2.2, p is A's sole prime factor > 2 √ A. In basic concept the algorithm iterates through a sequence a = {2, 3, 4, 5 . . .} and with repeated trial division removes factors from A using UP stored from earlier iterations until it is established whether A has a prime factor > 2 √ A, shown in the pseudocode below. 1 shows results of the first few iterations of the a sequence. We see that primes are not uncovered in the order in which they occur in the number system. Fig. 1 shows the distribution of UP obtained after running the sequence up to a max = 10 7 in which primes as high as (10 7) 2 + 1 are possible. It is apparent in the main histogram that significant primes are found near (10 7) 2 . We know that once the sequence reaches some a r , all UP up to 2a r are in S UP . For the a max = 10 7 dataset these contiguous primes are ≈ 9% of the total. The remaining ≈ 91% range between 2a r and a r 2 + 1; this range contains gaps that will fill in gradually as the sequence progresses to higher and higher values of a. The inset histogram is the same data in a smaller x range with linear axes, and discontinuity in slope at x = 2 • 10 7 , (i.e. twice a r = 10 7) shows where the distribution of primes ceases to be contiguous. The algorithm uncovers a new UP about 70% of the time, ≈ 0.7 UP per iteration. Of these 7.03 million, the new UP was a factor of a 2 + 1 in 6.57 million cases, while for the remaining 456, 000 cases a 2 + 1 it was the actual UP. As a check we observe that the ratio of 456, 000 to the number of primes less than 10 7 is 0.6857, in good agreement with a prediction of Hardy and Littlewood [START_REF] Shanks | On the Conjecture of Hardy & Littlewood concerning the Number of Primes of the Form n 2 + a[END_REF]. Of the 30% of a's that do not uncover a new UP about half were identified beforehand as being unable to result in a new UP because they were either b, p + a or p + b from an earlier iteration and so had been placed in S ignore . At each iteration: if a is in S ignore the iteration is skipped so that a fruitless factorization is not performed, e.g. a = 3, 7, and 8 in Table 1.

#

Discussion.

Performance: In comparing to a segmented sieve method [9] we find: If the aim is to uncover a large prime p without necessarily uncovering all primes less than p, the algorithm outperforms the sieve by a factor of ≈ 300 in speed (column 2 below).

Time to generate

Time to generate Algorithm some prime ≈ 10 10 all primes up to 10 6 Sieve 4528 s 0.38 s a 2 + 1 14.7 s 301 s This is because in the process of finding p, the sieve uncovers all primes less than p sequentially before uncovering p, whereas the a 2 + 1 algorithm is not limited that way: at a particular iteration say a i , any prime found can be between 2a i and a 2 i + 1. One can see in Table 1 that primes are not found in the order that they occur in the number system. It goes without saying that if one desires all primes up to some p the sieve is the better choice (column 3).

Parallelization: While parallelism could be implemented at one or more different places in the code such as within the factorization calculation, the obvious place is at the outer iteration level of a. There is no reason to suppose that parallel scalability will not be high. Once having reached a given a r , S UP contains all UP up to 2a r therefore the next a r iterations can be run in parallel. Since this work was conducted on a 6 core Intel i5 processor coded with interpreted Python, actual parallel profiling was not conducted. Also because the Python GIL internally causes threads to run serially [START_REF] Eggen | Thread and Process Efficiency in Python[END_REF] our compute-bound applications get no benefit from multithreading. (For applications with I/O latency there is a threading benefit.) Still, it was useful to implement multithreaded versions to investigate the negative consequences of implementing parallelism at the iteration level even without the positive benefit of a speedup. One such penalty is that the pre-identification and discarding of a's that would not result in a new prime would be affected, since some future a's that would have been in the S ignore set for a serial code might now not be present in time to be of use.

Memory: Most memory usage is by S UP (25% of total in the dataset presented above) and the S ignore set (75%). The need to retain all UP found (in S UP) cannot be avoided, but memory usage can be reduced by retaining in RAM only values needed for factorization, i.e. if the sequence is at some a r , then only values up to a r are going to be needed for that iteration. Similar measures can be taken for S ignore by retaining in RAM only elements to be used in the near future and possibly discarding those no longer necessary once the iteration has passed those values.

× (mod p) 1 c -1 p-c 1 1 c -1 p-c c c -1 p-c 1 -1 -1 p-c 1 c p -c p-c 1 c - 1
+ (mod 4) 0 1 2 3 0 0 1 2 3 1 1 2 3 0 2 2 3 0 1 3 3 0 1 2
Thus the existence of a single element c : c 2 ≡ -1 (mod p) implies the existence of at least a second, pc, and existence of a group of order 4 which is isomorphic to

∼ = Z 4 .
Since the modulus is prime, G also forms a group under integer multiplication modulo p, with e = 1 and order p -1 [START_REF] Fraleigh | A First Course in Abstract Algebra[END_REF]12]. Further, G ∼ = Z p-1 , the finite Abelian cyclic group under integer addition modulo p -1, which has e = 0. ∈ S UP : 2a r < q ≤ √ A s . ∴ q ≤ a s . Let a q be the lesser root of q. Since q has not yet been uncovered by the algorithm, a q ≥ a s . But q > 2a q ⇒ q > a s which contradicts out earlier assumption. Since we can show that for small values of a r (even a r =2), S UP contains all UP, we then apply inductive reasoning using the above argument. Proof. Let a p be the lesser root of UP p and C p be the multiplicative coefficient of p required to satisfy the congruence equation a 2 p ≡ -1 (mod p). ⇒ C p p = a 2 p + 1 Assume that p + a p serves as lesser root a q for some other upper prime q and let C q be the multiplicative coefficient of q ⇒ C q q = a 2 q + 1 C p q = a q + 1 = (p + a p) 2 + 1 = p 2 + 2a p p + a 2 p + 1 = p 2 + 2a p p + C p p C q q = p • (p + 2a p + C p) p and q are prime and distinct, so p divides C q , and q divides (p + 2a p + C p). Therefore p ≤ C q . By Lemma B.3 C q < q/4 ⇒ p < q/4. Similarly q ≤ (p + 2a p + C p). Since a p < p/2 and C p < p/4 ⇒ q < (p + p + p/4) or q < 9p/4 which contradicts p < q/4. Lemma B.6. If b serves as the greater root for an upper prime p, the quantity (p + b) cannot serve as lesser root for any other upper prime.

Proof. Let b p be the greater root of UP p and D p be the multiplicative coefficient of p required to satisfy the congruence equation b 2 p ≡ -1 (mod p). ⇒ D p p = b 2 p + 1 Assume that p + b p serves as lesser root a q for some other upper prime q and let C q be the multiplicative coefficient of q ⇒ C q q = a 2 q + 1 C q q = a 2 q + 1 = (p + b p) 2 + 1 = p 2 + 2b p p + b 2 p + 1 = p 2 + 2b p p + D p p C q q = p • (p + 2b p + D p) p and q are prime so p divides C q , and q divides (p + 2b p + D p). Therefore p ≤ C q . By Lemma B.3 C q < q/4 ⇒ p < q/4 ⇒ 4p < q. Similarly q ≤ (p + 2b p + D p). b p < p and by Lemma B.4 Dp < p ⇒ q < (p + 2p + p) or q < 4p which contradicts our earlier 4p < q.

Lemma B. 3 (2 ⇒ C p p < p 2 4 + 1 ⇒ C p < p 4 + 1 pp 1 p⇒ 1 p⇒ 2 p 1 Lemma B. 5 .

 3241111215 required by Lemmas B.5 and B.6). Let a be lesser root of UP p and C p be the multiplicative coefficient of p required to satisfy the congruence equation a 2 ≡ -1 (mod p), i.e. C p p = a 2 + 1, where C p is an integer ≥ 1. Then C p < p 4 . Proof. Given a < p is an UP, therefore the RHS side of the inequality can be written I +1 4 + 1 p whereI = p-14 is an integer. Because the 1 p term is very small (definitely < 3 4) no integers lie between I and I + 1 4 + C p ≤ I < I + 1 4 + C p < p Lemma B.4 (required by Lemma B.6). Let b be greater root of UP p, and let D p be the multiplicative coefficient of p required to satisfy the congruence equation b 2 ≡ -1 (mod p), i.e. D p p = b 2 + 1, where D p ≥ 1. Then D p < p -1.Proof.Given b < p -1 ⇒ D p p < (p -1) 2 + 1 ⇒ D p < p -2 +Because the last term on RHS is a fraction less than 1 ⇒ D p < p -If "a" serves as the lesser root for an upper prime p, the quantity (p + a) cannot serve as lesser root for any other upper prime.

 Pseudocode for a 2 + 1 algorithm: # #Initialization Create empty set S UP to store primes found. Also used to factorize. Fill S UP with single prime number: 2 Create empty set S ignore . Will skip the "a" iteration for values stored here. No more factors in A to divide out. Have found a new prime p = A Store p in S UP Store b (i.e. pa), (p + a) & (p + b) in S ignore

	Skip to next a at end of "a" loop
	Divisor = S UP .next if Divisor > √ A:
	Skip to next a at end of "a" loop
	# end A-factorization loop a = a.next
	# end "a" loop
	# end pseudocode
	Table

#Main "a" loop. Initialize a = 2

If a in S ignore : This "a" will not yield a new prime. Skip to next a at end of "a" loop

A orig = A = a 2 + 1 #Brute-force A-factorization loop. Initialize Divisor = S UP [0] (i.e. "2") while Divisor | A: A = A/Divisor if A ≤ 2 A orig :

This "a" will not yield a new prime as A orig has no factor > 2 A orig .

Table 1 .

 1 The first few iterations of the sequence a = 2, 3, 4, . . . of the A = a 2 + 1 method. As UP are uncovered they are placed in S UP . The algorithm skipped lines a = 3, 7, and 8 which were pre-identified as b, (p + a) and (p + b) for p = 5, and therefore would not uncover a new UP.

	a 2 3 skip {5} A Existing S UP 5 {} 4 17 {5} 5 26 {5, 17} 6 37 {5, 13, 17} 7 skip {5, 13, 17, 37} 8 skip {5, 13, 17, 37} 9 82 {5, 13, 17, 37} 10 101 {5, 13, 17, 37, 41} 11 122 {5, 13, 17, 37, 41, 101} 12 145 {5, 13, 17, 37, 41, 61, 101}	New UP b, p+a, p+b 5 3, 7, 8 17 13, 21, 30 13 8, 18, 21 37 31, 43, 68 41 32, 50, 73 101 91, 111, 192 61 50, 72, 111 29 17, 41, 46

Figure 1. Log-log histogram distribution of upper primes in the A = a 2 +1 method, obtained by running the sequence from a = 2 to 10 7 . Inset: Same data, cut off at a smaller x range and with linear axes.

•

 For UP, p ≡ +1 (mod 4) then 4 | (p -1) ∴ -Z p-1 has a single cyclic sub-group of order 4 (by the Fundamental Theorem of Cyclic Groups), viz. Z 4 . -and G also has a single cyclic sub-group of order 4, isomorphic to Z 4 and which therefore is the same H 4 identified earlier, establishing that there are two elements of G which when squared are congruent to -1 modulo p. -Since Z p-1 has only a single Z 4 subgroup there cannot be additional elements in G which when squared are congruent to -1 modulo p as that would imply the existence of addtional subgroups of G of order 4. • For LP p ≡ -1 (mod 4) then 4 ∤ (p -1) and G has no sub-groups of order 4, indicating that there exist no elements of G which when squared are congruent to -1 modulo p.Lemma B.2 (Sufficiency of S UP for Factorization of A = a 2 + 1). Let the sequence have progressed to a = 1, 2, 3 . . . , a r , . . . , a s where a r was the last a to have uncovered a prime, and factorization of A s = a 2 s + 1 is currently required. It is crucial that S UP contains all UP at least up to √ A s . Proof. By Corollary 2.2 S UP currently contains all primes up to 2a r . (i) If a s ≤ 2a r then S UP contains all UP up to √ A s and we are done. (ii) If a s > 2a r assume ∃ prime q /

a simple group-theory proof is given in Appendix Lemma B.1

code available upon email request

Summary

We have presented an algorithm to generate primes of the form 4k + 1 in an approach very different from sieving methods. It functions by iterating through sequence: a = {2, 3, 4, . . .} uncovering new primes as it iterates. The implementation is in Python 2.7 2 and the results of a run of a few million iterations have been presented and discussed. While factorization of a 2 + 1 is required at each iteration, the return is good: on average 0.7 primes/iteration are uncovered. When run up to some a max , primes as high as a 2 max are returned. Less importantly all of the primes obtained up to 2a max are contiguous. If started from the end of a contiguous list of known primes ending at some n, it is capable of returning primes ≈ n 2 immediately. If tasked with uncovering a large prime p without necessarily uncovering all primes less than p, the algorithm outperforms a segmented-sieve algorithm by a factor of ≈ 300 in speed. The few hundred lines of code should be easily convertible to compiled Fortran or C to run on a distributed parallel platform, since the current interpreted Python and platform are unsuited for the more extensive testing required with very large numbers. c,(pc), -1} forms a group (we call H 4 , shown below left) with identity element e = 1. Further, H 4 ∼ = Z 4 , the cyclic group under integer addition modulo 4 [START_REF] Fraleigh | A First Course in Abstract Algebra[END_REF], with e = 0, as seen by comparing the Cayley Tables of both below.