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POLAR DECOMPOSITION OF SEMIGROUPS GENERATED BY

NON-SELFADJOINT QUADRATIC DIFFERENTIAL OPERATORS AND

REGULARIZING EFFECTS

PAUL ALPHONSE AND JOACKIM BERNIER

Abstract. We study semigroups generated by accretive non-selfadjoint quadratic differential
operators. We give a description of the polar decomposition of the associated evolution operators
as products of a selfadjoint operator and a unitary operator. The selfadjoint parts turn out to
be also evolution operators generated by time-dependent real-valued quadratic forms that are
studied in details. As a byproduct of this decomposition, we give a geometric description of the
regularizing properties of semigroups generated by accretive non-selfadjoint quadratic operators.
Finally, by using the interpolation theory, we take advantage of this smoothing effect to establish
subelliptic estimates enjoyed by quadratic operators.

1. Introduction

1.1. Motivation. Given q : R2n → C a complex-valued quadratic form with a non-negative real
part Re q ≥ 0, we consider the maximal realization on L2(Rn) of the quadratic operator qw(x,Dx)
defined by the Weyl quantization of the quadratic form q, that is the pseudodifferential operator

qw(x,Dx)u(x) =
1

(2π)n

∫

R2n

ei〈x−y,ξ〉q
(x+ y

2
, ξ
)
u(y)dydξ,

equipped with the domain

D(qw) =
{
u ∈ L2(Rn) : qw(x,Dx)u ∈ L2(Rn)

}
.

This non-selfadjoint operator is only a differential operator since the Weyl quantization of the
quadratic symbols xαξβ , with (α, β) ∈ N2n such that |α+ β| = 2, is given by

(xαξβ)w = Opw(xαξβ) =
1

2

(
xαDβ

x +Dβ
xx

α
)
,

with Dx = i−1∂x. Since the real part of the quadratic form q is non-negative Re q ≥ 0, the
quadratic operator qw(x,Dx) is shown in [20] (pp. 425-426) to be maximal accretive and to
generate a strongly continuous contraction semigroup (e−tqw)t≥0 on L2(Rn). We aim in this work

at studying the evolution operators e−tqw and to make explicit their polar decompositions as
bounded operators on the Hilbert space L2(Rn) as defined in Subsection 6.1. As an application of
this decomposition, we study the regularizing effects of the semigroup (e−tqw )t≥0 in any positive
times t > 0 and we take advantage of this smoothing features to establish subelliptic estimates
enjoyed by the quadratic operator qw(x,Dx).

As an example, let us consider Q and B some n × n real matrices with Q symmetric positive
semidefinite, and the Ornstein-Uhlenbeck operator L defined by

(1.1) L = −1

2
Tr(Q∇2

x) + 〈Bx,∇x〉,

and equipped with the domain

(1.2) D(L) =
{
u ∈ L2(Rn) : Lu ∈ L2(Rn)

}
.

Since the Weyl symbol of L is

p(x, ξ) =
1

2
〈Qξ, ξ〉+ i〈Bx, ξ〉 − 1

2
Tr(B),
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L+ 1
2 Tr(B) is an accretive quadratic operator, see Example 1.7. Therefore, the operator L generates

a strongly continuous semigroup (e−tL)t≥0 on L2(Rn) and the two authors proved in [3] (Theorem
1.1) that this semigroup is explicitly given by the Kolmogorov formula

(1.3) ∀t ≥ 0, e−tL = exp
(
− 1

2

∫ t

0

|Q 1
2 eτB

T

Dx|2 dτ
)
e−t〈Bx,∇x〉.

This remarkable formula actually provides the polar decomposition of the evolution operator e−tL

since a real-valued Fourier multiplier is a L2-selfadjoint operator and that the transport operator
〈Bx,∇x〉 generates a unitary group on L2(Rn). Formula (1.3) has been extended for general
fractional Ornstein-Uhlenbeck semigroups defined in Example 1.5, and under a suitable algebraic
condition on the matrices Q and B, namely the Kalman rank condition, this formula has allowed
the two authors of the present work to study their regularizing effects and to establish subelliptic
estimates enjoyed by their infinitesimal generators, see Theorem 1.2 and Theorem 1.14 in [3].

1.2. Hamilton map and Singular space. Before stating the main results contained in this
paper, we need to introduce the Hamilton map and the singular space associated to the quadratic
form q, which will play a key role in the following. According to [19] (Definition 21.5.1), the
Hamilton map F of the quadratic form q is defined as the unique matrix F ∈ M2n(C) satisfying
the identity

(1.4) ∀X,Y ∈ R2n, q(X,Y ) = σ(X,FY ),

with q(·, ·) the polarized form associated to q and σ the standard symplectic form given by

(1.5) σ((x, ξ), (y, η)) = 〈ξ, y〉 − 〈x, η〉, (x, y), (ξ, η) ∈ C2n,

where 〈·, ·〉 denotes the inner product on Cn defined by

(1.6) 〈x, y〉 =
n∑

j=0

xjyj , x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Cn.

Note that this inner product 〈·, ·〉 is linear in both variables but not sesquilinear. By definition,
the matrix F is given by

(1.7) F = JQ,

where Q ∈ S2n(C) is the symmetric matrix associated to the bilinear form q(·, ·),
(1.8) ∀X,Y ∈ R2n, q(X,Y ) = 〈QX, Y 〉 = 〈X,QY 〉,
and J ∈ GL2n(R) stands for the symplectic matrix defined by

(1.9) J =

(
0n In
−In 0n

)
∈ Sp2n(R).

The notion of singular space was introduced in [14] (formula (1.1.14)) by M. Hitrik and K.
Pravda-Starov by pointing out the existence of a particular vector subspace S in the phase space
R2n, which is intrinsically associated to the quadratic symbol q, and defined as the following
intersection of kernels

(1.10) S =

+∞⋂

j=0

Ker(ReF (ImF )j) ∩ R2n,

where the notations ReF and ImF stand respectively for the real part and the imaginary part of
the Hamilton map F associated to q. The subspace S readily satisfies the two following properties

(1.11) (ReF )S = {0} and (ImF )S ⊂ S.

Notice that the Cayley-Hamilton theorem applied to the matrix ImF shows that

∀k ∈ N, ∀X ∈ R2n, (ImF )kX ∈ Span(X, . . . , (ImF )2n−1X),

where Span(X, . . . , (ImF )2n−1X) is the vector space spanned by the vectors X, . . . , (ImF )2n−1X ,
and therefore the singular space is actually equal to the following finite intersection of the kernels

S =

2n−1⋂

j=0

Ker(ReF (ImF )j) ∩ R2n.(1.12)
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According to (1.12), we may consider 0 ≤ k0 ≤ 2n− 1 the smallest integer satisfying

(1.13) S =

k0⋂

j=0

Ker(ReF (ImF )j) ∩ R2n.

This integer k0 will play a key role in the following. Since the quadratic symbol has a non-negative
real part Re q ≥ 0, the singular space can be defined in an equivalent way as the subspace in the
phase space where all the Poisson brackets

Hk
Im q Re q =

(
∂ξ Im q · ∂x − ∂x Im q · ∂ξ

)k
Re q, k ≥ 0,

are vanishing

S =
{
X ∈ R2n : (Hk

Im q Re q)(X) = 0, k ≥ 0
}
.

This dynamical definition shows that the singular space corresponds exactly to the set of points
X ∈ R2n, where the real part of the symbol Re q under the flow of the Hamilton vector field HIm q

associated with its imaginary part

(1.14) t 7→ (Re q)(etHIm qX),

vanishes to infinite order at t = 0. This is also equivalent to the fact that the function (1.14) is
identically zero on R. As pointed out in [14, 30, 34], the singular space is playing a basic role in
understanding the spectral and hypoelliptic properties of non-elliptic quadratic operators, as well
as the spectral and pseudospectral properties of certain classes of degenerate doubly characteristic
pseudodifferential operators [15, 16].

1.3. Polar decomposition of quadratic semigroups. We begin by giving a sharp description
of the polar decomposition of the evolution operators e−tqw . More precisely, we aim at establishing
that for any t ≥ 0, the operator e−tqw admits the decomposition

(1.15) e−tqw = e−taw
t e−itbwt ,

where at, bt : R
2n → R, with t ≥ 0, are real-valued time-dependent quadratic forms, at being non-

negative. In formula (1.15), the linear operators e−taw
t and e−itbwt are defined as follows: for some

fixed t ≥ 0, the quadratic operators awt (x,Dx) and ibwt (x,Dx) respectively generate a semigroup
(e−saw

t )s≥0 and a group (e−isbwt )s∈R of contraction operators on L2(Rn) (since the quadratic form

at is non-negative and the quadratic form ibt is purely imaginary) and the operators e−taw
t and

e−itbwt are respectively defined by

(1.16) e−taw
t = e−saw

t

∣∣
s=t

and e−itbwt = e−isbwt
∣∣
s=t

.

Notice that if the quadratic operators (Re q)w and (Im q)w commute, then the relation (1.15) is
satisfied with at = Re q and bt = Im q. Let us check that formula (1.15) is the polar decomposition
of the evolution operator e−tqw as defined in the end of Subsection 6.1. The operator e−taw

t

is injective from Corollary 6.9. In order to check that this operator is also non-negative and
selfadjoint on L2(Rn), we recall that the adjoint of any evolution operator e−sq̃w generated by the
accretive operator q̃w(x,Dx), with q̃ : R2n → C a quadratic form with a non-negative real part

Re q̃ ≥ 0, is given by (e−sq̃w )∗ = e−s(q̃)w , see e.g. [28] (Chapter 1, Corollary 10.6) and [20] (p.
426). This formula implies that (e−taw

t )∗ = e−taw
t , since the quadratic form at is real-valued. The

operator e−taw
t is therefore selfadjoint on L2(Rn). By using this selfadjointness together with the

semigroup property of the family (e−saw
t )s≥0, we deduce that

∀u ∈ L2(Rn), 〈e−taw
t u, u〉L2(Rn) =

∥∥e− t
2a

w
t u

∥∥2
L2(Rn)

≥ 0,

which proves that the operator e−taw
t is also non-negative. Finally, the operator e−itbwt is unitary

on L2(Rn) since the quadratic form bt is real-valued. In fact, the estimate (1.15) will be proven
only for small times 0 ≤ t ≪ 1. In the case where t ≫ 1, an estimate similar to (1.15) will be
established with the operator e−itbwt replaced by a unitary operator Ut which a priori cannot be
written as an operator defined in (1.16). The main result contained in this article is the following:

Theorem 1.1. Let q : R2n → C be a complex-valued quadratic form with a non-negative real
part Re q ≥ 0. Then, there exist a family (at)t∈R of non-negative quadratic forms at : R

2n → R+

depending analytically on the time-variable t ∈ R and a family (Ut)t∈R of metaplectic operators
such that

∀t ≥ 0, e−tqw = e−taw
t Ut.
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Moreover, there exists a positive constant T > 0 and a family (bt)−T<t<T of real-valued quadratic
forms bt : R

2n → R also depending analytically on the time-variable −T < t < T , such that

∀t ∈ [0, T ), e−tqw = e−taw
t e−itbwt .

We refer the reader to Definition 6.5 in Appendix where the metaplectic operators (and more
generally the Fourier integral operators associated to non-negative complex symplectic transfor-
mations) are defined.

The principal application of this decomposition will be to describe the regularizing effects of the
semigroup (e−tqw )t≥0, which requires a precise knowledge of the selfadjoint part e−taw

t given by
Theorem 1.1. More precisely, we will need a bound from below of the time-dependent quadratic
form at. This is the purpose of the following theorem:

Theorem 1.2. Let q : R2n → C be a complex-valued quadratic form with a non-negative real part
Re q ≥ 0. We consider F the Hamilton map associated to q and S its singular space. Let (at)t∈R be
the family of non-negative quadratic forms given by Theorem 1.1. Then, there exist some positive
constants 0 < T < 1 and c > 0 such that for all 0 ≤ t ≤ T and X ∈ R2n,

at(X) ≥ c

k0∑

j=0

t2j Re q
(
(ImF )jX

)
,

where 0 ≤ k0 ≤ 2n− 1 is the smallest integer such that (1.13) holds.

Theorem 1.2 implies in particular that for all 0 ≤ t ≪ 1, the quadratic form at enjoys degenerate
anisotropic coercive estimates in the phase space. This corollary is proven in Lemma 4.1. In the
particular case when S = {0}, this lemma implies that the quadratic form at is positive definite for
all 0 ≤ t ≪ 1. Moreover, it highlights the role of the singular space S in the polar decomposition
given by Theorem 1.1 through the index 0 ≤ k0 ≤ 2n − 1 which is intrinsically related to its
structure.

The calculation of the quadratic forms at and bt is quite difficult in practice, except for example
for the Ornstein-Uhlenbeck operators L defined in (1.1), see formula (1.3). The Kramers-Fokker-
Planck operator without external potential also makes an exception as illustrated in the following
example:

Example 1.3. Let K be the Kramers-Fokker-Planck operator without external potential defined
by

(1.17) K = −∆v + |v|2 + 〈v,∇x〉, (x, v) ∈ R2n,

and equipped with the domain

(1.18) D(K) =
{
u ∈ L2(R2n) : Ku ∈ L2(R2n)

}
.

The operator K is quadratic since its Weyl symbol is the quadratic form q : R4n → C given by

q(x, v, ξ, η) = |η|2 + |v|2 + i〈v, ξ〉, (x, v, ξ, η) ∈ R4n.

Moreover, for all t ≥ 0, the evolution operator e−tK can be written as

(1.19) e−tK = e−taw
t e−itbwt ,

where the time-dependent quadratic operators awt and bwt are defined for all t ≥ 0 by

awt = −∆v + |v|2 − sinh(2t)

cosh(2t) + 1
〈∇x,∇v〉 −

2t cosh(2t)− sinh(2t)

4t(cosh(2t) + 1)
∆x,

and

bwt =
sinh t

it
〈v,∇x〉.

Indeed, as we will see in the proof of Theorem 1.1, establishing the relation (1.19) is equivalent to
proving the following equality between matrices:

(1.20) e−2itJQ = e−2itJAte2tJBt ,

where J ∈ Sp4n(R) is the symplectic matrix defined in (1.9), Q ∈ S4n(C) is the matrix of the
quadratic form q in the canonical basis of R4n, and the time-dependent matrices At, Bt ∈ S4n(R)
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are respectively defined for all t ≥ 0 by

At =




0n 0n 0n 0n
0n In 0n 0n
0n 0n

2t cosh(2t)−sinh(2t)
4t(cosh(2t)+1) In

sinh(2t)
2(cosh(2t)+1)In

0n 0n
sinh(2t)

2(cosh(2t)+1)In In


 ,

and

Bt =




0n 0n 0n 0n
0n 0n − sinh t

2t In 0n
0n − sinh t

2t In 0n 0n
0n 0n 0n 0n


 .

Moreover, (1.20) follows from a direct calculus.

Remark 1.4. The technics used to derive the polar decompositions of semigroups generated by
accretive non-selfadjoint quadratic differential operators can also be used to obtain other splitting
formulas. For example, let us consider the harmonic oscillator H = −∆x + |x|2, with x ∈ Rn.
We prove in Proposition 6.8 (in dimension 1, but the proof works the same in any dimension by
tensorization) with the same arguments as the ones used in the proof of Theorem 1.1 that for all
t ≥ 0, the evolution operator e−tH generated by H writes as

e−tH = e−
1
2 (tanh t)|x|2e

1
2 sinh(2t)∆xe−

1
2 (tanh t)|x|2 .

The method can be generally used for all semigroups generated by accretive non-selfadjoint qua-
dratic differential operators.

Remark 1.5. The polar decomposition provided by Theorem 1.1 for the semigroups generated by
accretive non-selfadjoint quadratic differential operators is as well valid for an other general class
of semigroups called fractional Ornstein-Uhlenbeck semigroups defined as follows: given s > 0 a
positive real number, B and Q real n × n matrices, with Q symmetric positive semidefinite, we
define the fractional Ornstein-Uhlenbeck operator Ls as

Ls =
1

2
Trs(−Q∇2

x) + 〈Bx,∇x〉,

and equipped with the domain

D(Ls) =
{
u ∈ L2(Rn) : Lsu ∈ L2(Rn)

}
.

The operator Trs(−Q∇2
x) stands for the Fourier multiplier with symbol 〈Qξ, ξ〉s. Notice that

L1 is the Ornstein-Uhlenbeck operator defined in (1.1) and (1.2). The two authors proved in
[3] (Theorem 1.1) that the operator Ls generates a strongly continuous semigroup (e−tLs)t≥0 on
L2(Rn) and that for all t ≥ 0, the evolution operator e−tLs is explicitly given by the following
formula which is an extension of the Kolmogorov formula (1.3):

(1.21) ∀t ≥ 0, e−tLs = exp
(
− 1

2

∫ t

0

|Q 1
2 eτB

T

Dx|2s dτ
)
e−t〈Bx,∇x〉.

For all t ≥ 0, the relation (1.21) is the polar decomposition of the operator e−tLs .

1.4. Regularizing effects of semigroups generated by accretive non-selfadjoint qua-

dratic differential operators. As an application of the splitting formula given by Theorem 1.1
and the estimate given by Theorem 1.2, we investigate the regularizing properties of the evolution
operators e−tqw for all t ≥ 0. As pointed out in the works [2, 14, 17, 18, 32], the understanding of
this smoothing effect is closely related to the structure of the singular space S. Indeed, the notion
of singular space allows to study the propagation of Gabor singularities for the solutions of the
quadratic differential equations

{
∂tu+ qw(x,Dx)u = 0,

u(0) = u0 ∈ L2(Rn).

We recall from [31] (Section 5) that the Gabor wave front set WF (u) of a tempered distribution
u ∈ S′(Rn) measures the directions in the phase space in which a tempered distribution does not
behave like a Schwartz function. In particular, when u ∈ S′(Rn), its Gabor wave front set WF (u)



6 PAUL ALPHONSE AND JOACKIM BERNIER

is empty if and only if u ∈ S(Rn). The following microlocal inclusion was proven in [32] (Theorem
6.2):

∀u ∈ L2(Rn), ∀t > 0, WF (e−tqwu) ⊂ etHIm q (WF (u) ∩ S) ⊂ S,(1.22)

where (etHIm q )t∈R is the flow generated by the Hamilton vector field associated to the imaginary
part of the quadratic form q,

HIm q = (∂ξ Im q) · ∂x − (∂x Im q) · ∂ξ.

This result points out that the possible Gabor singularities of the solution e−tqwu can only come
from Gabor singularities of the initial datum u localized in the singular space S and are propagated
along the curves given by the flow of the Hamilton vector field HIm q associated to the imaginary
part of the symbol. The microlocal inclusion (1.22) was shown to hold as well for other types of
wave front sets, as Gelfand-Shilov wave front sets [9] or polynomial phase space wave front sets
[35].

Drawing our inspiration from the work [17], we consider the vector subspaces V0, . . . , Vk0 ⊂ R2n

defined by

(1.23) Vk =

k⋂

j=0

Ker(ReF (ImF )j) ∩ R2n, 0 ≤ k ≤ k0,

where 0 ≤ k0 ≤ 2n − 1 is the smallest integer such that (1.13) holds. According to (1.13), the
family of vector subspaces V ⊥

0 , . . . , V ⊥
k0

is increasing for the inclusion and satisfies

(1.24) V ⊥
0 ( . . . ( V ⊥

k0
= S⊥,

where the orthogonality is taken with respect to the canonical Euclidean structure of R2n. This
stratification allows one to define the index with respect to the singular space of any point X0 ∈ S⊥

as

(1.25) kX0 = min
{
0 ≤ k ≤ k0 : X0 ∈ V ⊥

k

}
.

When the singular space of q is reduced to zero S = {0}, the microlocal inclusion (1.22) implies that
the semigroup (e−tqw )t≥0 is smoothing in any positive time t > 0 in the Schwartz space S(Rn),
but this result does not provide any control of the blow-up of the associated seminorms as t → 0+.
However, the notion of index was shown in [17] to allow to determine the short-time asymptotics
of the regularizing effect induced by the semigroup (e−tqw)t≥0 in the phase space direction given
by the vector X0 ∈ R2n. More precisely, [17] (Theorem 1.1) states that when the singular space is
trivial S = {0}, there exists a positive constant C > 1 such that for all X0 ∈ R2n = S⊥, 0 < t ≤ 1
and u ∈ L2(Rn),

(1.26)
∥∥〈X0, X〉we−tqwu

∥∥
L2(Rn)

≤ C|X0|
tkX0+

1
2

‖u‖L2(Rn),

where 0 ≤ kX0 ≤ k0 denotes the index of the point X0 ∈ R2n = S⊥ with respect to the singular
space and where the pseudodifferential operator 〈X0, X〉w is defined as the differential operator
whose Weyl symbol is given by the linear form 〈X0, X〉, that is

(1.27) 〈X0, X〉w = 〈x0, x〉+ 〈ξ0, Dx〉, X0 = (x0, ξ0) ∈ R2n.

This result shows that the structure of the singular space accounting for the family of vector
subspaces (Vk)0≤k≤k0 , allows one to sharply describe the short-time asymptotics of the regularizing

effect induced by the semigroup (e−tqw )t≥0. The degeneracy degree of the phase space direction
X0 ∈ R2n = S⊥ given by the index with respect to the singular space directly accounts for the

blow-up upper bound t−kX0−
1
2 , for small times t → 0+. As a corollary, the same three authors

proved in [17] (Corollary 1.2) that still under the assumption S = {0}, there exists a positive
constant C > 1 such that for all m ≥ 1 and X1, . . . , Xm ∈ R2n = S⊥, 0 < t ≤ 1 and u ∈ L2(Rn),

(1.28)
∥∥〈X1, X〉w . . . 〈Xm, X〉we−tqwu

∥∥
L2(Rn)

≤ Cm

t(k0+
1
2 )m

[
m∏

j=1

|Xj |
]
(m!)k0+

1
2 ‖u‖L2(Rn).

This implies in particular that when S = {0}, the semigroup (e−tqw )t≥0 is smoothing in any

positive time t > 0 in the Gelfand-Shilov space S
k0+1/2
k0+1/2 (R

n). We recall that when µ and ν are
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two positive real numbers satisfying µ+ ν ≥ 1, the Gelfand-Shilov space Sµ
ν (R

n) consists in all the
Schwartz functions f ∈ S(Rn) satisfying that

∃C > 1, ∀(α, β) ∈ N2n,
∥∥xα∂β

xf(x)
∥∥
L2(Rn)

≤ C1+|α|+|β| (α!)ν (β!)µ.

We refer to [25] (Chapter 6) for an extensive discussion about the Gelfand-Shilov spaces. This
result was sharpened by the same three authors in [18] (Theorem 1.2) with a different approach
based on FBI technics, where they proved that S = {0} implies that the semigroup (e−tqw)t≥0 is

actually smoothing in any positive time t > 0 in the Gelfand-Shilov space S
1/2
1/2(R

n) with a control

of the blow-up of the associated seminorms in the asymptotics t → 0+. Moreover, estimates similar
to (1.28) in the asymptotics t → +∞ were obtained in the case where S = {0}, see again Theorem
1.1 and Corollary 1.2 in [17]. We also refer the reader to [26, 29] where quadratic semigroups are
studied in long-time asymptotics.

On the other hand, when the singular space S of q is possibly non-zero but still has a symplectic
structure, that is, when the restriction of the canonical symplectic form to the singular space
σ|S is non-degenerate, the above result can be easily extended but only when differentiating the
semigroup in the directions of the phase space given by the symplectic orthogonal complement of
the singular space

Sσ⊥ =
{
X ∈ R2n : ∀Y ∈ S, σ(X,Y ) = 0

}
.

Indeed, when the singular space S has a symplectic structure, it was proven in [17] (Subsection
2.5) that the quadratic form q writes as q = q1 + q2 with q1 a purely imaginary-valued quadratic
form defined on S and q2 another one defined on Sσ⊥ with a non-negative real part and a zero
singular space. The symplectic structures of S and Sσ⊥ imply that the operators qw1 (x,Dx) and
qw2 (x,Dx) commute as well as their associated semigroups

∀t > 0, e−tqw = e−tqw1 e−tqw2 = e−tqw2 e−tqw1 .

Moreover, since Re q1 = 0, (e−tqw1 )t≥0 is a contraction semigroup on L2(Rn) and the partial smooth-

ing properties of the semigroup (e−tqw)t≥0 can be deduced from a symplectic change of variables

and the result known for zero singular spaces applied to the semigroup (e−tqw2 )t≥0. We refer the
reader to [17] (Subsection 2.5) for more details about the reduction by tensorization of the non-zero
symplectic case to the case when the singular space is zero.

In the case when the singular space S is not necessary trivial nor symplectic but satisfies the
condition S ⊂ Ker(ImF ), with F the Hamilton map of the quadratic form q, some partial Gelfand-
Shilov smoothing effects in any positive time t > 0 for the semigroup (e−tqw)t≥0 were obtained by
the first author in [2] (Theorem 1.4), with some control of the associated seminorms as t → 0+.
Moreover, we mention that under an algebraic condition on the matrices Q and B, the regularizing
effects of the Ornstein-Uhlenbeck operator (1.1), whose singular space is not symplectic nor satisfies
the condition S ⊂ Ker(ImF ), see (1.34) with R = 0, were studied by the two authors in [3]
(Theorem 1.2).

In this paper, we investigate the smoothing properties of the evolution operators e−tqw for any
positive times t > 0, and we aim at sharpening and generalizing the estimates (1.28) without
making any assumption on the singular space S. As in the work [17], the notion of index plays a
key role in understanding the blow-up of the seminorms associated to the smoothing effects of the
semigroup (e−tqw )t≥0:

Theorem 1.6. Let q : R2n → C be a complex-valued quadratic form with a non-negative real part
Re q ≥ 0. We consider S the singular space of q and 0 ≤ k0 ≤ 2n− 1 the smallest integer such that
(1.13) holds. Then, there exist some positive constants c > 1 and t0 > 0 such that for all m ≥ 1,
X1, . . . , Xm ∈ S⊥, 0 < t < t0 and u ∈ L2(Rn),

∥∥〈X1, X〉w . . . 〈Xm, X〉we−tqwu
∥∥
L2(Rn)

≤ cm

tkX1+...+kXm+m
2

[
m∏

j=1

|Xj |
]
(m!)

1
2 ‖u‖L2(Rn),

where 0 ≤ kXj
≤ k0 stands for the index of the point Xj ∈ S⊥ with respect to the singular space.

In the case when m = 1, Theorem 1.6 recovers the estimate (1.26). The short-time asymp-
totics given by (1.28) of m differentiations of the semigroup (e−tqw)t≥0, as for it, is sharpened in
O(t−kX1−...kXm−m

2 ), which was the bound conjectured by the three authors of [17] in page 622.
This result discloses that these short-time asymptotics depend on the phase space directions of
differentiations. Moreover, the power over (m!)k0+

1
2 is sharpened in (m!)

1
2 , which in particular
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allows one to recover the Gelfand-Shilov S
1/2
1/2(R

n) regularizing effect of the semigroup (e−tqw)t≥0

in any positive time t > 0 when S = {0} already established in [18] (Theorem 1.2), with now a
precise control in short-time of the associated seminorms.

Example 1.7. Let Q,R and B be real n× n matrices, Q and R being symmetric positive semi-
definite. We consider the generalized Ornstein-Uhlenbeck operator

(1.29) P = −1

2
Tr(Q∇2

x) +
1

2
〈Rx, x〉 + 〈Bx,∇x〉,

equipped with the domain

(1.30) D(P ) =
{
u ∈ L2(Rn) : Pu ∈ Rn

}
.

Notice that P is a pseudodifferential operator whose Weyl symbol p is given by

(1.31) p(x, ξ) =
1

2
〈Qξ, ξ〉+ 1

2
〈Rx, x〉 + i〈Bx, ξ〉 − 1

2
Tr(B).

The operator P̃ = P + 1
2 Tr(B) is therefore a quadratic operator and it follows from a straightfor-

ward computation, see e.g. [2] (Section 5), that the Hamilton map F and the singular space S of

P̃ are respectively given by

(1.32) F =
1

2

(
iB Q
−R −iBT

)
,

and

(1.33) S =

n−1⋂

j=0

(
Ker(RBj)×Ker(Q(BT )j)

)
.

We can consider 0 ≤ k0 ≤ n− 1 the smallest integer such that S writes as

(1.34) S =

k0⋂

j=0

(
Ker(RBj)×Ker(Q(BT )j)

)
.

We notice that the singular space of P̃ has a decoupled structure in the phase space in the sense
that S writes as the cartesian product S = Sx × Sξ, where the two vector subspaces Sx ⊂ Rn

x and
Sξ ⊂ Rn

ξ are respectively defined by

Sx =

k0⋂

j=0

Ker(RBj) ⊂ Rn
x and Sξ =

k0⋂

j=0

Ker(Q(BT )j) ⊂ Rn
ξ .

For all x ∈ S⊥
x and ξ ∈ S⊥

ξ , we can define the indexes 0 ≤ kx ≤ k0 and 0 ≤ kξ ≤ k0 of the points
x and ξ with respect to the spaces Sx and Sξ respectively by

kx = min

{
0 ≤ k ≤ k0 : x ∈

( k⋂

j=0

Ker(RBj)

)⊥}
,

and

kξ = min

{
0 ≤ k ≤ k0 : ξ ∈

( k⋂

j=0

Ker(Q(BT )j)

)⊥}
.

Notice that the integer kx (resp. kξ) coincides with the index of the point (x, 0) ∈ S⊥
x × {0} ⊂ S⊥

(resp. of the point (0, ξ) ∈ {0}×S⊥
ξ ⊂ S⊥) with respect to the singular space. Theorem 1.6 implies

in particular that there exist some positive constants c > 1 and t0 > 0 such that for all m, p ≥ 0,
x1, . . . , xm ∈ S⊥

x , ξ1, . . . , ξp ∈ S⊥
ξ , 0 < t < t0 and u ∈ L2(Rn),

(1.35)
∥∥〈x1, x〉 . . . 〈xm, x〉〈ξ1,∇x〉 . . . 〈ξp,∇x〉e−tPu

∥∥
L2(Rn)

≤ c1+m+p

tkx1+...+kxm+kξ1
+...+kξp+

m
2 + p

2

[
m∏

j=1

|xj |
] [

p∏

j=1

|ξj |
]
(m!)

1
2 (p!)

1
2 ‖u‖L2(Rn),

where the integers 0 ≤ kxj
≤ k0 (resp. 0 ≤ kξj ≤ k0) denote the indexes of the points xj

(resp. ξj) with respect to Sx (resp. Sξ). This proves that the semigroup (e−tP )t≥0 enjoys partial
Gelfand-Shilov regularity in any positive time t > 0.
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Theorem 1.6 implies in particular that for all X0 ∈ S⊥ and t > 0, the linear operator
〈X0, X〉we−tqw is bounded on L2(Rn). In fact, the reciprocal assertion also holds as shown in
the following theorem:

Theorem 1.8. Let q : R2n → C be a complex-valued quadratic form with a non-negative real part
Re q ≥ 0. We consider S the singular space of q. If there exist t > 0 and X0 ∈ R2n such that the
linear operator 〈X0, X〉we−tqw is bounded on L2(Rn), then X0 ∈ S⊥.

Notice that if t > 0 and X0 ∈ R2n are such that the operator 〈X0, X〉we−tqw is bounded on
L2(Rn), then X0 ∈ S⊥ according to Theorem 1.8 and then Theorem 1.6 can be applied to obtain
that for all m ≥ 1, the operators (〈X0, X〉w)me−tqw are also bounded on L2(Rn).

Remark 1.9. In the study of the null-controllability of quadratic differential equations, a key
ingredient is to obtain some dissipation estimates for the semigroup (e−tqw )t≥0 in order to use a
Lebeau-Robbiano strategy, see e.g. [2, 3, 5, 6, 7, 11]. The regularizing effects given by Theorem 1.6
allow to give a sufficient geometric condition on the singular space S of q so that such dissipation
estimates hold. More precisely, let πk : L2(Rn) → Ek be the frequency cutoff projection defined
as the orthogonal projection onto the vector subspace Ek ⊂ L2(Rn) given by Ek = {u ∈ L2(Rn) :
Supp û ⊂ [−k, k]n}, with k ≥ 1 a positive integer. It can be proven while using Theorem 1.6
and the strategy used in [2] (Section 4.2), that when the singular space S of q takes the form
S = Σ× {0Rn

ξ
}, with Σ ⊂ Rn

x a vector subspace, there exist some positive constants c1, c2 > 0 and

0 < t0 < 1 such that for all k ≥ 1, 0 < t < t0 and u ∈ L2(Rn),

(1.36)
∥∥(1 − πk)e

−tqwu
∥∥
L2(Rn)

≤ c1e
−c2t

2k0+1k2‖u‖L2(Rn).

When the singular space of q is reduced to zero S = {0}, dissipative estimates similar to (1.36)
were obtained with πk some cutoff projections with respect to the Hermite basis of L2(Rn), see
e.g. [6, 7].

1.5. Subelliptic estimates enjoyed by quadratic operators. Finally, we study the subelliptic
estimates enjoyed by accretive non-selfadjoint quadratic differential operators. When the singular
space of the quadratic form q is reduced to zero S = {0}, K. Pravda-Starov proved in [30] that the
quadratic operator qw(x,Dx) satisfies specific global subelliptic estimates with a loss of derivatives
with respect to the elliptic case directly depending on the structural parameter of the singular
space 0 ≤ k0 ≤ 2n − 1 defined in (1.13). More precisely, [30] (Theorem 1.2.1) states that when
the singular space is equal to zero S = {0}, there exists a positive constant c > 0 such that for all
u ∈ D(qw),

(1.37)
∥∥〈(x,Dx)〉

2
2k0+1u

∥∥
L2(Rn)

≤ c
[
‖qw(x,Dx)u‖L2(Rn) + ‖u‖L2(Rn)

]
,

where 0 ≤ k0 ≤ 2n− 1 is the smallest integer such that (1.13) holds, with

〈(x,Dx)〉
2

2k0+1 = (1 + x2 +D2
x)

1
2k0+1 ,

being the operator defined by the functional calculus of the harmonic oscillator. The estimate
(1.37) was first proven in [30] with a technical multiplier method, and recovered in the two papers
[18] (Theorem 1.1) and [17] (Corollary 1.3) respectively by using technics of FBI transforms and
the interpolation theory. Moreover, the three authors of [17] and [18] sharpened this result by
improving it in the directions of the phase space which are less degenerate, that is with smaller
indices with respect to the singular space. In order to recall their result, we need to consider the
following quadratic forms

(1.38) pk(X) =

k∑

j=0

Re q
(
(ImF )jX)

)
, 0 ≤ k ≤ k0,

where 0 ≤ k0 ≤ 2n−1 is the smallest integer such that (1.13) holds. We also consider the quadratic
operators Λ2

k defined for all 0 ≤ k ≤ k0 by

(1.39) Λ2
k = 1 + pwk (x,Dx),

and equipped with the domains

(1.40) D(Λ2
k) =

{
u ∈ L2(Rn) : Λ2

ku ∈ L2(Rn)
}
.

Since Re q ≥ 0 is a non-negative quadratic form, it can be proven by using for example Lemma 4.3
that the operators Λ2

k are positive and as a consequence, we can consider the fractional powers of
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those operators. When the singular space S of q is reduced to zero, Theorem 1.4 in [17] states that
there exists a positive constant c > 0 such that for all u ∈ D(qw),

(1.41)
∥∥Λ0u

∥∥
L2(Rn)

+

k0∑

k=1

∥∥Λ
2

2k+1

k u
∥∥
L2(Rn)

≤ c
[
‖qw(x,Dx)u‖L2(Rn) + ‖u‖L2(Rn)

]
.

The authors of [17] expected the powers 2/(2k + 1) over the operators Λk to be sharp but also
expected the power over the term Λ0 to be equal to 2 and not to 1.

No general theory has been developed when the singular space S is not necessarily equal to zero.
However, let us mention that some subelliptic estimates were obtained for the Kramers-Fokker-
Planck operator without external potential K defined in (1.17) by F. Hérau and K. Pravda-Starov in
[13] (Proposition 2.1) with a multiplier method and for the Ornstein-Uhlenbeck operator L defined
in (1.1) under an algebraic condition on the matrices Q and B (the Kalman rank condition) by
the two authors in [3] (Corollary 1.15) while using the interpolation theory as in the work [17].

In this paper, we aim at extending and sharpening the subelliptic estimates (1.41) to all quadratic
forms q : R2n → C with non-negative real parts Re q ≥ 0, without making any assumption on their
singular spaces S.

Theorem 1.10. Let q : R2n → C be a complex-valued quadratic form with a non-negative real part
Re q ≥ 0. We consider S the singular space of q and 0 ≤ k0 ≤ 2n− 1 the smallest integer such that
(1.13) holds. Then, there exists a positive constant c > 0 such that for all u ∈ D(qw),

k0∑

k=0

∥∥Λ
2

2k+1

k u
∥∥
L2(Rn)

≤ c
[
‖qw(x,Dx)u‖L2(Rn) + ‖u‖L2(Rn)

]
.

As in the case when the singular space is trivial, this result shows that the quadratic operator
qw(x,Dx) enjoys anisotropic subelliptic estimates, this anisotropy being directly related to the
structure (1.13) of the singular space S. Moreover, Theorem 1.10 confirms that the power over the
operator Λ0 associated to the real part of the quadratic form q is actually equal to 2.

Example 1.11. Let P be the generalized Ornstein-Uhlenbeck operator defined in (1.29) and
equipped with the domain (1.30). It follows from a straightforward calculation that for all 0 ≤ k ≤
k0, the operator Λ2

k associated to the quadratic operator P + 1
2 Tr(B) is given by

Λ2
k = 1 +

k∑

j=0

1

2j+1
|R 1

2Bjx|2 +
k∑

j=0

1

2j+1
|Q 1

2 (BT )jDx|2,

where 0 ≤ k0 ≤ n − 1 is the smallest integer such that (1.34) holds. It therefore follows from
Theorem 1.10 that there exists a positive constant c > 0 such that for all 0 ≤ k ≤ k0 and
u ∈ D(P ),

∥∥∥
(
1 +

k∑

j=0

1

2j+1
|R 1

2Bjx|2 +
k∑

j=0

1

2j+1
|Q 1

2 (BT )jDx|2
) 1

2k+1

u
∥∥∥
L2(Rn)

≤ c
[
‖Pu‖L2(Rn) + ‖u‖L2(Rn)

]
.

Outline of the work. In Section 2, we establish the polar decomposition of quadratic semigroups in
any positive times whereas Section 3 is devoted to the study of the selfadjoint part for small times.
As a byproduct of this decomposition, we study the regularizing effects of semigroups generated
by non-selfadjoint quadratic differential operators in Section 4 from which we derive subelliptic
estimates enjoyed by accretive quadratic operators in Section 5. Section 6 is an appendix containing
the proofs of some technical results.

Convention. Any complex-valued quadratic form q : R2n → C will be implicitly extended to the
complex phase space C2n in the following way:

(1.42) ∀X ∈ C2n, q(X) = XTQX = q(ReX) + q(ImX),

where Q ∈ S2n(C) denotes the matrix of the quadratic form q in the canonical basis of R2n.

Notations. The following notations will be used all over the work:

1. For all complex matrix M ∈ Mn(C), M
T denotes the transpose matrix of M while M∗ = M

T

denotes its adjoint.

2. 〈·, ·〉 denotes the inner product on Cn as defined in (1.6).

3. We set | · | the Euclidean norm on Rn extended to Cn as explained in the previous convention.
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4. The notation ‖ · ‖ stands for the matrix norm on M2n(C) induced by the norm ‖ · ‖2 on C2n.
From there, we introduce the norm ‖ · ‖∞ on M2n(C)×M2n(C) defined by

‖(M,N)‖∞ = max(‖M‖, ‖N‖).

5. When K = R or C, we denote by Sp2n(K) the symplectic group whose definition is recalled at
the beginning of Subsection 6.2.

6. We denote by C〈X,Y 〉 the ring of the non-commutative polynomials in X and Y , as defined
e.g. in [8] (Chapter 6). For all non-negative integer k ≥ 0, we set Ck,0〈X,Y 〉 the subspace
of C〈X,Y 〉 of non-commutative polynomials of degree smaller than or equal to k vanishing in
(0, 0).

7. For all vector subspace V ⊂ Kn, with K = R or C, the notation V ⊥ is devoted for the orthogonal
complement of V with respect to the canonical Euclidean (when K = R) or Hermitian (when
K = C) structure of Kn.

8. If f : (−α, α) → Mn(C) is an analytic function such that f(0) = 0, with α ∈ (0,+∞], there
exists an other analytic function g : (−α, α) → Mn(C) such that for all t ∈ (−α, α), f(t) = tg(t).
With an abuse of notation, we will denote

(1.43) ∀t ∈ (−α, α), g(t) = f(t)/t.

2. Splitting of semigroups generated by non-selfadjoint quadratic differential

operators

This section is devoted to the proof of Theorem 1.1. Let q : R2n → C be a complex-valued
quadratic form with a non-negative real part Re q ≥ 0. We consider Q ∈ S2n(C) the matrix of q
in the canonical basis of R2n. We also consider J the symplectic matrix defined in (1.9). Our goal
is first to construct a family (at)t∈R of non-negative quadratic forms at : R2n → R+ depending
analytically on the time-variable t ∈ R and a family (Ut)t∈R of metaplectic operators such that for
all t ≥ 0,

(2.1) e−tqw = e−taw
t Ut,

and then to prove that there exist a positive constant T > 0 and a family (bt)−T<t<T of real-valued
quadratic forms bt : R

2n → R also depending analytically on the time-variable −T < t < T , such
that for all 0 ≤ t < T ,

(2.2) e−tqw = e−taw
t e−itbwt .

To that end, we begin by establishing that proving (2.1) and (2.2) is actually equivalent to
solving a finite-dimensional problem involving matrices. First of all, in order to give an intuition
of this equivalence, let us formally prove that given some t > 0, the equality of bounded operators

(2.3) e−tqw = e−taw
t e−itbwt ,

is equivalent to the finite dimensional matrix relation

(2.4) e−2itJQ = e−2itJAte2tJBt ,

where At (resp. Bt) is the matrix of the quadratic form at (resp. bt) in the canonical basis of R2n.
The equivalence between (2.3) and (2.4) will be justified rigorously shortly later with the theory of
Fourier integral operators. By applying the Baker-Campbell-Hausdorff formula introduced in [4]
and [12], the relation (2.3) is formally equivalent to

(2.5) − tqw =

+∞∑

m=0

∑

p∈{at,ibt}m

(adtpw
1
) . . . (adtpw

m
)(αpta

w
t + βpitb

w
t ),

where αp, βp ∈ Q are explicit rational coefficients and

adP1 P2 := [P1,P2] = P1P2 − P2P1,

denotes the commutator between the operators P1 and P2. However, if q1, q2 : R2n → C are
two quadratic forms, elements of Weyl calculus, see e.g. [19] (Theorem 18.5.6), show that the
commutator [qw1 , q

w
2 ] is also a differential operator given by

(2.6) [qw1 , q
w
2 ] = −i{q1, q2}w,

where

{q1, q2} = ∇ξq1 · ∇xq2 −∇xq1 · ∇ξq2,
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is the Poisson bracket between the quadratic forms q1 and q2. We therefore deduce that (2.5) is
equivalent to the equality between quadratic forms

(2.7) − tq =

+∞∑

m=0

∑

p∈{−iat,bt}m

(adtp1) . . . (adtpm
)(αptat + βptibt),

where we set adp1 p2 := {p1, p2}. Moreover, we observe that if q1, q2 : R2n → C are two quadratic
forms, the Hamilton map of the Poisson bracket {q1, q2} is −2[F1, F2], with [F1, F2] the commutator
of F1 and F2 the Hamilton maps of q1 and q2, see e.g. [29] (Lemma 3.2). As a consequence, we
deduce while using (1.7) and multiplying by 2i that (2.7) is equivalent to the matrix relation

(2.8) − 2itJQ =
+∞∑

m=0

∑

P∈{2iAt,−2Bt}m

(adtJP1) . . . (adtJPm
)(αp2itJAt − βp2tJBt).

Thus, by applying once again the Baker-Campbell-Hausdorff formula, the relation (2.3) is equiva-
lent to (2.4). Obtaining the quadratic forms at and bt is then far easier henceforth the equivalence
between (2.3) and (2.4) is established. Indeed, let us check that the relation (2.4) is equivalent to
the following triangular system

(2.9)

{
e−4itJAt = e−2itJQe−2itJQ,

e2tJBt = e2itJAte−2itJQ.

Obviously, if (2.9) holds, then (2.4) is satisfied. On the other hand, when (2.4) holds, we observe
that

e−2itJQe−2itJQ = e−2itJAte2tJBte−2tJBte−2itJAt = e−4itJAt .

Moreover, the equality e2tJBt = e2itJAte−2itJQ is only a rewriting of (2.4) and hence, (2.9) holds.
The first equation of (2.9) will be solved for any time t ∈ R by using the holomorphic functional
calculus. The second one will only be solved for short times |t| ≪ 1.

In order to justify rigorously this reduction to a finite-dimensional problem, we shall use the
Fourier integral operator representation of the evolution operators e−tqw proven in [20] (Theorem
5.12) and recalled in the following proposition:

Proposition 2.1. Let q̃ : R2n → C be a complex-valued quadratic form with a non-negative
real part Re q̃ ≥ 0. Then, for all t ≥ 0, the evolution operator e−tq̃w = Ke−2itJQ̃ generated
by the quadratic operator q̃w(x,Dx) is a Fourier integral operator whose kernel is a Gaussian

distribution associated to the non-negative complex symplectic linear bijection e−2itJQ̃ ∈ Sp2n(C),

with Q̃ ∈ S2n(C) the matrix of q̃ with respect to the canonical basis of R2n.

We refer the reader to Subsection 6.3 in Appendix for the definition of the Fourier integral operators
KT and their basic properties, where T is a non-negative complex symplectic linear bijection in
C2n. The key property satisfied by the operators KT that we will need here is that if T1 and T2

are two non-negative complex symplectic linear bijections in C2n, then T1T2 is also a non-negative
complex symplectic linear bijection and

(2.10) KT1T2 = ±KT1KT2 ,

see Proposition 6.4. The sign uncertainty in (2.10) will not be an issue in the following. As a
consequence of (2.10) and Proposition 2.1, we shall on the one hand, to prove (2.1), obtain the
existence of two families (At)t∈R and (Ht)t∈R of real symmetric positive semidefinite matrices
At ∈ S+2n(R) and real symplectic matrices Ht ∈ Sp2n(R) respectively, whose coefficients depend
analytically on the time variable t ∈ R, such that for all t ∈ R,

(2.11) e−2itJQ = e−2itJAtHt.

On the other hand, to establish (2.2), we shall prove that there exist a positive constant T > 0
and a family (Bt)−T<t<T of real symmetric matrices, whose coefficients also depend analytically
on the time-variable −T < t < T , such that for all −T < t < T , the real symplectic matrix Ht is
given by

(2.12) Ht = e2tJBt .

Indeed, let us first assume that (2.11) holds and let us prove (2.1). It follows from (2.10) that for
all t ≥ 0, up to sign,

e−tqw = Ke−2itJQ = Ke−2itJAtHt
= ±Ke−2itJAt KHt

= e−taw
t Ut,
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where Ut = εtKHt
is a metaplectic operator on L2(Rn), see Definition 6.5, with εt ∈ {−1, 1}, and

at : R
2n → R+ is the non-negative time-dependent quadratic form associated to the matrix At in

the canonical basis of R2n. This proves that (2.1) holds. On the other hand, to derive (2.2) from
(2.12), we consider the time-dependent quadratic form bt : R

2n → R, with 0 ≤ t < T , associated to
the time-dependent matrix Bt in the canonical basis of R2n. Indeed, when (2.12) holds, it follows
from the definition of the operators Ut and Proposition 2.1 that for all 0 ≤ t < T ,

(2.13) Ut = εtKHt
= εtKe2tJBt = εte

−itbwt .

We then deduce from (2.1) and (2.13) that for all 0 ≤ t < T ,

(2.14) e−tqw = εte
−taw

t e−itbwt ,

It only remains to check that εt = 1 for all 0 ≤ t < T . To that end, we consider u ∈ S(Rn) a
non-zero Schwartz function. We deduce from (2.14) that for all 0 ≤ t < T ,

〈
e−tqwu, e−itbwt u

〉
L2(Rn)

= εt
〈
e−taw

t e−itbwt u, e−itbwt u
〉
L2(Rn)

.

Since the quadratic form at is non-negative for all t ≥ 0, the operator e−taw
t is selfadjoint on L2(Rn)

and we therefore deduce by using the semigroup property of the family of operators (e−saw
t )s≥0

that for all t ≥ 0, 〈
e−tqwu, e−itbwt u

〉
L2(Rn)

= εt
∥∥e− t

2a
w
t e−itbwt u

∥∥2
L2(Rn)

.

The operator e−
t
2a

w
t is injective from Corollary 6.9 and the operator e−itbwt is unitary for all t ≥ 0,

since the quadratic form bt is real-valued. Thus, the Schwartz functions e−
t
2a

w
t e−itbwt u are non-zero

and we have that for all t ≥ 0,

(2.15) εt =
〈
e−tqwu, e−itbwt u

〉
L2(Rn)

∥∥e− t
2a

w
t e−itbwt u

∥∥−2

L2(Rn)
.

Moreover, it follows from [20] (Theorem 4.2) that the applications t 7→ e−tqwu, t 7→ e−itbwt u and
t 7→ e−taw

t e−itbwt u are continuous from [0,+∞) to S(Rn). It follows from (2.15) that the map
t 7→ εt is also continuous from [0, T ) to {−1, 1} and since ε0 = 1, we have εt = 1 for all 0 ≤ t < T .
This ends the proof of (2.2).

The present subsection is therefore devoted to the proof of (2.11) and (2.12). We first focus
on the identity (2.11). As above, we can prove that this relation is equivalent to the following
triangular system,

(2.16)

{
e−4itJAt = e−2itJQe−2itJQ,

Ht = e2itJAte−2itJQ.

We begin by solving the first equation of (2.16):

Theorem 2.2. There exists a family (At)t∈R of real symmetric positive semidefinite matrices
At ∈ S+2n(R) whose coefficients depend analytically on the time-variable t ∈ R such that for all
t ∈ R,

e−4itJAt = e−2itJQe−2itJQ.

To prove Theorem 2.2, we need some technical lemmas. The first of them investigates the

spectrum of the symplectic matrices e−2itJQe−2itJQ appearing in Theorem 2.2:

Lemma 2.3. For all t ∈ R, the eigenvalues of the matrix e−2itJQe−2itJQ are positive real numbers,

σ
(
e−2itJQe−2itJQ

)
⊂ R∗

+.

Proof. For all t ∈ R, we define

(2.17) Kt = e−2itJQe−2itJQ.

We first check that the following integral representation holds for all t ∈ R,

(2.18) Kt = I2n − 4iJΓt,

where the matrix Γt is given by

(2.19) Γt =

∫ t

0

(e−2isJQ)∗(ReQ)(e−2isJQ) ds.

It follows from a direct computation for all t ∈ R,

∂t
(
e−2itJQe−2itJQ

)
= −2ie−2itJQJ(Q+Q)e−2itJQ = −4ie−2itJQJ(ReQ)e−2itJQ.
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Since Q is a symmetric matrix, it follows from Lemma 6.2 that for all t ∈ R, e−2itJQ ∈ Sp2n(C) is
a symplectic matrix and as a consequence of the above estimate,

∂t
(
e−2itJQe−2itJQ

)
= −4iJ(e2itJQ)T (ReQ)e−2itJQ = −4iJ(e−2itJQ)∗(ReQ)e−2itJQ.

This proves that (2.18) holds. Since the matrices Γt ∈ H2n(C) are Hermitian positive semidefinite
when t ≥ 0 and Hermitian negative semidefinite when t ≤ 0, we deduce from Lemma 6.10 that
for all t ∈ R, the spectra of the matrices JΓt satisfy σ(JΓt) ⊂ iR. This combined with (2.18)
and (2.19) shows that for all t ∈ R, σ

(
Kt

)
⊂ R. The matrices Kt ∈ GL2n(C) are non singular

and therefore, these inclusions can be refined to σ
(
Kt

)
⊂ R∗. Moreover, σ(K0) = {1} and the

eigenvalues of Kt are continuous with respect to the time-variable t ∈ R since the coefficients of the
matrix Kt are themselves continuous with respect to the time-variable t ∈ R, see [22] (Theorem
II.5.1). Since R is connected, this proves that σ(Kt) ⊂ R∗

+ and ends the proof of Lemma 2.3. �

In the following, we shall need to define some matrices through the holomorphic functional
calculus. We refer the reader to [10] (VII - 3.) where this theory is presented. As a first application
of this theory, we consider the matrix square root function

√· defined on the set of matrices whose

spectrum is contained in C \ R−, which is possible since the function z 7→ √
z = e

1
2 Log z is well-

defined and holomorphic in C\R−, with Log the principal determination of the logarithm in C\R−.
For all t ∈ R, since the spectrum of the matrix Kt is only composed of positive real numbers, we
can consider the matrix Gt defined by

(2.20) Gt =
√
e−2itJQe−2itJQ.

We shall check that the matrices Gt are symplectic:

Lemma 2.4. For all t ∈ R, Gt ∈ Sp2n(C) is a complex symplectic matrix.

Proof. Let t ∈ R. We consider Kt the matrix defined in (2.17). We first observe that since both

matrices Q and Q are symmetric, Lemma 6.2 shows that the matrices e−2itJQ and e−2itJQ are
symplectic and as a consequence, the matrices Kt ∈ Sp2n(C) are also symplectic. To prove that
the matrix Gt is also symplectic, we need to go back to the definition of the matrix square root
given by the functional holomorphic calculus. Therefore, we consider Σt ⊂ C the following domain
of the complex plane

Σt =
{
reiθ : c1,t < r < c2,t, θ ∈

(
− π

2
,
π

2

)}
,

where the positive constants c1,t, c2,t > 0 are chosen so that σ(Kt) ⊂ (c1,t, c2,t) and σ(K−1
t ) ⊂

(c1,t, c2,t). Notice that the existence of the constants c1,t, c2,t > 0 is given by Lemma 2.3. We
assume that the boundary ∂Σt of the domain Σt is oriented counterclockwise. Then, it follows
from (2.20) and the holomorphic functional calculus that the matrix Gt is defined by

(2.21) Gt =
1

2iπ

∫

∂Σt

√
z (Kt − zI2n)

−1 dz,

with
√
z = e

1
2 Log z, where Log denotes the principal determination of the logarithm in C \ R−.

Moreover, since the matrix Kt is symplectic, we deduce that

JGt =
1

2iπ

∫

∂Σt

√
z J(Kt − zI2n)

−1 dz =
−1

2iπ

∫

∂Σt

√
z (KtJ − zJ)−1 dz(2.22)

=
−1

2iπ

∫

∂Σt

√
z (J(KT

t )
−1 − zJ)−1 dz

=
1

2iπ

∫

∂Σt

√
z ((KT

t )
−1 − zI2n)

−1J dz

=

(
1

2iπ

∫

∂Σt

√
z (K−1

t − zI2n)
−1 dz

)T

J =
(√

K−1
t

)T

J.

Finally, since the function z 7→ (
√
z)−1 =

√
z−1 is holomorphic on C \R− and that the eigenvalues

of the matrices Kt are positive real numbers, it follows from the holomorphic functional calculus,
see e.g. [10] (VII.3.12, Theorem 12), that

(2.23)

√
K−1

t =
(√

Kt

)−1
= G−1

t .

This, combined with (2.22), proves that JGt = (GT
t )

−1J , that is Gt ∈ Sp2n(C) is a symplectic
matrix. This ends the proof of Lemma 2.4. �
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We can now construct the matrices At. Since the function z 7→ atanh((z − 1)(z + 1)−1) is
holomorphic on a neighborhood of R∗

+, where atanh denotes the hyperbolic atan function (whose
definition and properties can be found in [1] (Section 4.6)), and that σ(Gt) ⊂ R∗

+ for all t ∈ R

from (2.20) and Lemma 2.3, the functional holomorphic calculus also allows to consider the family
of matrices (At)t∈R defined for all t ∈ R by

(2.24) At = −(itJ)−1 atanh
((
Gt − I2n

)(
Gt + I2n

)−1)
.

By construction, the function t ∈ R 7→ atanh((Gt − I2n)(Gt + I2n)
−1) is real analytic and vanishes

in t = 0, since G0 = I2n from (2.20) and atanh(02n) = 02n. The matrix At is therefore well-defined
for all t ∈ R and the function t ∈ R 7→ At is as well analytic according to (1.43). This family
(At)t∈R satisfies the algebraic part of Theorem 2.2, as proved in the

Lemma 2.5. For all t ∈ R, the matrix At satisfies

e−4itJAt = e−2itJQe−2itJQ.

Proof. We first observe that

(2.25) ∀x > 0, exp
(
4 atanh

(x− 1

x+ 1

))
= x2.

Indeed, if x > 0 a positive real number and y ∈ R is a real number such that x = e2y, we have

exp
(
4 atanh

(x− 1

x+ 1

))
= exp

(
4 atanh

(e2y − 1

e2y + 1

))
= exp

(
4 atanh

(
tanh y

))
= e4y = x2.

Moreover, both functions z 7→ exp(4 atanh((z − 1)(z + 1)−1)) and z 7→ z2 are holomorphic on a
connected open neighborhood of R∗

+ and σ(Gt) ⊂ R∗
+ from (2.20) and Lemma 2.3. We therefore

deduce from (2.24), (2.25) and the holomorphic functional calculus that for all t ∈ R,

e−4itJAt = exp
(
4 atanh

((
Gt − I2n

)(
Gt + I2n

)−1))
= G2

t = e−2itJQe−2itJQ.

This ends the proof of Lemma 2.5. �

Notice that the matrices At can therefore be expressed by taking the logarithm of the matrices

e−2itJQe−2itJQ. Indeed, since the spectra of these matrices is contained in R∗
+ from Lemma 2.3 and

that the function Log (which still denotes the principal determination of the logarithm in C\R−) is
holomorphic in a neighborhood of R∗

+, Lemma 2.5 and the holomorphic functional calculus imply
that for all t ∈ R,

tAt = −(4iJ)−1 Log
(
e−2itJQe−2itJQ

)
.

Moreover, the function t ∈ R 7→ Log(e−2itJQe−2itJQ) is analytic by construction and vanishes in
t = 0. It therefore follows from (1.43) that the matrix At is given for all t ∈ R by

(2.26) At = −(4itJ)−1 Log
(
e−2itJQe−2itJQ

)
.

This formula will be useful in Section 4.
Now, it only remains to prove that the matrices At are real and symmetric positive semidefinite.

To that end, we introduce the family of matrices (Mt)t∈R where Mt is defined for all t ∈ R by

(2.27) Mt = −(itJ)−1
(
Gt − I2n

)(
Gt + I2n

)−1
.

Notice that the matrices Mt are well-defined according to (1.43) since one the one hand, (2.20) and
Lemma 2.3 imply that −1 is not an eigenvalue of any matrix Gt and on the other hand, the function
t ∈ R 7→ (Gt − I2n)(Gt + I2n)

−1 is real analytic by construction and vanishes in t = 0. Moreover,
the function t ∈ R 7→ Mt is analytic. We will prove in Lemma 2.7 that the matrices At can be
expressed in terms of the matrices Mt which will turn out to be real and symmetric. Moreover,
the next lemma will imply that the matrices Mt are positive semidefinite. The properties required
for the matrices At will then arise from the ones of the matrices Mt.

Lemma 2.6. For all t ∈ R, the matrix Mt admits the following integral representation

Mt =

∫ 1

0

(e−2iαtJQΦt)
∗(ReQ)(e−2iαtJQΦt) dα,

where the matrix Φt is given by

(2.28) Φt =

(√
e−2itJQe−2itJQ + I2n

2

)−1

.
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In particular, the matrices Mt are Hermitian positive semidefinite.

Proof. Let t ∈ R. We begin by checking that the matrix Mt satisfies the relation

(2.29) (Gt + I2n)
∗tMt(Gt + I2n) = iJ(I2n −G2

t ).

We recall that the matrix J satisfies J−1 = JT = −J . On the one hand, the left-hand side of this
equality can be computed with the definition (2.27) of Mt:

(2.30) (Gt + I2n)
∗tMt(Gt + I2n) = −i(Gt + I2n)

∗J(Gt − I2n).

On the other hand, since the matrix square root given by the holomorphic functional calculus
commutes with the complex conjugate (which can be readily checked by using (2.21)) and with
the invert function defined for all non-singular matrix whose spectrum is composed of positive real
numbers, it follows from (2.20) that the matrix Gt satisfies

(2.31) Gt =
√
e2itJQe2itJQ =

√
(e−2itJQe−2itJQ)−1 = G−1

t .

Moreover, Gt ∈ Sp2n(C) is a symplectic matrix from Lemma 2.4 and we deduce that

(2.32) (Gt + I2n)
∗J = (Gt + I2n)

T J = (G−1
t + I2n)

T J = −(JG−1
t + J)T

= −(GT
t J + J)T = J(GT

t + I2n)
T = J(Gt + I2n).

Hence, substituting this equality in (2.30), we get that

(2.33) (Gt + I2n)
∗tMt(Gt + I2n) = −iJ(Gt + I2n)(Gt − I2n) = −iJ(G2

t − I2n).

This proves that (2.29) holds. Then, we deduce from (2.18), (2.19) and (2.20) that the right-hand
side of (2.29) writes as

iJ(I2n −G2
t ) = iJ(I2n − e−2itJQe−2itJQ) = 4

∫ t

0

(e−2isJQ)∗(ReQ)(e−2isJQ) ds.

Therefore, we derive the following expression for the matrix tMt:

(2.34) tMt = 4

∫ t

0

(e−2isJQ(Gt + I2n)
−1)∗(ReQ)(e−2isJQ(Gt + I2n)

−1) ds.

Since the matrix Φt defined in (2.28) also writes as

Φt =

(
Gt + I2n

2

)−1

,

we deduce from (2.34) that the matrix tMt is given by

tMt =

∫ t

0

(e−2isJQΦt)
∗(ReQ)(e−2isJQΦt) ds.

A change of variable in the integral ends the proof of Lemma 2.6. �

We can now derive the end of the proof of Theorem 2.2 from Lemma 2.6. This is done in the
following Lemma which will also be key to prove Theorem 1.2 in Section 3.

Lemma 2.7. For all t ∈ R, the matrix At is real and symmetric positive semidefinite. Moreover,
the matrices At and Mt satisfy the following estimate:

∀t ∈ R, At ≥ Mt ≥ 0.

Proof. To simplify the notations in the following, we consider the following matrices for all t ∈ R,

(2.35) Ψt =
(
Gt − I2n

)(
Gt + I2n

)−1
.

We recall that the matrix atanh function admits the following Taylor expansion for all matrices R
whose norm satisfies ‖R‖ < 1,

(2.36) atanhR =

+∞∑

k=0

R2k+1

2k + 1
.

We also recall from (2.24) that the matrices At are defined for all t ∈ R with the convention (1.43)
by

(2.37) At = −(itJ)−1 atanhΨt.
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It follows from the inequality

∀x > 0,

∣∣∣∣
√
x− 1√
x+ 1

∣∣∣∣ < 1,

the definitions (2.20) and (2.35) of the matrices Gt and Ψt, and Lemma 2.3 that the spectrum of
the matrix Ψt satisfies σ(Ψt) ⊂ (−1, 1) for all t ∈ R. It therefore follows from [21] (Lemma 5.6.10)
that for all t ∈ R, there exists a norm ‖ · ‖t on Mn(C) such that ‖Ψt‖t < 1. This proves that the

series
∑ Ψ2k+1

t

2k+1 converge in Mn(C) for all t ∈ R and we deduce from (2.36) and (2.37) that for all
t ∈ R,

(2.38) At = −(itJ)−1
+∞∑

k=0

Ψ2k+1
t

2k + 1
.

To prove that the matrices At are real and symmetric, we need to derive a new expression for
them. To that end, we compute the product JΨt by using the relation (2.32) (which also holds
when the matrix I2n is replaced by −I2n):

(2.39) JΨt = J
(
Gt − I2n

)(
Gt + I2n

)−1
=

(
Gt − I2n

)∗
J
(
Gt + I2n

)−1

=
(
Gt − I2n

)∗((
Gt + I2n

)−1)∗
J = Ψ∗

tJ.

We deduce from (2.27), (2.35), (2.38) and (2.39) that for all t ∈ R,

(2.40) At =

+∞∑

k=0

1

2k + 1
(Ψk

t )
∗(−itJ)−1Ψt(Ψ

k
t ) =

+∞∑

k=0

1

2k + 1
(Ψk

t )
∗Mt(Ψ

k
t ).

We observe from (2.31) and (2.35) that for all t ∈ R,

(2.41) Ψt =
(
Gt − I2n

)(
Gt + I2n

)−1
=

(
G−1

t − I2n
)(
G−1

t + I2n
)−1

=
(
I2n −Gt

)(
I2n +Gt

)−1
= −Ψt.

Consequently, from (2.27), (2.35), (2.39) and (2.41), the matrices Mt satisfy the two relations

(2.42) M t = (itJ)−1Ψt = Mt.

and

(2.43) M∗
t = (it)−1Ψ∗

tJ = (it)−1JΨt = (−itJ)−1Ψt = Mt.

It follows from (2.41), (2.42) and (2.43) that for all t ∈ R and k ≥ 0, the matrix (Ψk
t )

∗Mt(Ψ
k
t )

is real and symmetric. As sums of such matrices, the matrices At are also real and symmetric.
Finally, we deduce from (2.40) and Lemma 2.6 that for all t ∈ R, At ≥ Mt ≥ 0. This ends the
proof of Lemma 2.7. �

We recall from [20] (Theorem 4.2) that the evolution operators e−tq̃w , with t ≥ 0, generated by
an accretive quadratic operator q̃w(x,Dx), with q̃ : R2n → C a complex-valued quadratic form with
a non-negative real-part Re q̃ ≥ 0, are pseudodifferential operators whose symbols are tempered
distributions pt ∈ S′(R2n). More specifically, these symbols are L∞(R2n) functions explicitly given
by the Mehler formula

(2.44) pt(X) =
1√

det(cos(tF̃ ))
exp(−σ(X, tan(tF̃ )X)), X ∈ R2n,

whenever the condition det(cos(tF̃ )) 6= 0 is satisfied, where F̃ denotes the Hamilton map associated
to the quadratic form q̃. As a Corollary of Lemma 2.7, we can compute the Weyl symbol of the
operator e−taw

t for all t ≥ 0, with at : R
2n → R+ the non-negative quadratic form whose matrix

in the canonical basis of R2n is At, in terms of mt : R
2n → R+ the non-negative quadratic form

whose matrix in the canonical basis of R2n is Mt. By the way, this is a justification a posteriori of
the introduction of the matrices Mt.

Corollary 2.8. For all t ≥ 0, the operator e−taw
t is a pseudodifferential operator whose Weyl

symbol is given by

X ∈ R2n 7→ 1√
det cos(tJAt)

e−tmt(X) ∈ L∞(R2n).
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Proof. Let t ≥ 0. It follows from Lemma 2.7 that the matrix At is real symmetric positive
semidefinite and this combined with Lemma 6.10 show that the spectrum of the matrix tJAt is
purely imaginary. As a consequence, the matrix cos(tJAt) is non-singular and it follows from the
Mehler formula (2.44) that the operator e−taw

t is a pseudodifferential operator whose Weyl symbol
is a L∞(R2n)-function given for all X ∈ R2n by

1√
det cos(tJAt)

exp(−σ(X, tan(tJAt)X)).

Moreover, we deduce from (2.20), (2.27) and Lemma 2.5 that

(tJ)−1 tan(tJAt) = −(itJ)−1
(
e−2itJAt − I2n

)(
e−2itJAt + I2n

)−1

= −(itJ)−1
(
Gt − I2n

)(
Gt + I2n

)−1
= Mt.

We deduce from (1.4) and the above equality that for all X ∈ R2n,

σ(X, tan(tJAt)X)) = σ(X, tJMtX) = t〈X,MtX〉 = tmt(X).

This ends the proof of Corollary 2.8. �

The study of the family (At)t∈R is now ended. Still in order to prove (2.11) via (2.16), we
consider the time-dependent matrices Ht defined for all t ∈ R by

(2.45) Ht = e2itJAte−2itJQ.

Notice that the analyticity of the function t ∈ R 7→ Ht is induced by the ones of the functions
t ∈ R 7→ At and t ∈ R → e−2itJM for all M ∈ M2n(C). We only need to check that each matrix
Ht is real and symplectic.

Lemma 2.9. For all t ∈ R, Ht is a real symplectic matrix.

Proof. Let t ∈ R. Since both matrices At and Q are symmetric (from Lemma 2.7 concerning At),
Lemma 6.2 shows that the matrices e2itJAt and e−2itJQ are symplectic. As a consequence, the
matrix Ht is also symplectic. Moreover, it follows from Lemma 2.5 that

(2.46) Ht = e−2itJAte2itJQ = e2itJAte−4itJAte2itJQ

= e2itJAte−2itJQe−2itJQe2itJQ = e2itJAte−2itJQ = Ht,

which proves that Ht is a real matrix. This ends the proof of Lemma 2.9. �

This ends the proof of (2.11) and the splitting of the symplectic matrices e−2itJQ in any time
t ∈ R.

The rest of this section is then devoted to prove (2.12) which sharpens the decomposition (2.11)
for small times |t| ≪ 1 . The strategy will be different than the one used until now, since the
holomorphic functional calculus will not be used anymore to define the different matrices at play.
The identity (2.12) is proved in the following lemma:

Lemma 2.10. There exist a positive constant T > 0 and a family (Bt)−T<t<T of real symmetric
matrices Bt ∈ S2n(R) whose coefficients depend analytically on the time-variable −T < t < T such
that for all −T < t < T , the symplectic matrix Ht writes as Ht = e2tJBt .

Proof. First, we recall that for all matrix M ∈ M2n(C) satisfying ‖M − I2n‖ < 1, the matrix
LogM is given by the following sum

(2.47) LogM =
+∞∑

k=1

(−1)k−1

k
(M − I2n)

k.

Since the following limit holds

lim
t→0

∥∥Ht − I2n
∥∥ = 0,

there exists a positive constant T > 0 such that for all −T < t < T ,

(2.48)
∥∥Ht − I2n

∥∥ < 1.

Since H−1
t = e2itJQe−2itJAt , we can even assume that the constant T > 0 is chosen sufficiently

small so that for all −T < t < T ,

(2.49)
∥∥H−1

t − I2n
∥∥ < 1.
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The estimate (2.48) allows to consider the matrix Bt defined for all −T < t < T by

(2.50) Bt = (2tJ)−1 LogHt.

Notice that the function t ∈ (−T, T ) 7→ LogHt is analytic by construction and vanishes in t = 0
since H0 = I2n. The matrix Bt is therefore well-defined for all −T < t < T according to (1.43).
We deduce from (2.45), (2.48) and (2.50), that for all −T < t < T ,

e2tJBt = exp
(
LogHt

)
= Ht.

It remains to check that the matrices Bt are real and symmetric. First we observe from (2.46) and
(2.50) that for all −T < t < T ,

Bt = (2tJ)−1 LogHt = (2tJ)−1 LogHt = Bt.

This proves that the matrices Bt are real. Moreover, we deduce from (2.49), (2.50), Lemma 2.9
and the binomial formula that for all −T < t < T ,

BT
t = (2t)−1(LogHt)

T J = (2t)−1
+∞∑

k=1

(−1)k−1

k

(
(Ht − I2n)

k
)T

J

= (2t)−1
+∞∑

k=1

(−1)k−1

k

k∑

ℓ=0

(
k

l

)
(−1)k−l(Hℓ

t )
T J

= (2t)−1
+∞∑

k=1

(−1)k−1

k

k∑

ℓ=0

(
k

l

)
(−1)k−lJ(H−1

t )ℓ

= (2t)−1
+∞∑

k=1

(−1)k−1

k
J(H−1

t − I2n)
k

= −(2tJ)−1 Log(H−1
t ) = (2tJ)−1 LogHt = Bt.

The matrices Bt are therefore symmetric. Moreover, the function t ∈ (−T, T ) 7→ Bt is analytic by
contruction. This ends the proof of Lemma 2.10. �

3. Study of the real part for short times

In this section, we prove Theorem 1.2. Let q : R2n → C be a complex-valued quadratic form
with a non-negative real part Re q ≥ 0. We consider F the Hamilton map associated to q, S its
singular space and 0 ≤ k0 ≤ 2n − 1 the smallest integer such that (1.13) holds. Let (at)t∈R be
the family of non-negative quadratic forms at : R2n → R+ given by Theorem 1.1 and (mt)t∈R

be the family of non-negative quadratic forms mt : R2n → R+ whose matrices in the canonical
basis of R2n are the matrices Mt defined in (2.27). We shall prove that the quadratic forms
mt (and therefore the quadratic forms at) satisfy a sharp lower bound implying some degenerate
anisotropic coercivity properties on the phase space. More precisely, we shall prove that there exist
some positive constants c > 0 and T > 0 such that for all 0 ≤ t ≤ T and X ∈ R2n,

(3.1) at(X) ≥ mt(X) ≥ c

k0∑

k=0

t2k Re q
(
(ImF )kX

)
.

Notice that the left inequality in (3.1) is a consequence of Lemma 2.7. We are therefore interested
in proving the right one. To that end, we consider the time-dependent quadratic form κt : C

2n → R

defined in accordance with the convention (1.42) for all t ≥ 0 and X ∈ C2n by

(3.2) κt(X) =

k0∑

k=0

t2k Re q
(
(ImF )kX

)
=

k0∑

k=0

t2k
∣∣√ReQ(ImF )kX

∣∣2.

We recall from Lemma 2.6 that for all t ≥ 0, the matrix Mt admits the following integral repre-
sentation

Mt =

∫ 1

0

(e−2iαtFΦt)
∗(ReQ)(e−2iαtFΦt) dα,

where the matrices Φt are given by

(3.3) Φt =

(√
e−2itF e−2itF + I2n

2

)−1

,
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since F = JQ from (1.7). We therefore deduce that for all t ≥ 0 and X ∈ R2n,

(3.4) mt(X) = XTMtX =

∫ 1

0

(e−2iαtFΦtX)∗(ReQ)(e−2iαtFΦtX) dα,

and this equality can be written as

mt(X) =

∫ 1

0

∣∣√ReQe−2iαtFΦtX
∣∣2 dα =

∥∥√ReQe−2iαtFΦtX
∥∥2
L2(0,1)

.

By applying the Minkowski inequality, we therefore obtain that for all t ≥ 0 and X ∈ R2n,

(3.5)
√
mt(X) ≥

∥∥∥∥
k0∑

k=0

(−2tα)k

k!

√
ReQ(iF )kΦtX

∥∥∥∥
L2(0,1)

−
∥∥∥∥
∑

k>k0

(−2tα)k

k!

√
ReQ(iF )kΦtX

∥∥∥∥
L2(0,1)

.

We then study separately the two terms of the right-hand side of the above estimate.

1. First, we focus on controlling the first term, namely

∥∥∥∥
k0∑

k=0

(−2tα)k

k!

√
ReQ(iF )kΦtX

∥∥∥∥
L2(0,1)

.

On the finite-dimensional vector space (Ck0 [X ])2n, the Hardy’s norm ‖ · ‖H1 defined by

∥∥∥∥
k0∑

k=0

ykX
k

∥∥∥∥
H1

=

k0∑

k=0

k!2−k|yk|, y0, . . . , yk0 ∈ C2n,

is equivalent to the standard Lebesgue’s norm ‖ · ‖L2(0,1) given by

∥∥∥∥
k0∑

k=0

ykX
k

∥∥∥∥
2

L2(0,1)

=

∫ 1

0

∣∣∣∣
k0∑

k=0

ykα
k

∣∣∣∣
2

dα, y0, . . . , yk0 ∈ C2n.

Thus, there exists a positive constant c1 > 0 such that for all t ≥ 0 and X ∈ R2n,

(3.6)

∥∥∥∥
k0∑

k=0

(−2tα)k

k!

√
ReQ(iF )kΦtX

∥∥∥∥
L2(0,1)

≥ c1

k0∑

k=0

tk
∣∣√ReQ(iF )kΦtX

∣∣.

We develop the matrices (iF )k in the following way:

(3.7) (iF )k = (ImF )k +Bk,

where the matrices Bk can be written as

(3.8) Bk =

2k−1∑

j=1

εj,kMj,k(ReF )(ImF )mj,k ,

with 0 ≤ mj,k ≤ k − 1, εj,k ∈ {−1, 1,−i, i} and the matrices Mj,k are finite products of ReF and
ImF . Then, by putting (3.7) in (3.6) and using the triangle inequality, we obtain the following
estimate for all t ≥ 0 and X ∈ R2n,

(3.9)

k0∑

k=0

tk
∣∣√ReQ(iF )kΦtX

∣∣ ≥
k0∑

k=0

tk
∣∣√ReQ(ImF )kΦtX

∣∣−
k0∑

k=0

tk
∣∣√ReQBkΦtX

∣∣.

We consider the two positive quantities

c2 = max
0≤k≤k0

max
1≤j≤2k−1

∥∥√ReQMj,kJ
√
ReQ

∥∥ > 0,

and

c′2 = max
0≤k≤k0

max
0≤m≤k−1

#
{
1 ≤ j ≤ 2k − 1 : mj,k = m

}
> 0,
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where # denotes the cardinality. Since F = JQ from (1.7), it follows from (3.8) that for all t ≥ 0
and X ∈ R2n,

k0∑

k=0

tk
∣∣√ReQBkΦtX

∣∣ ≤
k0∑

k=0

tk
2k−1∑

j=1

∣∣√ReQMj,k(ReF )(ImF )mj,kΦtX
∣∣

=

k0∑

k=0

tk
2k−1∑

j=1

∣∣√ReQMj,kJ
√
ReQ

√
ReQ(ImF )mj,kΦtX

∣∣

≤ c2

k0∑

k=0

tk
2k−1∑

j=1

∣∣√ReQ(ImF )mj,kΦtX
∣∣.

Then, we gather the integers 0 ≤ mj,k ≤ k − 1 taking the same value, which shows that for all
t ≥ 0 and X ∈ R2n,

k0∑

k=0

tk
∣∣√ReQBkΦtX

∣∣ ≤ c2

k0∑

k=0

tk
k−1∑

m=0

∑

1≤j≤2k−1
mj,k=m

∣∣√ReQ(ImF )mΦtX
∣∣

≤ c2c
′
2

k0∑

k=0

k−1∑

m=0

tk
∣∣√ReQ(ImF )mΦtX

∣∣.

Since k −m ≥ 1, we have that for all 0 ≤ t ≤ 1,

tk = tk−mtm ≤ t1+m.

The following inequality therefore holds for all 0 ≤ t ≤ 1 and X ∈ R2n,

k0∑

k=0

tk
∣∣√ReQBkΦtX

∣∣ ≤ c2c
′
2t

k0∑

k=0

k−1∑

m=0

tm
∣∣√ReQ(ImF )mΦtX

∣∣.

As a consequence, there exists a positive constant c3 > 0 such that for all 0 ≤ t ≤ 1 and X ∈ R2n,

(3.10)

k0∑

k=0

tk
∣∣√ReQBkΦtX

∣∣ ≤ c3t

k0∑

k=0

tk
∣∣√ReQ(ImF )kΦtX

∣∣.

It follows from (3.6), (3.9) and (3.10) that for all 0 ≤ t ≤ 1 and X ∈ R2n,

(3.11)

∥∥∥∥
k0∑

k=0

(−2tα)k

k!

√
ReQ(iF )kΦtX

∥∥∥∥
L2(0,1)

≥ c1(1− c3t)

k0∑

k=0

tk
∣∣√ReQ(ImF )kΦtX

∣∣.

We recall from the third inequality of (6.28) (no assumption of smallness is required for t ≥ 0 to
apply this estimate) that for all 0 ≤ t ≤ 1 and X ∈ R2n,

(3.12)
√
κt(ΦtX) ≤

k0∑

k=0

tk
∣∣√ReQ(ImF )kΦtX

∣∣.

As a consequence of (3.11) and (3.12), there exist some positive constants t1 > 0 and c4 > 0 such
that for all 0 ≤ t ≤ t1 and X ∈ R2n,

(3.13)

∥∥∥∥
k0∑

k=0

(−2tα)k

k!

√
ReQ(iF )kΦtX

∥∥∥∥
L2(0,1)

≥ c4
√
κt(ΦtX).

In order to estimate from below the term
√
κt(ΦtX), we would like to apply Lemma 6.12 to the

function

(3.14) G(M,N) =

(√
e−2i(M+iN)e−2i(M−iN) + I2n

2

)−1

,

in view of the definition (3.3) of the matrices Φt. We prove in Lemma 6.15 of the Appendix that
the function G actually satisfies the assumptions of Lemma 6.12 and as a consequence, there exist
some positive constants c5 > 0 and 0 < t2 < t1 such that for all 0 ≤ t ≤ t2 and X ∈ R2n,

∥∥∥∥
k0∑

k=0

(−2tα)k

k!

√
ReQ(iF )kΦtX

∥∥∥∥
L2(0,1)

≥ c5
√
κt(X).
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This inequality, combined with (3.5), leads to the following estimate for all 0 ≤ t ≤ t2 and X ∈ R2n,

(3.15)
√
mt(X) ≥ c5

√
κt(X)−

∥∥∥∥
∑

k>k0

(−2tα)k

k!

√
ReQ(iF )kΦtX

∥∥∥∥
L2(0,1)

.

2. The end of the proof consists in controlling the remainder term
∥∥∥∥
∑

k>k0

(−2tα)k

k!

√
ReQ(iF )kΦtX

∥∥∥∥
L2(0,1)

.

The technics employed will be similar to the ones used in the end of the proof of Lemma 6.12. We
begin by observing that for all 0 ≤ t ≤ t2 and X ∈ R2n,
∥∥∥∥
∑

k>k0

(−2tα)k

k!

√
ReQ(iF )kΦtX

∥∥∥∥
2

L2(0,1)

= t2k0+2

∥∥∥∥
∑

k>k0

tk−k0−1 (−2α)k

k!

√
ReQ(iF )kΦtX

∥∥∥∥
2

L2(0,1)

.

The coefficients of the time-dependent quadratic form
∥∥∥∥
∑

k>k0

tk−k0−1 (−2α)k

k!

√
ReQ(iF )kΦtX

∥∥∥∥
2

L2(0,1)

,

are continuous with respect to the time-variable 0 ≤ t ≤ t2. As a consequence, there exists a
positive constant c6 > 0 such that for all 0 ≤ t ≤ t2 and X ∈ R2n,

(3.16)

∥∥∥∥
∑

k>k0

(−2tα)k

k!

√
ReQ(iF )kΦtX

∥∥∥∥
2

L2(0,1)

≤ c6t
2k0+2|X |2.

On the other hand, it follows from Lemma 6.13 that there exists a positive constant c7 > 0 such
that for all 0 ≤ t ≤ 1 and X ∈ S⊥,

(3.17) κt(X) ≥ c7t
2k0 |X |2.

As a consequence of (3.16) and (3.17), we have that for all 0 ≤ t ≤ t2 and X ∈ S⊥,

(3.18)

∥∥∥∥
∑

k>k0

(−2tα)k

k!

√
ReQ(iF )kΦtX

∥∥∥∥
2

L2(0,1)

≤ c6
c7
t2κt(X).

We deduce from (3.15) and (3.18) that there exist some positive constants c8 > 0 and 0 < t3 < t2
such that for all 0 ≤ t ≤ t3 and X ∈ S⊥,

(3.19) mt(X) ≥
(
c4 −

√
c6
c7
t

)2

κt(X) ≥ c8κt(X).

It remains to check that the estimate (3.19) holds for all X ∈ R2n. To that end, we will use the
following elementary lemma of linear algebra:

Lemma 3.1. Let E be a real finite-dimensional vector space and q1, q2 be two non-negative qua-
dratic forms on E. If E = F ⊕G is a direct sum of two vector subspaces such that q1 ≤ q2 on F
and q1, q2 both vanish on G, then q1 ≤ q2 on E.

Let 0 ≤ t ≤ t3. Since R2n = S ⊕ S⊥ and that (3.19) is valid on S⊥, it is sufficient to prove that
both non-negative quadratic forms κt and mt vanish on the singular space S, according to Lemma
3.1. We first notice from (1.4), (1.13) and (3.2) that κt is zero on the singular space S. We now
prove that this property holds true as well for the quadratic form mt, that is

(3.20) ∀X ∈ S, mt(X) = 0.

To that end, we use anew the integral representation of mt given by (3.4),

(3.21) ∀X ∈ R2n, mt(X) =

∫ 1

0

(e−2iαtFΦtX)∗(ReQ)(e−2iαtFΦtX) dα.

According to (3.21), it is sufficient to prove that

(3.22) ∀α ∈ [0, 1], (e−2iαtFΦt)S ⊂ S + iS,

since (ReQ)S = J−1(ReF )S = {0} from (1.7) and (1.11). As a consequence of (6.61), the inclusion
ΦtS ⊂ S+iS holds, up to decrease the positive constant t3 > 0. Moreover, we have already noticed

from (1.11) that the space S+ iS is stable by the matrix F , and therefore by the matrices e−2iαtF

for all 0 ≤ α ≤ 1. This proves that the inclusion (3.22) actually holds. The estimate (3.19) can
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therefore be extended to all 0 ≤ t ≤ t3 (up to decrease t3 > 0) and X ∈ R2n. This ends the proof
of the estimate (3.1).

4. Regularizing effects of semigroups generated by non-selfadjoint quadratic

differential operators

The aim of this section is to prove Theorem 1.6 and Theorem 1.8 about the regularizing
properties of the semigroups generated by non-selfadjoint quadratic differential operators. Let
q : R2n → C be a complex-valued quadratic form with a non-negative real part Re q ≥ 0. We
consider Q ∈ S2n(C) the matrix of q in the canonical basis of R2n, F ∈ M2n(C) its Hamilton map
and S its singular space.

4.1. Regularizing effects. We begin by proving Theorem 1.6. Let T > 0 and (at)t∈R, (bt)−T<t<T

be the families of quadratic forms given by Theorem 1.1. We recall that the quadratic forms at
are non-negative, the quadratic forms bt are real-valued and at, bt depend analytically on the
time-variable t ∈ R and −T < t < T respectively. Moreover, the evolution operators e−tqw can be
factorized as

(4.1) ∀t ∈ [0, T ), e−tqw = e−taw
t e−itbwt .

We can assume that the positive constant 0 < T < 1 is the one given by Theorem 1.2, which
implies that there exists a positive constant c > 0 such that for all 0 ≤ t ≤ T and X ∈ R2n,

(4.2) at(X) ≥ c

k0∑

j=0

t2j Re q
(
(ImF )jX

)
,

where 0 ≤ k0 ≤ 2n− 1 is the smallest integer such that (1.13) holds. As in Section 2, we denote by
At and Bt the respective matrices of at and bt in the canonical basis of R2n. Moreover, we consider
anew the time-dependent quadratic form κt defined in accordance with the convention (1.42) for
all t ≥ 0 and X ∈ C2n by

(4.3) κt(X) =

k0∑

j=0

t2j Re q
(
(ImF )jX

)
=

k0∑

j=0

t2j
∣∣√ReQ(ImF )jX

∣∣2.

The estimate (4.2) reads as: for all 0 ≤ t ≤ T and X ∈ C2n,

(4.4) at(X) ≥ cκt(X).

The aim of this section is to understand the smoothing properties of the evolution operators e−tqw .
Since the operators e−itbwt are unitary on L2(Rn), we first notice from (4.1) that it is sufficient
to study the regularizing properties of the operators e−taw

t to derive the ones of the operators
e−tqw . Therefore, for some m ≥ 1 and X1, . . . , Xm ∈ S⊥, we are interested in the following linear
operators

〈X1, X〉w . . . 〈Xm, X〉we−taw
t ,

where the operators 〈Xj , X〉w are defined in (1.27). To deal with them, we will use the Fourier in-

tegral operator representation of the operators e−taw
t and the Egorov formula (6.5). More precisely,

it follows from (1.16) and Proposition 2.1 that the operator e−taw
t is a Fourier integral operator as-

sociated to the non-negative complex symplectic transformation e−2itJAt , and the Egorov formula
(6.5) implies that for all 0 ≤ t ≤ T and X0 ∈ Rn,

(4.5) 〈X0, X〉we−taw
t = e−taw

t 〈J−1e2itJAtJX0, X〉w = e−taw
t 〈e2itAtJX0, X〉w.

By using (4.5), we obtain the following factorization

〈X1, X〉w . . . 〈Xm, X〉we−taw
t = 〈X1, X〉w . . . 〈Xm, X〉w e−

t
m

aw
t . . . e−

t
m

aw
t︸ ︷︷ ︸

m factors

(4.6)

= 〈Y1,t, X〉we− t
m

aw
t . . . 〈Ym,t, X〉we− t

m
aw
t ,

where the time-dependent points Yj,t ∈ C2n are given by

Yj,t = e
2i(j−1)t

m
AtJXj , 1 ≤ j ≤ m,

and where we used the semigroup property of the family of linear operators (e−saw
t )s≥0. The initial

problem is therefore reduced to the analysis of the operators

〈Yj,t, X〉we− t
m

aw
t .
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The main instrumental result of this section is Lemma 4.4 which requires some technical results to
be proven. The first of them investigates the anisotropic coercivity properties of the time-dependent
quadratic form κt on S⊥ the canonical Euclidean orthogonal complement of the singular space S.
This is a refinement of Lemma 6.13.

Lemma 4.1. There exists a positive constant c > 0 such that for all 0 ≤ t ≤ 1, X0 ∈ S⊥ \ {0}
and X ∈ C2n,

κt(X) ≥ c

|X0|2
t2kX0

∣∣〈X0, X〉
∣∣2,

where 0 ≤ kX0 ≤ k0 denotes the index of the point X0 ∈ S⊥ with respect to the singular space
defined in (1.25).

Proof. For all 0 ≤ k ≤ k0, let rk be the non-negative quadratic form defined on the phase space by

(4.7) rk(X) =

k∑

j=0

Re q
(
(ImF )jX

)
=

k∑

j=0

∣∣√ReQ(ImF )jX
∣∣2 ≥ 0, X ∈ R2n.

Moreover, we consider Vk the vector subspace defined in (1.23). We begin by proving that there
exists a positive constant ck > 0 such that

(4.8) ∀X ∈ V ⊥
k , rk(X) ≥ ck|X |2.

If a point X ∈ V ⊥
k satisfies rk(X) = 0, we deduce from (4.7) that

∀j ∈ {0, . . . , k},
√
ReQ(ImF )jX = 0,

and since F = JQ from (1.7), this implies that (ReF )(ImF )jX = 0 for all 0 ≤ j ≤ k, that is
X ∈ Vk. It then follows that X = 0. The non-negative quadratic form rk is therefore positive on
the vector subspace V ⊥

k . The estimate (4.8) is then proved.
Now, we consider X0 ∈ S⊥ \ {0} and 0 ≤ kX0 ≤ k0 the index of the point X0 with respect to

the singular space defined in (1.25). For all X ∈ R2n, we decompose X = X ′+X ′′ with X ′ ∈ V ⊥
kX0

and X ′′ ∈ VkX0
. Since X0 ∈ V ⊥

kX0
and that rkX0

is a non-negative quadratic form which vanishes

on the vector subspace VkX0
from (1.4), (1.23) and (4.7), we deduce from (4.8) that

(4.9) 〈X0, X〉2 = 〈X0, X
′〉2 ≤ |X0|2|X ′|2 ≤ |X0|2

ckX0

rkX0
(X ′) =

|X0|2
ckX0

rkX0
(X).

Setting c0 = min0≤k≤k0 ck > 0, we deduce from (4.3), (4.7) and (4.9) that for all 0 ≤ t ≤ 1,
X0 ∈ S⊥ \ {0} and X ∈ R2n,

κt(X) ≥ t2kX0 rkX0
(X) ≥ c0

|X0|2
t2kX0 〈X,X0〉2,

since 0 ≤ kX0 ≤ k0. It follows that for all 0 ≤ t ≤ 1, X0 ∈ S⊥ \ {0} and X ∈ C2n,

κt(X) = κt(ReX) + κt(ImX) ≥ c0
|X0|2

t2kX0 〈ReX,X0〉2 +
c0

|X0|2
t2kX0 〈ImX,X0〉2

=
c0

|X0|2
t2kX0

∣∣〈X,X0〉
∣∣2.

This ends the proof of Lemma 4.1. �

The next result will be instrumental to prove Lemma 4.4. Its proof is based on the study of a
time-dependent functional.

Lemma 4.2. For all s > 0, t ≥ 0 and u ∈ S(Rn), the following estimate holds

〈
awt e

−saw
t u, e−saw

t u
〉
L2(Rn)

≤ 1

2s
‖u‖2L2(Rn).

Proof. For fixed t ≥ 0 and u ∈ S(Rn), we consider the following time-dependent functional defined
for all s ≥ 0 by

(4.10) G(s) =
〈
sawt e

−saw
t u, e−saw

t u
〉
L2(Rn)

+
1

2

∥∥e−saw
t u

∥∥2
L2(Rn)

.
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The function G is differentiable on (0,+∞) and its derivative is given for all s > 0 by

G′(s) = − s
〈
(awt )

2e−saw
t u, e−saw

t u
〉
L2(Rn)

− s
〈
awt e

−saw
t u, awt e

−saw
t u

〉
L2(Rn)

− 1

2

〈
awt e

−saw
t u, e−saw

t u
〉
L2(Rn)

− 1

2

〈
e−saw

t u, awt e
−saw

t u
〉
L2(Rn)

+
〈
awt e

−saw
t u, e−saw

t u
〉
L2(Rn)

.

Since awt is a selfadjoint operator (as its Weyl symbol is real-valued), we obtain that for all s > 0,

(4.11) G′(s) = −2s
∥∥awt e−saw

t u
∥∥2
L2(Rn)

≤ 0.

We therefore deduce that for all s ≥ 0, t ≥ 0 and u ∈ S(Rn),

(4.12) G(s) =
〈
sawt e

−saw
t u, e−saw

t u
〉
L2(Rn)

+
1

2

∥∥e−saw
t u

∥∥2
L2(Rn)

≤ G(0) =
1

2
‖u‖2L2(Rn).

This ends the proof of Lemma 4.2. �

We need the following lemma whose proof can be found e.g. in [17] (Lemma 2.6):

Lemma 4.3. Let q̃ : R2n → R+ be a non-negative quadratic form. Then, the quadratic operator
q̃w(x,Dx) is accretive, that is

∀u ∈ S(Rn),
〈
q̃w(x,Dx)u, u

〉
L2(Rn)

≥ 0.

The anisotropic estimates given by Lemma 4.1, combined with Lemma 4.2, provide a first
regularizing effect for the evolution operators e−saw

t .

Lemma 4.4. There exist some positive constants 0 < t1 < T and c > 0 such that for all 0 ≤ α ≤ 1,
0 < t ≤ t1, s > 0, X0 ∈ S⊥ and u ∈ L2(Rn),

∥∥〈e2iαtAtJX0, X〉we−saw
t u

∥∥
L2(Rn)

≤ c|X0| t−kX0 s−
1
2 ‖u‖L2(Rn),

where 0 ≤ kX0 ≤ k0 denotes the index of the point X0 ∈ S⊥ with respect to the singular space
defined in (1.25).

Proof. We shall first prove that there exist some positive constants c0 > 0 and 0 < t0 < T such
that for all 0 ≤ α ≤ 1, 0 < t ≤ t0, X0 ∈ S⊥ and X ∈ R2n,

(4.13)
∣∣〈e2iαtAtJX0, X〉

∣∣2 ≤ c0|X0|2 t−2kX0 at(X),

where 0 ≤ kX0 ≤ k0 denotes the index of the point X0 ∈ S⊥ with respect to the singular space
defined in (1.25). If the estimate (4.13) holds, the proof of Lemma 4.4 is done. Indeed, by denoting
Mα,t = Re(e2iαtAtJ), we deduce from (4.13) that for all 0 ≤ α ≤ 1, 0 < t ≤ t0, X0 ∈ S⊥ and
X ∈ R2n,

(4.14) 〈Mα,tX0, X〉2 ≤ c0|X0|2 t−2kX0 at(X).

It then follows from (4.14) and Lemma 4.3 that for all 0 ≤ α ≤ 1, 0 < t ≤ t0, s ≥ 0, X0 ∈ S⊥ and
u ∈ S(Rn),

(4.15)
〈(
〈Mα,tX0, X〉2

)w
e−saw

t u, e−saw
t u

〉
L2(Rn)

≤ c0|X0|2 t−2kX0

〈
awt e

−saw
t u, e−saw

t u
〉
L2(Rn)

.

Moreover, the Weyl calculus, see e.g. the composition formula (18.5.4) in [19], provides that for
all 0 ≤ α ≤ 1 and 0 < t ≤ t0,

(4.16) 〈Mα,tX0, X〉2 = 〈Mα,tX0, X〉 ♯w 〈Mα,tX0, X〉,
since the symbol 〈Mα,tX0, X〉 is a linear form, where ♯w denotes the Moyal product defined for all
p1 and p2 in proper symbol classes by

(p1 ♯w p2)(x, ξ) = e
i
2σ(Dx,Dξ;Dy,Dη)p1(x, ξ)p2(y, η)

∣∣∣
(x,ξ)=(y,η)

,

with σ the symplectic form defined in (1.5). This implies that for all 0 ≤ α ≤ 1 and 0 < t ≤ t0,

(4.17)
(
〈Mα,tX0, X〉2

)w
= 〈Mα,tX0, X〉w〈Mα,tX0, X〉w.

We deduce from (4.15) and (4.17) that for all 0 ≤ α ≤ 1, 0 < t ≤ t0, s > 0, X0 ∈ S⊥ and
u ∈ S(Rn),

∥∥〈Mα,tX0, X〉we−saw
t u

∥∥2
L2(Rn)

≤ c0|X0|2 t−2kX0

〈
awt e

−saw
t u, e−saw

t u
〉
L2(Rn)

,
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and Lemma 4.2 then shows that

(4.18)
∥∥〈Mα,tX0, X〉we−saw

t u
∥∥2
L2(Rn)

≤ c0
2
|X0|2 t−2kX0 s−1 ‖u‖2L2(Rn).

Notice that the estimate (4.18) can be extended to all u ∈ L2(Rn) since the Schwartz space S(Rn)
is dense in L2(Rn). Similarly, if we denote Nα,t = Im(e2iαtAtJ), we have that for all 0 ≤ α ≤ 1,
0 < t ≤ t0, s > 0, X0 ∈ S⊥ and u ∈ L2(Rn),

(4.19)
∥∥〈Nα,tX0, X〉we−saw

t u
∥∥2
L2(Rn)

≤ c0
2
|X0|2 t−2kX0 s−1 ‖u‖2L2(Rn).

Finally, we deduce from the triangle inequality that for all 0 ≤ α ≤ 1, 0 < t ≤ t0, s > 0, X0 ∈ S⊥

and u ∈ L2(Rn),
∥∥〈e2iαtAtJX0, X〉we−saw

t u
∥∥
L2(Rn)

≤
∥∥〈Mα,tX0, X〉we−saw

t u
∥∥
L2(Rn)

+
∥∥〈Nα,tX0, X〉we−saw

t u
∥∥
L2(Rn)

,

and the estimates (4.18) and (4.19) imply that
∥∥〈e2iαtAtJX0, X〉we−saw

t u
∥∥
L2(Rn)

≤
√
2c0|X0| t−kX0 s−

1
2 ‖u‖L2(Rn).

It therefore remains to prove that the estimate (4.13) actually holds. We shall actually prove that
there exist some positive constants c1 > 0 and 0 < t1 < T such that for all 0 ≤ α ≤ 1, 0 < t ≤ t1,
X0 ∈ S⊥ and X ∈ R2n,

(4.20)
∣∣〈e2iαtAtJX0, X〉

∣∣2 ≤ c1|X0|2 t−2kX0 κt(X).

The estimate (4.13) is then a straightforward consequence of (4.4) and (4.20). It follows from
Lemma 4.1 that there exists a positive constant c2 > 0 such that for all 0 ≤ t ≤ 1, X0 ∈ S⊥ and
X ∈ C2n,

(4.21) t2kX0

∣∣〈X0, X〉
∣∣2 ≤ c2|X0|2κt(X).

On the other hand, we recall from (2.26) that for all 0 ≤ α ≤ 1 and 0 ≤ t ≤ T ,

e2iαtJAt = exp
(
− α

2
Log

(
e−2itF e−2itF

))
.

We would like to deduce from Lemma 6.12 applied with the functions

(4.22) Gα(M,N) = exp
(
− α

2
Log

(
e−2i(M+iN)e−2i(M−iN)

))
, α ∈ [0, 1],

that there exist some positive constants 0 < t1 < T and c3 > 0 such that for all 0 ≤ α ≤ 1,
0 ≤ t ≤ t1 and X ∈ C2n,

(4.23) κt(X) ≤ c3κt

(
e2iαtJAtX

)
.

This application of Lemma 6.12 is made rigorous in Lemma 6.16 of the Appendix, which implies
that the estimate (4.23) actually holds. Combining (4.21) and (4.23), we obtain that for all
0 ≤ α ≤ 1, 0 ≤ t ≤ t1, X0 ∈ S⊥ and X ∈ C2n,

t2kX0

∣∣〈X0, X〉
∣∣2 ≤ c2c3|X0|2κt

(
e2iαtJAtX

)
,

and a straightforward change of variable shows that for all 0 ≤ α ≤ 1, 0 ≤ t ≤ t1, X0 ∈ S⊥ and
X ∈ R2n,

t2kX0

∣∣〈e2iαtAtJX0, X〉
∣∣2 ≤ c2c3|X0|2κt(X).

This proves that (4.20) holds and ends the proof of Lemma 4.4. �

We can now derive the proof of Theorem 1.6. To that end, we implement the strategy presented
in the beginning of this subsection. Let m ≥ 1 and X1, . . . , Xm ∈ S⊥. We denote by 0 ≤ kXj

≤ k0
the index of the point Xj ∈ S⊥ with respect to the singular space. It follows from (4.6) that for
all 0 ≤ t ≤ T ,

(4.24) 〈X1, X〉w . . . 〈Xm, X〉we−taw
t = 〈Y1,t, X〉we− t

m
aw
t . . . 〈Ym,t, X〉we− t

m
aw
t ,

where the time-dependent points Yj,t ∈ C2n are given for all 1 ≤ j ≤ m by

(4.25) Yj,t = e
2i(j−1)t

m
AtJXj .

According to Lemma 4.4, there exist some positive constants 0 < t1 < T and c > 0 such that for
all 0 ≤ α ≤ 1, 0 < t ≤ t1, s > 0, X0 ∈ S⊥ and u ∈ L2(Rn),

(4.26)
∥∥〈e2iαtAtJX0, X〉we−saw

t u
∥∥
L2(Rn)

≤ c|X0| t−kX0 s−
1
2 ‖u‖L2(Rn),
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where 0 ≤ kX0 ≤ k0 denotes the index of the point X0 ∈ S⊥ with respect to the singular space.
We deduce from (4.25) and (4.26) that for all 1 ≤ j ≤ m, 0 < t ≤ t1 and u ∈ L2(Rn),

(4.27)
∥∥〈Yj,t, X〉we− t

m
aw
t u

∥∥
L2(Rn)

≤ c|Xj | t−kXj
− 1

2 m
1
2 ‖u‖L2(Rn).

Notice that the constant c > 0 is independent on the integer m ≥ 1 and the points Xj ∈ S⊥. It now
follows from (4.24), (4.27) and a straightforward induction that for all 0 < t ≤ t1 and u ∈ L2(Rn),

∥∥〈X1, X〉w . . . 〈Xm, X〉we−taw
t u

∥∥
L2(Rn)

≤ cm

tkX1+...+kXm+m
2

[
m∏

j=1

|Xj |
]
m

m
2 ‖u‖L2(Rn)

≤ e
m
2 cm

tkX1+...+kXm+m
2

[
m∏

j=1

|Xj |
]
(m!)

1
2 ‖u‖L2(Rn),

where we used that mm ≤ emm!. We then deduce from (4.1) that for all 0 < t ≤ t1 and u ∈ L2(Rn),

∥∥〈X1, X〉w . . . 〈Xm, X〉we−tqwu
∥∥
L2(Rn)

≤ e
m
2 cm

tkX1+...+kXm+m
2

[
m∏

j=1

|Xj|
]
(m!)

1
2

∥∥e−itbwt u
∥∥
L2(Rn)

=
e

m
2 cm

tkX1+...+kXm+m
2

[
m∏

j=1

|Xj |
]
(m!)

1
2 ‖u‖L2(Rn),

since the operators e−itbt are unitary on L2(Rn). This ends the proof of Theorem 1.6.

4.2. Directions of regularity. We now perform the proof of Theorem 1.8. The family (at)t∈R

still stands for the family given by Theorem 1.1 composed of non-negative quadratic forms at :
R2n → R+ with coefficients depending analytically on the time-variable t ∈ R. As in the previous
subsection, the matrix of the quadratic forms at in the canonical basis of R2n is denoted At.
Moreover, we consider (Ut)t∈R the family of metaplectic operators also given by Theorem 1.1. We
recall that the evolution operators e−tqw split as

(4.28) ∀t ≥ 0, e−tqw = e−taw
t Ut.

Let t > 0, X0 ∈ R2n. We assume that the linear operator 〈X0, X〉we−tqw is bounded on L2(Rn).
We aim at proving that X0 ∈ S⊥. We first notice that since the metaplectic operator Ut is
unitary on L2(Rn), it follows from (4.28) that the linear operator 〈X0, X〉we−taw

t is also bounded
on L2(Rn). As a consequence, there exists a positive constant ct,X0 > 0 depending on t and X0

such that

(4.29) ∀u ∈ L2(Rn),
∥∥〈X0, X〉we−taw

t u
∥∥
L2(Rn)

≤ ct,X0‖u‖L2(Rn).

According to the decomposition R2n = S ⊕ S⊥ of the phase space, the orthogonality being taken
with respect to the euclidean structure of R2n, we write X0 = X0,S +X0,S⊥ , with X0,S ∈ S and

X0,S⊥ ∈ S⊥. For all λ ≥ 0, we consider Xλ ∈ S the point of the singular space defined by

(4.30) Xλ = λX0,S = (xλ, ξλ) ∈ S ⊂ R2n.

Moreover, we consider for all λ ≥ 0 the Gaussian function uλ ∈ S(Rn) given for all x ∈ Rn by

(4.31) uλ(x) = ei〈ξλ,x〉e−|x−xλ|
2

.

The strategy will be to find upper and lower bounds for the term

(4.32)
〈
〈X0, X〉we−taw

t uλ, uλ

〉
L2(Rn)

,

and to consider the asymptotics when λ tends to +∞ in order to conclude that the point X0,S has
to be equal to zero. An upper bound can be established readily since it follows from (4.29), (4.31)
and the Cauchy-Schwarz inequality that for all λ ≥ 0,

(4.33)
∣∣〈〈X0, X〉we−taw

t uλ, uλ

〉
L2(Rn)

∣∣ ≤ ct,X0‖uλ‖2L2(Rn) = ct,X0‖u0‖2L2(Rn).

Notice that the right-hand side of the above estimate does not depend on the parameter λ ≥ 0.
Now, we investigate a lower bound for the term (4.32) by a direct calculus. It follows from the
Mehler formula (Corollary 2.8) that the operator e−taw

t is a pseudodifferential operator whose
symbol is given by

(4.34) cte
−tmt(X) ∈ L∞(R2n), where ct =

1√
det cos(tJAt)

> 0,
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and where mt : R
2n → R+ is the non-negative quadratic form whose matrix in the canonical basis

of R2n is the matrix Mt defined in (2.27). We therefore deduce from (4.31) and (4.34) that the
term (4.32) is given for all λ ≥ 0 by

(4.35)
〈
〈X0, X〉we−taw

t uλ, uλ

〉
L2(Rn)

= ct
〈
〈X0, X〉w(e−tmt)wTλu0, Tλu0

〉
L2(Rn)

,

where the operator Tλ : L2(Rn) → L2(Rn) is defined for all u ∈ L2(Rn) by

(4.36) Tλu = ei〈ξλ,·〉u(· − xλ).

We need compute the commutators between the operators Tλ and the operators 〈X0, X〉w and
(e−tmt)w respectively. This is done in the following lemma:

Lemma 4.5. Let a ∈ S′(R2n). We have that for all λ ≥ 0 and u ∈ S(Rn),

awTλu = Tλ(Lλa)
wu in S

′(Rn),

where Lλa ∈ S′(Rn) is given by Lλa = a(·+Xλ).

Proof. Let λ ≥ 0 and u ∈ S(Rn) be a Schwartz function. For all v ∈ S(Rn), we consider the
Wigner function Hλ(u, v) associated to the functions Tλu and Tλv defined for all (x, ξ) ∈ R2n by

(4.37) Hλ(u, v)(x, ξ) =

∫

Rn

e−i〈y,ξ〉(Tλu)
(
x+

y

2

)
(Tλv)

(
x− y

2

)
dy.

It follows from (4.36) and (4.37) that for all λ ≥ 0, v ∈ S(Rn) and (x, ξ) ∈ R2n,

Hλ(u, v)(x, ξ) =

∫

Rn

e−i〈y,ξ〉ei〈ξλ,x+
y
2 〉u

(
x+

y

2
− xλ

)
e−i〈ξλ,x−

y
2 〉v

(
x− y

2
− xλ

)
dy(4.38)

=

∫

Rn

e−i〈y,ξ−ξλ〉u
(
x− xλ +

y

2

)
v
(
x− xλ − y

2

)
dy

= H0(u, v)(x − xλ, ξ − ξλ) = (L−1
λ H(u, v))(x, ξ),

since T0 is the identity operator. It then follows from (4.38) and the definition of the Weyl calculus
that for all v ∈ S(Rn),

〈
T ∗
λa

wTλu, v
〉

S′(Rn),S(Rn)
=

〈
awTλu, Tλv

〉
S′(Rn),S(Rn)

= 〈a,Hλ(u, v)〉S′(R2n),S(R2n)

= 〈a, L−1
λ H0(u, v)〉S′(R2n),S(R2n) = 〈Lλa,H0(u, v)〉S′(R2n),S(R2n)

= 〈(Lλa)
wu, v〉S′(Rn),S(Rn).

Since the above estimate holds for all Schwartz functions v ∈ S(Rn), we proved that T ∗
λa

wTλu =
(Lλa)

wu in S′(Rn). As TλT
∗
λ is the identity operator, we obtain that awTλu = Tλ(Lλa)

wu in
S′(Rn). This ends the proof of Lemma 4.5. �

The quadratic form mt vanishes on the singular space S. Indeed, if X ∈ S, we recall from (3.20)
that ms(X) = 0 when 0 ≤ s ≪ 1 and since the function s ∈ R 7→ ms(X) is analytic, see (2.27)
where the matrices Ms are constructed, we deduce that ms(X) = 0 for all s ≥ 0. Since the
quadratic forms mt are positive semidefinite from Lemma 2.7 and the points Xλ are elements of
S, we deduce that

∀λ ≥ 0, ∀X ∈ R2n, (Lλmt)(X) = mt(X +Xλ) = mt(X).

We therefore deduce from (4.34) and Lemma 4.5 that for all λ ≥ 0 and u ∈ S(Rn),

(4.39) (e−tmt)wTλu = Tλ(Lλe
−tmt)wu = Tλ(e

−tmt)wu =
1

ct
Tλe

−taw
t u, in S

′(Rn).

Moreover, [20] (Theorem 4.2) states that for all s ≥ 0, the evolution operator e−sq̃w , generated
by an accretive quadratic operator q̃w(x,Dx), with q̃ : R2n → C a complex-valued quadratic form
with a non-negative real-part Re q̃ ≥ 0, maps S(Rn) into S(Rn):

∀s ≥ 0, ∀u ∈ S(Rn), e−sq̃wu ∈ S(Rn).

This implies that Tλe
−taw

t u ∈ S(Rn) for all λ ≥ 0 and u ∈ S(Rn) and that the equality (4.39)
holds in S(Rn). On the other hand, it follows from Lemma 4.5 anew that for all λ ≥ 0 and
u ∈ S(Rn),

(4.40) 〈X0, X〉wTλu = Tλ〈X0, X +Xλ〉wu, in S
′(Rn).
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Since the right-hand side of the above formula belongs to the Schwartz space S(Rn) for all λ ≥ 0
and u ∈ S(Rn), the equality (4.40) holds in S(Rn). As a consequence of (4.35), (4.39) and (4.40),
we have that for all λ ≥ 0,

〈
〈X0, X〉we−taw

t uλ, uλ

〉
L2(Rn)

=
〈
〈X0, X〉wTλe

−taw
t u0, Tλu0

〉
L2(Rn)

=
〈
Tλ〈X0, X +Xλ〉we−taw

t u0, Tλu0

〉
L2(Rn)

=
〈
〈X0, X +Xλ〉we−taw

t u0, u0

〉
L2(Rn)

,

since the operators Tλ are unitary on L2(Rn). Moreover, it follows from (4.30) that for all λ ≥ 0
and X ∈ R2n,

〈X0, X +Xλ〉we−taw
t = 〈X0, X〉we−taw

t + λ|X0,S |2e−taw
t .

This proves that for all λ ≥ 0,
〈
〈X0, X〉we−taw

t uλ, uλ

〉
L2(Rn)

=
〈
〈X0, X〉we−taw

t u0, u0

〉
L2(Rn)

+ λ|X0,S |2
〈
e−taw

t u0, u0

〉
L2(Rn)

.

Combining the above estimate with (4.33), we obtain that for all λ ≥ 0,

λ|X0,S |2
∣∣〈e−taw

t u0, u0

〉
L2(Rn)

∣∣ ≤
∣∣〈〈X0, X〉we−taw

t u0, u0

〉
L2(Rn)

∣∣ + ct,X0‖u0‖2L2(Rn).

We now only need to check that the term 〈e−taw
t u0, u0〉L2(Rn) in not equal to zero to conclude that

X0,S = 0, since the right-hand side of the above estimate does not depend on the parameter λ ≥ 0.

Since at is a non-negative quadratic form, it follows from Corollary 6.9 that the operator e−
t
2a

w
t is

injective. As the Gaussian function u0 ∈ S(Rn) is non-zero, we deduce that

(4.41)
〈
e−taw

t u0, u0

〉
L2(Rn)

=
∥∥e− t

2a
w
t u0

∥∥2
L2(Rn)

6= 0,

while using the semigroup property of the family of linear selfadjoint operators (e−saw
t )s≥0. It

therefore follows that X0,S = 0 and X0 ∈ S⊥. This ends the proof of Theorem 1.8.

5. Subelliptic estimates enjoyed by quadratic operators

This section is devoted to the proof of Theorem 1.10. Let q : R2n → C be a complex-valued
quadratic form with a non-negative real part Re q ≥ 0. We consider S the singular space of q
and 0 ≤ k0 ≤ 2n − 1 the smallest integer such that (1.13) holds. Let pk : R2n → R be the non-
negative quadratic form given by (1.38) and Λ2

k be the operator defined in (1.39) and (1.40), with
0 ≤ k ≤ k0. To prove Theorem 1.10, we will use the interpolation theory as in [17] (Subsection 2.4)
which will allow to derive subelliptic estimates for the quadratic operator qw(x,Dx) from estimates
for the evolution operators e−tqw . In the following, several estimates will involve the operators Λ4

k

and we recall from the theory of positive operators, see e.g. [24] (Section 4), that they are positive
operators whose domains are given by

D(Λ4
k) =

{
u ∈ L2(Rn) : Λ4

ku ∈ L2(Rn)
}
.

First of all, we need to prove some additional estimates for the semigroup (e−tqw)t≥0.

Lemma 5.1. There exist some positive constants c > 0 and µ > 0 such that for all 0 ≤ k ≤ k0,
t > 0 and u ∈ L2(Rn),

∥∥Λ4
ke

−tqwu
∥∥
L2(Rn)

≤ ceµt

t4k+2
‖u‖L2(Rn).

Proof. Let 0 ≤ k ≤ k0. It follows from the Gauss decomposition of non-negative quadratic forms
that there exist a positive integer Nk ≥ 1 and some points Xk

1 , . . . , X
k
Nk

∈ R2n such that for all

X ∈ R2n,

(5.1) pk(X) =

Nk∑

j=1

〈Xk
j , X〉2.

We deduce from (1.23) and (1.38) that for all X ∈ Vk,

pk(X) =

Nk∑

j=1

〈Xk
j , X〉2 = 0.
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This proves that for all 1 ≤ j ≤ Nk, 〈Xk
j , X〉 = 0 for all X ∈ Vk. The points Xk

j ∈ R2n are

therefore elements of V ⊥
k ⊂ S⊥ and their associated indexes 0 ≤ kXk

j
≤ k0 satisfy from (1.25) that

for all 1 ≤ j ≤ Nk,

(5.2) 0 ≤ kXk
j
≤ k.

As we have already noticed, the Weyl calculus shows that for all 1 ≤ j ≤ Nk,

Opw
(
〈Xk

j , X〉2
)
= 〈Xk

j , X〉w〈Xk
j , X〉w,

and we deduce from (1.39), (5.1) that

(5.3) Λ4
k =

(
1 +

Nk∑

j=1

〈Xk
j , X〉w〈Xk

j , X〉w
)2

= 1 + 2

Nk∑

j=1

〈Xk
j , X〉w〈Xk

j , X〉w +

Nk∑

j=1

Nk∑

ℓ=1

〈Xk
j , X〉w〈Xk

j , X〉w〈Xk
ℓ , X〉w〈Xk

ℓ , X〉w.

It follows from (5.2) and Theorem 1.6 that there exist some positive constants c > 0 and 0 < t0 < 1
such that for all 1 ≤ j, ℓ ≤ Nk, 0 < t ≤ t0 and u ∈ L2(Rn),

(5.4)
∥∥〈Xk

j , X〉w〈Xk
j , X〉we−tqwu

∥∥
L2(Rn)

≤
√
2c2

t2k+1
|Xk

j |2 ‖u‖L2(Rn),

and

(5.5)
∥∥〈Xk

j , X〉w〈Xk
j , X〉w〈Xk

ℓ , X〉w〈Xk
ℓ , X〉we−tqwu

∥∥
L2(Rn)

≤ 2
√
6c4

t4k+2
|Xk

j |2|Xk
ℓ |2 ‖u‖L2(Rn),

since Xk
j , X

k
l ∈ S⊥. We deduce from (5.3), (5.4) and (5.5) that there exists a positive constant

ck > 0 such that for all 0 < t ≤ t0 and u ∈ L2(Rn),

(5.6)
∥∥Λ4

ke
−tqwu

∥∥
L2(Rn)

≤ ck
t4k+2

‖u‖L2(Rn).

Furthermore, it follows from (5.6) and the contraction semigroup property of the family (e−tqw)t≥0

that for all t > t0 and u ∈ L2(Rn),

(5.7)
∥∥Λ4

ke
−tqwu

∥∥
L2(Rn)

=
∥∥Λ4

ke
−t0q

w

e−(t−t0)q
w

u
∥∥
L2(Rn)

≤ ck

t4k+2
0

‖e−(t−t0)q
w

u‖L2(Rn) ≤
ck

t4k+2
0

‖u‖L2(Rn).

According to (5.6) and (5.7), there exists a positive constant µk > 0 such that for all t > 0 and
u ∈ L2(Rn),

∥∥Λ4
ke

−tqwu
∥∥
L2(Rn)

≤ cke
µkt

t4k+2
‖u‖L2(Rn).

This ends the proof of Lemma 5.1. �

By using some results of interpolation theory, we can now derive Theorem 1.10 from Lemma 5.1.
Let 0 ≤ k ≤ k0. We consider Hk the Hilbert space defined by

Hk = D(Λ4
k) =

{
u ∈ L2(Rn) : Λ4

ku ∈ L2(Rn)
}
,

equipped with the scalar product

〈u, v〉Hk
=

〈
Λ4
ku,Λ

4
kv
〉
L2(Rn)

.

We deduce from Lemma 5.1 that there exist some positive constants c > 0 and µ > 0 such that
for all t > 0 and u ∈ L2(Rn),

(5.8)
∥∥Λ4

ke
−tqwu

∥∥
L2(Rn)

≤ ceµt

t4k+2
‖u‖L2(Rn).

Considering the operator

(5.9) pw(x,Dx) = qw(x,Dx) + µ,

the estimate (5.8) can be written as

(5.10) ∀t > 0, ∀u ∈ L2(Rn),
∥∥e−tpw

u
∥∥

Hk
≤ c

t4k+2
‖u‖L2(Rn).
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It follows from (5.10) and the strong continuity of the semigroup (e−tpw

)t≥0 that for all u ∈ L2(Rn),
t0 > 0 and t > 0, we have

∥∥e−(t+t0)p
w

u− e−t0p
w

u
∥∥
Hk

=
∥∥e−t0p

w(
e−tpw

u− u
)∥∥

Hk
≤ c

t4k+2
0

∥∥e−tpw

u− u
∥∥
L2(Rn)

→
t→0

0.

This proves that for all u ∈ L2(Rn), the function t ∈ (0,+∞) 7→ e−tpw

u ∈ Hk is continuous, and
therefore measurable. Moreover, we deduce from [20] (pp. 425-426) that the operator pw(x,Dx)
equipped with the domain D(qw) is maximal accretive. Corollary 5.13 in [24] therefore shows that
the following continuous inclusion holds between the domain of the quadratic operator qw(x,Dx)
and (L2(Rn),Hk)1/(4k+2),2 the space obtained by real interpolation between L2(Rn) and Hk :

D(qw) ⊂
(
L2(Rn),Hk

)
1/(4k+2),2

.(5.11)

Since Hk is the domain of the operator Λ4
k and that Λ2

k is a positive selfadjoint operator, we deduce
from Theorem 4.36 in [24] that

(5.12)
(
L2(Rn),Hk

)
1/(4k+2)

=
(
D((Λ2

k)
0), D((Λ2

k)
2)
)
1/(4k+2),2

= D
(
(Λ2

k)
2

4k+2
)
= D

(
Λ

2
2k+1

k

)
.

We therefore obtain from (5.11) and (5.12) that the following continuous inclusion holds

D(qw) ⊂ D
(
Λ

2
2k+1

k

)
.

This implies that there exists a positive constant ck > 0 such that

∀u ∈ D(qw),
∥∥Λ

2
2k+1

k u
∥∥
L2(Rn)

≤ ck
[
‖pw(x,Dx)u‖L2(Rn) + ‖u‖L2(Rn)

]
,

and we deduce from (5.9) that

∀u ∈ D(qw),
∥∥Λ

2
2k+1

k u
∥∥
L2(Rn)

≤ ck(1 + µ)
[
‖qw(x,Dx)u‖L2(Rn) + ‖u‖L2(Rn)

]
.

This ends the proof of Theorem 1.10.

6. Appendix

6.1. About the polar decomposition. To begin this appendix, we recall the basics about the
polar decomposition of a bounded operator on a Hilbert space. As a prerequisite, we recall that if H
is an Hilbert space and T ∈ L(H) is a non-negative selfadjoint bounded linear operator, there exists

a unique non-negative selfadjoint bounded operator
√
T ∈ L(H) such that (

√
T )2 = T , see e.g.

[25] (Theorem 4.4.2). From there, we define the absolute value of any bounded operator T ∈ L(H)

as the selfadjoint operator defined by |T | =
√
T ∗T . The operator |T | satisfies Ker |T | = KerT .

Moreover, we recall that a bounded operator U ∈ L(H) is a partial isometry if ‖Ux‖H = ‖x‖H for
all x ∈ (KerU)⊥. We can now state the standard polar decomposition theorem whose proof can
be found e.g. in [25] (Theorem 4.4.3):

Theorem 6.1. Let H be an Hilbert space and T ∈ L(H) be a bounded linear operator. Then, there
exist a unique non-negative selfadjoint bounded linear operator S ∈ L(H) and a partial isometry
U ∈ L(H) such that T = US and KerU = KerT . Moreover, the operator S is given by S = |T |.

However, the decomposition given by Theorem 6.1 is not useful for us. We are more interested
here with decompositions of the type T = |T |U . Let us assume that T ∈ L(H) writes as

(6.1) T = SU,

with S ∈ L(H) a non-negative selfadjoint injective bounded linear operator and U ∈ L(H) be
a unitary operator. By passing to the adjoint, we deduce that T ∗ = U∗S. Since the operator
U∗ ∈ L(H) remains unitary on H and that KerU∗ = KerT ∗ = {0}, the operator T ∗ being injective
as a composition of two injective operators, we deduce from Theorem 6.1 that such a couple (U, S)
is uniquely defined and S = |T ∗|. With an abuse of terminology, we call the decomposition (6.1),
when it exists (it will always be the case in this paper), with the bounded linear operators S and U
respectively non-negative selfadjoint injective and unitary, the polar decomposition of the operator
T .
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6.2. A symplectic lemma. We now prove that any matrix of the form eJQ, with J the real
symplectic matrix defined in (1.9) and Q a complex symmetric matrix, is symplectic. Before that,
let us recall that when K = R or C, the symplectic group Sp2n(K) is the subgroup of GL2n(K)
composed of all matrices M ∈ GL2n(K) such that MTJM = J , or equivalently JM = (MT )−1J ,
where J is again the matrix defined in (1.9).

Lemma 6.2. For all Q ∈ S2n(C), we have eJQ ∈ Sp2n(C).

Proof. Since the matrix J satisfies J2 = −I2n and JT = −J , and the matrix Q is symmetric, we
first notice that for all t ≥ 0,

∂t
[
(etJQ)T JetJQ

]
= (JQetJQ)T JetJQ + (etJQ)T JJQetJQ = (etJQ)TQetJQ − (etJQ)TQetJQ = 0.

Moreover, (e0JQ)T Je0JQ = J , which proves that for all t ≥ 0, (etJQ)T JetJQ = J . In particular,
the matrix eJQ is symplectic. This ends the proof of Lemma 6.2. �

6.3. About Fourier integral operators. Fourier integral operators associated with non-negative
complex linear transformations play a key role in this paper to manipulate the evolution operators
e−tqw generated by quadratic forms q : R2n → C with non-negative real parts Re q ≥ 0. In this
subsection, we recall their definition and their basic properties following [20] (Section 5) and [31]
(Section 2). Let T ∈ Sp2n(C) be a non-negative complex symplectic linear transformation, that is,
a complex symplectic transformation satisfying

∀X ∈ C2n, i
(
σ(TX, TX)− σ(X,X)

)
≥ 0,

with σ the canonical symplectic form on C2n defined in (1.5). Associated to this non-negative
symplectic linear transformation is its twisted graph

λT =
{
(TX,X ′) : X ∈ C2n

}
⊂ C2n × C2n,

where X ′ = (x,−ξ) ∈ C2n if X = (x, ξ) ∈ C2n, which defines a non-negative Lagrangian plane of
C2n × C2n equipped with the symplectic form

σ1((z1, z2), (ζ1, ζ2)) = σ(z1, ζ1) + σ(z2, ζ2), (z1, z2), (ζ1, ζ2) ∈ C2n × C2n.

The set
λ̃T =

{
(z1, z2, ζ1, ζ2) : (z1, ζ1, z2, ζ2) ∈ λT

}
⊂ C4n,

is then a non-negative Lagrangian plane of C4n equipped with the canonical symplectic form on C4n

(see (1.5)). According to [20] (Proposition 5.1 and Proposition 5.5), there exists a complex-valued
quadratic form

(6.2) p(x, y, θ) = 〈(x, y, θ), P (x, y, θ)〉, (x, y) ∈ R2n, θ ∈ RN ,

where

(6.3) P =

(
Px,y;x,y Px,y;θ

Pθ;x,y Pθ;θ

)
∈ M2n+N (C),

is a symmetric matrix satisfying the conditions:

1. ImP ≥ 0,

2. The row vectors of the submatrix
(
Pθ;x,y Pθ;θ

)
∈ CN×(2n+N) are linearly independent over C,

parametrizing the non-negative Lagrangian plane

λ̃T =

{(
x, y,

∂p

∂x
(x, y, θ),

∂p

∂y
(x, y, θ)

)
:
∂p

∂θ
(x, y, θ) = 0

}
.

By using some integrations par parts as in [20] (p. 442), this quadratic form p allows to define the
tempered distribution

(6.4) KT =
1

(2π)
n+N

2

√
det

(−ip′′θ,θ p′′θ,y
p′′x,θ ip′′x,y

)∫

RN

eip(x,y,θ)dθ ∈ S
′(R2n),

as an oscillatory integral. Notice here that we do not prescribe the sign of the square root so
the tempered distribution KT is defined up to its sign. Appart form this sign uncertainty, it is
checked in [20] (p. 444) that this definition only depends on the non-negative complex symplectic

transformation T , and not on the choice of the parametrization of the non-negative Lagrangian λ̃T

by the quadratic form p. Associated to the non-negative complex symplectic linear transformation
T is therefore the Fourier integral operator

KT : S(Rn) → S
′(Rn),
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defined by the kernel KT ∈ S′(R2n) as

∀u, v ∈ S(Rn), 〈KTu, v〉S′(Rn),S(Rn) = 〈KT , u⊗ v〉S′(R2n),S(R2n).

The first properties of this class of Fourier integral operators is summarized in the following propo-
sition which is taken from [31] (Proposition 2.1):

Proposition 6.3. Associated to any non-negative complex symplectic linear transformation T
is a Fourier integral operator KT : S(Rn) → S′(Rn) whose kernel (determined up to its sign)
is the tempered distribution KT ∈ S′(R2n) defined in (6.4) and whose adjoint K∗

T = K
T

−1 :
S(Rn) → S′(Rn) is the Fourier integral operator associated to the non-negative complex symplectic

linear transformation T
−1

. The Fourier integral operator KT defines a continuous mapping on the
Schwartz space

KT : S(Rn) → S(Rn),

which extends by duality as a continuous map on the space of tempered distributions

KT : S
′(Rn) → S

′(Rn),

satisfying the Egorov formula

(6.5) ∀X0 ∈ C2n, ∀u ∈ S
′(Rn), 〈X0, X〉wKTu = KT 〈J−1T−1JX0, X〉wu,

where J is the matrix defined in (1.9) and where for all Y0 = (y0, η0) ∈ C2n,

〈Y0, X〉w = 〈y0, x〉+ 〈η0, Dx〉.
Furthermore, the Fourier integral operator

KT : L2(Rn) → L2(Rn),

is a bounded operator on L2(Rn) whose operator norm satisfies ‖KT ‖L(L2(Rn)) ≤ 1.

The Egorov formula is presented in the following way in [31] (Proposition 2.1):

(6.6) ∀(y0, η0) ∈ C2n, ∀u ∈ S
′(Rn), (〈x0, Dx〉 − 〈ξ0, x〉)KTu = KT (〈y0, Dx〉 − 〈η0, x〉)u,

with (x0, ξ0) = T (y0, η0). However, the formulas (6.5) and (6.6) are equivalent since

〈x0, Dx〉 − 〈ξ0, x〉 = 〈J−1X0, X〉w = 〈J−1TY0, X〉w and 〈y0, Dx〉 − 〈η0, x〉 = 〈J−1Y0, X〉w.
The next proposition, coming from [20] (Proposition 5.9), shows that the composition of two

Fourier integral operators associated to non-negative complex symplectic linear transformations
remains a Fourier integral operator associated with a non-negative complex symplectic linear trans-
formation. It has a key role in this paper in Section 2. The sign uncertainty that appears is anew
due to the fact that the Schwartz distributions KT defined in 6.4 are determined up to their sign.
Although, this sign uncertainty is not an issue in this work.

Proposition 6.4. If T1 and T2 are two non-negative complex symplectic linear transformations in
C2n, then T1T2 is also a non-negative complex symplectic linear transformation and

KT1T2 = ±KT1KT2 .

Finally, we are interested in the real case:

Definition 6.5. A Fourier integral operator KT associated to a real symplectic linear transforma-
tion T is called metaplectic.

The metaplectic operators stand out among the other Fourier integral operators KT as illus-
trated in the following proposition which comes from [20] (Theorem 5.12):

Proposition 6.6. Let KT be a Fourier integral operator associated a non-negative complex sym-
plectic transformation T . The operator KT : L2(Rn) → L2(Rn) is invertible if and only if KT is a
metaplectic operator, that is, if and only if T is a real symplectic transformation. In this case, the
operator KT : L2(Rn) → L2(Rn) defines a bijective isometry on L2(Rn).

To finish, let us recall the metaplectic invariance of the Weyl calculus:

Theorem 6.7. Let T be a real symplectic transformation and KT the associated metaplectic op-
erator. Then, the following identity holds for all tempered distributions a ∈ S′(Rn),

K
−1
T aw(x,Dx)KT = (a ◦ T )w(x,Dx).
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The general result of metaplectic invariance of the Weyl calculus can be found e.g. in [19]
(Theorem 18.5.9). Notice that the Egorov formula (6.5) is a particular case of this Theorem for
linear forms since (6.5) can be also written in the following way

∀X0 ∈ C2n, K
−1
T 〈X0, X〉wKT = 〈X0, TX〉w,

by using that (J−1T−1J)T = T , which is a straightforward property of real symplectic matrices.

6.4. Splitting of the harmonic oscillator semigroup. In this subsection, we give a decompo-
sition of the harmonic oscillator semigroup. To obtain this splitting, we will make use once again
of the theory of Fourier integral operators in the very same way as in Section 2. Let us mention as
an anecdote that the identity (6.8) involved in the proof of the following proposition has played a
major role and has been widely used in image processing in order to make rotations, see e.g. [27].
This identity is also key here for our purpose. As a byproduct of this splitting, we obtain the in-
jectivity property of the evolution operators generated by accretive quadratic operators associated
to non-negative quadratic forms.

Proposition 6.8. Let H = −∂2
x+x2, with x ∈ R, be the harmonic oscillator. Then, the semigroup

(e−tH)t≥0 generated by the operator H admits the following decomposition:

(6.7) ∀t ≥ 0, e−tH = e−
1
2 (tanh t)x2

e
1
2 sinh(2t)∂2

xe−
1
2 (tanh t)x2

.

This implies in particular that the evolution operators e−tH are injective.

Proof. We begin by observing that for all t ∈ (−π, π),

(6.8)

(
1 0

tan t
2 1

)(
1 − sin t
0 1

)(
1 0

tan t
2 1

)
=

(
cos t − sin t
sin t cos t

)
.

Since the functions cos, sin and tan are analytic on {z ∈ C : | Im z| < π
2 }, the formula (6.8) can be

extended to all t ∈ iR. As a consequence, we have that for all t ∈ R,

(6.9)

(
1 0

i tanh t
2 1

)(
1 −i sinh t
0 1

)(
1 0

i tanh t
2 1

)
=

(
cosh t −i sinh t
i sinh t cosh t

)
.

On the other hand, it follows from a readily computation that for all t ∈ R,

(6.10)

(
1 0

i tanh t
2 1

)
= exp

(
−
(
i tanh

t

2

)(
0 1
−1 0

)(
1 0
0 0

))
,

(6.11)

(
1 −i sinh t
0 1

)
= exp

(
− (i sinh t)

(
0 1
−1 0

)(
0 0
0 1

))
,

and

(6.12)

(
cosh t −i sinh t
i sinh t cosh t

)
= exp

(
− it

(
0 1
−1 0

))
.

It follows from (1.7), (1.9), (2.10), (6.9), (6.10), (6.11) and Proposition 2.1 that for all t ≥ 0,

(6.13) εte
− 1

2 (tanh t)x2

e
1
2 sinh(2t)∂2

xe−
1
2 (tanh t)x2

= e−t(x2−∂2
x),

with εt ∈ {−1, 1} for all t ≥ 0. It only remains to prove that εt = 1 for all t ≥ 0 to establish (6.7).

To that end, we consider u0 ∈ S(R) the Gaussian function defined for all x ∈ R by u0(x) = e−x2

.
We first notice that for all t ≥ 0,

(6.14) e−
1
2 (tanh t)x2

e
1
2 sinh(2t)∂2

xe−
1
2 (tanh t)x2

u0 > 0.

Indeed, this estimate is trivial when t = 0 by definition of u0. When t > 0, we observe that for all

u ∈ S(R) such that u > 0, the function e−
1
2 (tanh t)x2

u > 0 is also positive, and on the other hand,
we notice by using the explicit formula for the Fourier transform of Gaussian functions that

e
1
2 sinh(2t)∂2

xu =

√
2π

sinh(2t)
exp

(
− x2

2 sinh(2t)

)
∗ u > 0,

where ∗ denotes the convolution product. This proves that (6.14) holds. Now, let us consider the
function ϕ defined for all t ≥ 0 by

(6.15) ϕ(t) = εte
− 1

2 (tanh t)x2

e
1
2 sinh(2t)∂2

xe−
1
2 (tanh t)x2

u0 ∈ S(Rn).

The rest of the proof consists in checking that ϕ(t) > 0 for all t ≥ 0. This property combined with
(6.14) will prove that εt > 0 for all t ≥ 0. Since εt ∈ {−1, 1}, it will then follows that εt = 1 for all
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t ≥ 0. We first deduce from [20] (Theorem 4.2) that the function t ≥ 0 7→ e−t(x2−∂2
x)u0 ∈ S(Rn) is

continuous which implies from (6.13) and (6.15) the continuity of the function ϕ from [0,+∞) to
S(R). As a consequence of (6.14) and (6.15), the Schwartz function ϕ(t) is not the zero function
for all t ≥ 0. Let x ∈ R. The previous discussion implies that the function t ≥ 0 7→ ϕ(t)(x) ∈ R∗

is continuous and does not vanish. Moreover, it follows from (6.13) and (6.15) that ϕ(0)(x) =
u0(x) > 0. We deduce that ϕ(t)(x) > 0 for all t ≥ 0. As a consequence, ϕ(t) > 0 for all t ≥ 0. This
proves that (6.7) holds. The injectivity of the operators e−tH is then a straightforward consequence

of (6.7) since the operators e−
1
2 (tanh t)x2

and e
1
2 sinh(2t)∂2

x are themselves injective. This ends the
proof of Proposition 6.8. �

Notice that the injectivity property of the evolution operators e−tH can also be readily proved
by using the Hermite basis of L2(Rn) and a direct calculus.

Corollary 6.9. Let q : R2n → R be a non-negative quadratic form q ≥ 0. Then, for all t ≥ 0, the
evolution operator e−tqw generated by the accretive quadratic operator qw(x,Dx) is injective.

Proof. We deduce from [19] (Theorem 21.5.3) that there exists a real linear symplectic transfor-
mation χ : R2n → R2n such that for all (x, ξ) ∈ R2n,

(6.16) (q ◦ χ)(x, ξ) =
k∑

j=1

λj(ξ
2
j + x2

j) +

k+l∑

j=k+1

x2
j ,

with k, l ≥ 0 and λj > 0 for all 1 ≤ j ≤ k. By the symplectic invariance of the Weyl quantization,
[19] (Theorem 28.5.9), we can find a metaplectic operator T satisfying

(6.17) qw(x,Dx) = T −1
( k∑

j=1

λj(D
2
xj

+ x2
j) +

k+l∑

j=k+1

x2
j

)
T .

Let t ≥ 0. It follows from (6.17) that the evolution operator e−tqw writes as

(6.18) e−tqw = T −1
( k∏

j=1

e
−tλj(D

2
xj

+x2
j)
)( k+l∑

j=k+1

e−tx2
j

)
T .

We deduce from (6.18) and Proposition 6.8 that the operator e−tqw is the composition of injective
operators, so is itself injective. This ends the proof of Corollary 6.9. �

6.5. Spectrum localization. The following result provides a localization for the spectrum of
matrices of the form JA, with J the symplectic matrix defined in (1.9) and A a Hermitian positive
semidefinite matrix.

Lemma 6.10. Let A ∈ Hn(C) be a Hermitian positive semidefinite matrix and J ∈ Sp2n(R) be
the symplectic matrix given by (1.9). Then, the spectrum of the matrix JA is purely imaginary,
that is σ(JA) ⊂ iR.

Proof. We first assume that the matrix A is Hermitian positive definite. Under this assump-
tion, we observe that

√
A(JA)(

√
A)−1 =

√
AJ

√
A. The matrix JA is therefore conjugated to a

skew-Hermitian matrix and its spectrum is then purely imaginary. When A is only Hermitian
positive semidefinite, we can consider (Ap)p a sequence of Hermitian positive definite matrices
that converges to A. Since the eigenvalues of a complex matrix are continuous with respect to
this matrix according to [22] (Theorem II.5.1), and that σ(JAp) ⊂ iR from the beginning of the
proof, we deduce that the eigenvalues of the matrix JA are purely imaginary. This ends the proof
of Lemma 6.10. �

6.6. Taylor expansion in a non-commutative setting. In the next lemma, we prove a compo-
sition result of Taylor expansions for functions taking values in non-commutative rings. It will be
useful in the end of Subsection 6.7. Notice that we consider holomorphic functions in a neighbor-
hood of 0, but the proof works the same near any point of C. Let us recall that C〈X,Y 〉 denotes the
ring of non-commutative polynomials in X and Y , and that for all non-negative integer k ≥ 0, we
consider Ck,0〈X,Y 〉 the finite-dimensional subspace of C〈X,Y 〉 of non-commutative polynomials
of degree smaller than or equal to k vanishing in (0, 0). In the following, given ρ > 0, the notation
D(0, ρ) denotes the open disk in C centered in 0 of radius ρ, and B((0, 0), ρ) stands for the open
ball in M2n(R)×M2n(R) centered in (0, 0) of radius with respect to the norm ‖ · ‖∞ defined in the
notations in p.11.



36 PAUL ALPHONSE AND JOACKIM BERNIER

Lemma 6.11. Let f : D(0, ρ) → C be an analytic function, with ρ > 0. We consider P ∈
Ck,0〈X,Y 〉, with k ≥ 0 a non-negative integer, and R : B((0, 0), ρ) → M2n(C) a function satisfying
that there exists a positive constant C > 0 such that for all (M,N) ∈ B((0, 0), ρ) we have

(6.19) ‖R(M,N)‖ ≤ C‖(M,N)‖k+1
∞ .

Then, there exists ρ′ ∈ (0, ρ), depending continuously on P and C, such that the function

f ◦ (P +R) : (M,N) 7→
+∞∑

j=0

f j(0)

j!
(P (M,N) +R(M,N))j ,

is well defined on B((0, 0), ρ′). Furthermore, there exists a continuous map Ψ : Ck,0〈X,Y 〉 →
Ck,0〈X,Y 〉 and a function R′ : B((0, 0), ρ′) → M2n(C) such that for all (M,N) ∈ B((0, 0), ρ′),

f(P (M,N) +R(M,N)) = f(0)I2n +Ψ(P )(M,N) +R′(M,N),

with

‖R′(M,N)‖ ≤ ΓC,P ‖(M,N)‖k+1
∞ ,

ΓC,P > 0 denoting a positive constant which depends continuously on C and P .

Proof. Since the functions P and R tend to (0, 0) as (M,N) goes to (0, 0), if ρ′ ∈ (0, ρ) is chosen suf-
ficiently small, then for (M,N) ∈ B((0, 0), ρ′), we have ‖P (M,N)‖ < ρ/4 and ‖R(M,N)‖ < ρ/4.
Consequently, the function f ◦ (P +R) is well defined on B((0, 0), ρ′). Let (M,N) ∈ B((0, 0), ρ′).
Realizing a Taylor expansion of the function f (considered as a map on M2n(C)) in P (M,N), we
get that

f ◦ (P +R)(M,N) = f ◦ P (M,N) +

∫ 1

0

df(P (M,N) + αR(M,N))(R(M,N)) dα,

where df denotes the differential of the function f . The second term in the right-hand side of the
above equality is a remainder term. Indeed, since ‖P (M,N)+αR(M,N)‖ < ρ/2 for all 0 ≤ α ≤ 1
with our choice of ρ′ ∈ (0, ρ), we deduce from (6.19) that this term satisfies

∣∣∣∣
∫ 1

0

df(P (M,N) + αR(M,N))(R(M,N)) dα

∣∣∣∣ ≤ C

(
sup

‖L‖<ρ/2

‖df(L)‖
)
‖(M,N)‖k+1

∞ .

Consequently, we focus on the term f ◦ P (M,N). Since the function f is analytic on D(0, ρ), we
can consider (aj)j≥0 ∈ CN the coefficients of the Taylor expansion of f and write

∀z ∈ D(0, ρ), f(z) =

+∞∑

j=0

ajz
j.

Naturally, f ◦ P (M,N) can be decomposed as

f ◦ P (M,N) = f(0)I2n +Q(P (M,N)) + P (M,N)k+1
+∞∑

j=0

aj+k+1P (M,N)j ,

where Q ∈ Ck[X ] is a polynomial of degree smaller than or equal to k vanishing in 0 and depending

only on f , given by Q(X) =
∑k

j=1 ajX
j . The third term in the right-hand side of the above equality

is also a remainder term. Indeed, since the polynomial P vanishes in (0, 0), there exists a positive
constant MP > 0 depending continuously (and only) on P such that

‖P (M,N)‖ ≤ MP ‖(M,N)‖∞.

With the previous choice of ρ′ ∈ (0, ρ), ‖P (M,N)‖ < ρ/4, we obtain that

∥∥∥P (M,N)k+1
+∞∑

j=0

aj+k+1P (M,N)j
∥∥∥ ≤ Mk+1

P ‖(M,N)‖k+1
∞

+∞∑

j=0

|aj+k+1|
(ρ
4

)j

.

Notice that the sum in the right-hand side is finite since the function f is analytic on D(0, ρ).
Finally, we just have to observe that Q ◦ P ∈ Ck2,0〈X,Y 〉 is a non-commutative polynomial
vanishing in (0, 0) and depending continuously on P . The sum of its terms of degree smaller than
or equal to k defines Ψ(P ) and its higher order terms are remainder terms bounded by ‖(M,N)‖k+1

∞ ,
up to a constant also depending continuously on P . This ends the proof of Lemma 6.11. �
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6.7. A perturbation result. To end this Appendix, we give the proof of a quite technical lemma
which is instrumental in Section 2 and Section 3. Let q : R2n → C be a complex-valued quadratic
form with a non-negative real-part Re q ≥ 0. We consider Q ∈ S2n(C) the matrix of q in the
canonical basis of R2n, F the Hamilton map of q and S its singular space. Let 0 ≤ k0 ≤ 2n− 1 be
the smallest integer such that (1.13) holds. Moreover, we consider the time-dependent quadratic
form κt : C

2n → R defined in accordance with the convention (1.42) for all t ≥ 0 and X ∈ C2n by

(6.20) κt(X) =

k0∑

k=0

t2k Re q
(
(ImF )kX

)
=

k0∑

k=0

t2k
∣∣√ReQ(ImF )kX

∣∣2.

The following lemma investigates the perturbations of the quadratic form κt:

Lemma 6.12. Let (Gα)0≤α≤1 be a family of functions Gα : B((0, 0), ρ) → M2n(C), with ρ > 0,
satisfying on the one hand that there exist a family (Pα)0≤α≤1 of non-commutative polynomials
Pα ∈ Ck0,0〈X,Y 〉 depending continuously on the parameter 0 ≤ α ≤ 1, a family (Rα)0≤α≤1 of
functions Rα : B((0, 0), ρ) → M2n(C) and a positive constant C > 0 such that for all 0 ≤ α ≤ 1
and (M,N) ∈ B((0, 0), ρ),

(6.21) Gα(M,N) = I2n + Pα(M,N) +Rα(M,N),

with

(6.22) ‖Rα(M,N)‖ ≤ C‖(M,N)‖k0+1
∞ ,

and on the other hand that for all 0 ≤ α ≤ 1 and t ≥ 0 such that (tReF, t ImF ) ∈ B((0, 0), ρ),

(6.23) Gα(tReF, t ImF )(S + iS) ⊂ S + iS.

Then, there exist some positive constants c > 0 and 0 < T ≤ 1 such that for all 0 ≤ t ≤ T ,
0 ≤ α ≤ 1 and X ∈ C2n,

κt

(
Gα

(
tReF, t ImF

)
X
)
≥ cκt(X).

Proof. By definition (6.20) of the time-dependent quadratic form κt, the estimate we want to prove
writes for all 0 ≤ α ≤ 1, 0 ≤ t ≪ 1 small enough and X ∈ C2n as

(6.24)

k0∑

k=0

t2k
∣∣√ReQ(ImF )kGα(tReF, t ImF )X

∣∣2 ≥ c

k0∑

k=0

t2k
∣∣√ReQ(ImF )kX

∣∣2.

By using the two classical inequalities that hold for all m ≥ 1 and a1, . . . , am ≥ 0,

(6.25)
√
a1 + . . .+ am ≤ √

a1 + . . .+
√
am,

and

(6.26) (a1 + . . .+ am)2 ≤ 2m−1(a21 + . . .+ a2m),

we notice that in order to prove the estimate (6.24), it is in fact sufficient to establish that for all
0 ≤ α ≤ 1, 0 ≤ t ≪ 1 small enough and X ∈ C2n,

(6.27)

k0∑

k=0

tk
∣∣√ReQ(ImF )kGα(tReF, t ImF )X

∣∣ ≥ c

k0∑

k=0

tk
∣∣√ReQ(ImF )kX

∣∣.

Indeed, we deduce from (6.25) and (6.26) that when (6.27) holds, we have that for all 0 ≤ α ≤ 1,
0 ≤ t ≪ 1 small enough and X ∈ C2n,

k0∑

k=0

t2k
∣∣√ReQ(ImF )kGα(tReF, t ImF )X

∣∣2(6.28)

≥ 1

2k0

( k0∑

k=0

tk
∣∣√ReQ(ImF )kGα(tReF, t ImF )X

∣∣
)2

≥ c2

2k0

( k0∑

k=0

tk
∣∣√ReQ(ImF )kX

∣∣
)2

=
c2

2k0

( k0∑

k=0

√
t2k

∣∣√ReQ(ImF )kX
∣∣2
)2

≥ c2

2k0

k0∑

k=0

t2k
∣∣√ReQ(ImF )kX

∣∣2,

which is the required estimate. We therefore focus on proving the estimate (6.27). First of all, let
us write the functions Gα under a more manageable form. Since the non-commutative polynomials
Pα ∈ Ck0〈X,Y 〉 have a degree smaller than or equal to k0, vanish on (0, 0) and depend continuously
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on the parameter 0 ≤ α ≤ 1, there exist some continuous functions σj,m : [0, 1] → C, with
1 ≤ j ≤ k0 and m ∈ {0, 1}j, such that for all 0 ≤ α ≤ 1,

(6.29) Pα(X,Y ) =

k0∑

j=1

∑

m∈{0,1}j

σj,m(α)Xm1Y 1−m1 . . .XmjY 1−mj .

With an abuse of notation, we denote the above non-commutative product by

X1−m1Y 1−m1 . . .XmjY 1−mj =

j∏

ℓ=1

XmℓY 1−mℓ .

We deduce from (6.21) and (6.29) that for all 0 ≤ α ≤ 1, 0 ≤ k ≤ k0 and (M,N) ∈ B((0, 0), ρ),

(6.30) Gα(M,N) = I2n +

k∑

j=1

∑

m∈{0,1}j

σj,m(α)

j∏

ℓ=1

MmℓN1−mℓ +Rα,k(M,N),

where the remainder terms are given by

(6.31) Rα,k(M,N) =

k0∑

j=k+1

∑

m∈{0,1}j

σj,m(α)

j∏

ℓ=1

MmℓN1−mℓ +Rα(M,N).

Since the functions σj,m are continuous on [0, 1], we deduce from (6.22) and (6.31) that there exists
a positive constant C0 > 0 such that for all 0 ≤ α ≤ 1, 0 ≤ k ≤ k0 and (M,N) ∈ B((0, 0), ρ),

(6.32) ‖Rα,k(M,N)‖ ≤ C0‖(M,N)‖k+1.

We can now tackle the proof of the estimate (6.27). We begin by studying the matrices
tk(ImF )kGα(tReF, t ImF ). Let T0 > 0 be such that (tReF, t ImF ) ∈ B((0, 0), ρ) for all
0 ≤ t ≤ T0. It follows from (6.30) that for all 0 ≤ α ≤ 1, 0 ≤ k ≤ k0 and 0 ≤ t ≤ T0,

Gα

(
tReF, t ImF

)
= I2n+

k0−k∑

j=1

∑

m∈{0,1}j

σj,m(α)tj
j∏

ℓ=1

(ReF )mℓ(ImF )1−mℓ+Rα,k0−k(tReF, t ImF ).

We deduce that for all 0 ≤ α ≤ 1, 0 ≤ k ≤ k0 and 0 ≤ t ≤ T0,

(6.33) tk(ImF )kGα

(
tReF, t ImF

)
= tk(ImF )k

+

k0−k∑

j=1

∑

m∈{0,1}j

σj,m(α)tk+j(ImF )k
j∏

ℓ=1

(ReF )mℓ(ImF )1−mℓ + tk(ImF )kRα,k0−k(tReF, t ImF ).

Let 0 ≤ α ≤ 1, 0 ≤ k ≤ k0 and 1 ≤ j ≤ k0 − k. Isolating the term associated to the tuple
0 ∈ {0, 1}j whose coordinates are all equal to 0, we split the following sum in two

(6.34)
∑

m∈{0,1}j

σj,m(α)tk+j(ImF )k
j∏

ℓ=1

(ReF )mℓ(ImF )1−mℓ

= σj,0(α)t
k+j(ImF )k+j +

∑

m∈{0,1}j\{0}

σj,m(α)tk+j(ImF )k
j∏

ℓ=1

(ReF )mℓ(ImF )1−mℓ .

For all m ∈ {0, 1}j \ {0}, we can write

(6.35)

j∏

ℓ=1

(ReF )mℓ(ImF )1−mℓ = Am(ReF )(ImF )nm ,

where nm is a non-negative integer satisfying 0 ≤ nm ≤ j − 1 and Am ∈ M2n(R) is a real matrix
product of j − 1 − nm matrices belonging to {ReF, ImF}. It follows from (6.34) and (6.35) that
for all 0 ≤ α ≤ 1, 0 ≤ k ≤ k0 and 0 ≤ t ≤ T0,

(6.36)

k0−k∑

j=1

∑

m∈{0,1}j

σj,m(α)tk+j(ImF )k
j∏

ℓ=1

(ReF )mℓ(ImF )1−mℓ

=

k0−k∑

j=1

σj,0(α)t
k+j(ImF )k+j +

k0−k∑

j=1

∑

m∈{0,1}j\{0}

σj,m(α)tk+j(ImF )kAm(ReF )(ImF )nm .
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Moreover, the second term in the right-hand side of the above equality can be written as

k0−k∑

j=1

∑

m∈{0,1}j\{0}

σj,m(α)tk+j(ImF )kAm(ReF )(ImF )nm(6.37)

=

k0−k∑

j=1

j−1∑

p=0

∑

m∈{0,1}j\{0}
nm=p

σj,m(α)tk+j(ImF )kAm(ReF )(ImF )p

=

k0−k−1∑

p=0

tp+1

( k0−k∑

j=p+1

∑

m∈{0,1}j\{0}
nm=p

σj,m(α)tk+j−p−1(ImF )kAm

)
(ReF )(ImF )p

=

k0−k−1∑

p=0

tp+1Bα,p,k(t)(ReF )(ImF )p,

where we set

(6.38) Bα,p,k(t) =

k0−k∑

j=p+1

∑

m∈{0,1}j\{0}
nm=p

σj,m(α)tk+j−p−1(ImF )kAm ∈ M2n(C).

We deduce from (6.33), (6.36) and (6.37) that for all 0 ≤ α ≤ 1, 0 ≤ k ≤ k0 and 0 ≤ t ≤ T0,

(6.39) tk(ImF )kGα

(
tReF, t ImF

)
= tk(ImF )k +

k0−k∑

j=1

σj,0(α)t
k+j(ImF )k+j

+

k0−k−1∑

p=0

tp+1Bα,p,k(t)(ReF )(ImF )p + tk(ImF )kRα,k0−k(tReF, t ImF ).

The triangle inequality therefore implies that for all 0 ≤ α ≤ 1, 0 ≤ k ≤ k0, 0 ≤ t ≤ T0 and
X ∈ C2n,

(6.40) tk
∣∣√ReQ(ImF )kGα

(
tReF, t ImF

)
X
∣∣ ≥

≥
∣∣∣∣t
k
√
ReQ(ImF )kX +

k0−k∑

j=1

tk+jσj,0(α)
√

ReQ(ImF )k+jX

∣∣∣∣

−
∣∣∣∣
k0−k−1∑

p=0

tp+1
√
ReQBα,p,k(t)(ReF )(ImF )pX

∣∣∣∣

− tk
∣∣√ReQ(ImF )kRα,k0−k(tReF, t ImF )X

∣∣.
Our aim is now to control the two first terms appearing in the right-hand side of the above estimate.
To that end, we begin by noticing that since (σj,m)1≤j≤k0,m∈{0,1}j is a finite family of continuous
functions defined on [0, 1], and by definition (6.38) of the terms Bα,p,k(t), there exists a positive
constant c0 > 0 such that for all 0 ≤ α ≤ 1, 0 ≤ k ≤ k0, 1 ≤ j ≤ k − k0 and m ∈ {0, 1}j,

(6.41)
∣∣σj,m(α)

∣∣ +
∥∥√ReQBα,p,k(t)J

√
ReQ

∥∥ ≤ c0.

Then, the first term can be controlled in the following way: from (6.41) and Lemma 6.14, we have
that for all 0 ≤ k ≤ k0 − 1 and ηk ∈ (R∗

+)
k0−k, there exists a positive constant γηk

> 0, such that
for all 0 ≤ α ≤ 1, 0 ≤ t ≤ T0 and X ∈ C2n,

(6.42)

∣∣∣∣t
k
√
ReQ(ImF )kX +

k0−k∑

j=1

tk+jσj,0(α)
√

ReQ(ImF )k+jX

∣∣∣∣

≥ γηk
tk
∣∣√ReQ(ImF )kX

∣∣− c0

k0−k∑

j=1

(ηk)jt
k+j

∣∣√ReQ(ImF )k+jX
∣∣.

Notice that when k = k0, the sum appearing in the left-hand side of the estimate (6.42) is reduced
to zero, which motivates to set γηk0

= 1. By using that F = JQ and (6.41), we derive the following
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estimate for the second term for all 0 ≤ α ≤ 1, 0 ≤ k ≤ k0, 0 ≤ t ≤ T0 and X ∈ C2n,

(6.43)

∣∣∣∣
k0−k−1∑

p=0

tp+1
√
ReQBα,p,k(t)(ReF )(ImF )pX

∣∣∣∣

≤
k0−k−1∑

p=0

tp+1
∣∣√ReQBα,p,k(t)J

√
ReQ

√
ReQ(ImF )pX

∣∣ ≤ c0

k0∑

p=0

tp+1
∣∣√ReQ(ImF )pX

∣∣.

We deduce from (6.40), (6.42) and (6.43) that for all 0 ≤ α ≤ 1, 0 ≤ t ≤ T0 and X ∈ C2n,

pα,t(X) ≥
k0∑

k=0

γηk
tk
∣∣√ReQ(ImF )kX

∣∣− c0

k0−1∑

k=0

k0−k∑

j=1

(ηk)jt
k+j

∣∣√ReQ(ImF )k+jX
∣∣

− c0(k0 + 1)

k0∑

p=0

tp+1
∣∣√ReQ(ImF )pX

∣∣−
k0∑

k=0

tk
∣∣√ReQ(ImF )kRα,k0−k(tReF, t ImF )X

∣∣,

where the functions pα,t are the ones appearing in the left-hand side of the estimate (6.27), defined
for all 0 ≤ α ≤ 1, 0 ≤ t ≤ T0 and X ∈ C2n by

(6.44) pα,t(X) =

k0∑

k=0

tk
∣∣√ReQ(ImF )kGα(tReF, t ImF )X

∣∣.

We make the change of indexes j′ = k and k′ = k + j in the following sum

k0−1∑

k=0

k0−k∑

j=1

(ηk)jt
k+j

∣∣√ReQ(ImF )k+jX
∣∣ =

k0∑

k=1

( k−1∑

j=0

(ηj)k−j

)
tk
∣∣√ReQ(ImF )kX

∣∣.

Considering the quantity

(6.45) εη,k,t = γηk
− c0

k−1∑

j=0

(ηj)k−j − c0(k0 + 1)t,

and the remainder term

(6.46) Σα,t(X) =

k0∑

k=0

tk
∣∣√ReQ(ImF )kRα,k0−k(tReF, t ImF )X

∣∣,

we deduce that for all 0 ≤ α ≤ 1, 0 ≤ t ≤ T0 and X ∈ C2n, pα,t(X) satisfies the estimate

(6.47) pα,t(X) ≥ (γη0 − c0(k0 + 1)t)
∣∣√ReQX

∣∣+
k0∑

k=1

εη,k,tt
k
∣∣√ReQ(ImF )kX

∣∣− Σα,t(X).

Now, we determine the ηk ∈ (R∗
+)

k0−k. We would like to have c0(ηj)k−j =
γηk

k+1 . Therefore, we
define for all 0 ≤ k ≤ k0 − 1 and 1 ≤ j ≤ k0 − k,

(6.48) (ηk)j =
γηk+j

c0(k + j + 1)
.

This construction seems implicit but, in fact, it is not. Indeed, to define ηk, we just need to know
γηℓ

for the indexes k + 1 ≤ ℓ ≤ k0 and since γηk0
= 1, we can proceed by induction. With this

construction (6.48) of ηk, we have that for all 1 ≤ k ≤ k0 and 0 ≤ t ≤ T0,

εη,k,t =
γηk

k + 1
− c0(k0 + 1)t.

We deduce from this construction and (6.47) that for all 0 ≤ α ≤ 1, 0 ≤ t ≤ T0 and X ∈ C2n,

pα,t(X) ≥
k0∑

k=0

(
γηk

k + 1
− c0(k0 + 1)t

)
tk
∣∣√ReQ(ImF )kX

∣∣− Σα,t(X).

Therefore, there exist some positive constants c1 > 0 and 0 < T1 < T0 such that for all 0 ≤ α ≤ 1,
0 ≤ t ≤ T1 and X ∈ C2n,

(6.49) pα,t(X) ≥ c1

k0∑

k=0

tk
∣∣√ReQ(ImF )kX

∣∣− Σα,t(X).
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Now, we prove that the reminder term Σα,t can be controlled by
∑k0

k=0 t
k|
√
ReQ(ImF )kX |. To

that end, we begin by observing from (6.32) and (6.46) that 0 ≤ α ≤ 1, 0 ≤ t ≤ T1 and X ∈ C2n,

Σα,t(X) ≤ C0

k0∑

k=0

tk
∥∥√ReQ(ImQ)k

∥∥∥∥(tReF, t ImF )
∥∥k0−k+1

∞
|X |(6.50)

= tk0+1

(
C0

k0∑

k=0

∥∥√ReQ(ImQ)k
∥∥∥∥(ReF, ImF )

∥∥k0−k+1

∞

)
|X |.

Then, the inequality (6.25), the estimate (6.50) and Lemma 6.13 imply that there exists a positive
constant c2 > 0 such that for all 0 ≤ α ≤ 1, 0 ≤ t ≤ min(1, T1) and X ∈ (S + iS)⊥,

Σα,t(X) ≤ c2t

( k0∑

k=0

tk
∣∣√ReQ(ImF )kX

∣∣
)
,

where the orthogonality is taken with respect to the Hermitian structure of C2n. This estimate
combined with (6.49) shows the existence of positive constants c3 > 0 and 0 < T2 < T1 such that
for all 0 ≤ α ≤ 1, 0 ≤ t ≤ T2 and X ∈ (S + iS)⊥,

(6.51) pα,t(X) ≥ (c1 − c2t)

k0∑

k=0

tk
∣∣√ReQ(ImF )kX

∣∣ ≥ c3

k0∑

k=0

tk
∣∣√ReQ(ImF )kX

∣∣.

Now, it only remains to check that the estimate (6.51) can be extended to all X ∈ C2n. To that
end, we notice that for all 0 ≤ k ≤ k0, X ∈ S + iS and Y ∈ C2n,

(6.52)
√
ReQ(ImF )k(X + Y ) =

√
ReQ(ImF )kY,

since
√
ReQ(ImF )k(S + iS) = {0} by definition (1.13) of the singular space S. This implies

that for all 0 ≤ t ≤ T2 and X ∈ C2n written X = XS+iS +X(S+iS)⊥ , with XS+iS ∈ S + iS and

X(S+iS)⊥ ∈ (S+iS)⊥ according to the decomposition C2n = (S+iS)⊕(S+iS)⊥, the orthogonality

being taken with respect to the Hermitian structure of C2n, we have

(6.53)

k0∑

k=0

tk
∣∣√ReQ(ImF )kX

∣∣ =
k0∑

k=0

tk
∣∣√ReQ(ImF )kX(S+iS)⊥

∣∣.

Moreover, it follows from the assumption (6.23) that for all 0 ≤ α ≤ 1, 0 ≤ t ≤ T2 and X ∈ S+ iS,

(6.54) Gα(tReF, t ImF )X ∈ S + iS.

We deduce from (6.44), (6.52) and (6.54) that for all 0 ≤ α ≤ 1, 0 ≤ t ≤ T2 and X ∈ C2n,

(6.55) pα,t(X) = pα,t(X(S+iS)⊥).

As a consequence of (6.53) and (6.55), the estimate (6.51) can be extended to all 0 ≤ α ≤ 1,
0 ≤ t ≤ T2 and X ∈ C2n. This ends the proof of Lemma 6.12. �

The two following lemmas are used to prove Lemma 6.12.

Lemma 6.13. There exists a positive constant c > 0 such that for all 0 ≤ t ≤ 1 and X ∈ (S+iS)⊥,

κt(X) ≥ ct2k0 |X |2,
where the orthogonality is taken with respect to the Hermitian structure of C2n.

Proof. We begin by observing that for all 0 ≤ t ≤ 1 and X ∈ C2n,

(6.56) κt(X) ≥ t2k0

k0∑

k=0

∣∣√ReQ(ImF )kX
∣∣2.

It follows from (1.24), (4.7) and (4.8) that there exists a positive constant c > 0 such that for all
X ∈ S⊥,

κt(X) ≥ t2k0

k0∑

k=0

∣∣√ReQ(ImF )kX
∣∣2 ≥ ct2k0 |X |2,

since V ⊥
k0

= S⊥. Moreover, if X ∈ (S+ iS)⊥, then ReX, ImX ∈ S⊥ and since κt is a non-negative
quadratic form, we deduce that

ct2k0 |X |2 = ct2k0 |ReX |2 + ct2k0 | ImX |2 ≤ κt(ReX) + κt(ImX) = κt(X).

This ends the proof of Lemma 6.13. �
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Lemma 6.14. Let m ∈ N∗ and η ∈ (R∗
+)

m. Then, we have that for all x, y1, . . . , ym ∈ Cm,

∣∣∣x+

m∑

j=1

yj

∣∣∣ ≥ |x|
1 + η−1

min

−
m∑

j=1

ηj |yj |,

with ηmin = min1≤j≤m ηj.

Proof. Let x, y1, . . . , ym ∈ Cm. We consider α = 1
1+ηmin

and distinguish two cases:

1. On the one hand, if α|x| ≥ ∑m
j=1 |yj |, we have that

∣∣∣x+

m∑

j=1

yj

∣∣∣ +
m∑

j=1

ηj |yj | ≥
∣∣∣x+

m∑

j=1

yj

∣∣∣ ≥ |x| −
m∑

j=1

|yj | ≥ |x|(1 − α) =
|x|

1 + η−1
min

.

2. On the other hand, when α|x| ≤
∑m

j=1 |yj|, it follows that

∣∣∣x+
m∑

j=1

yj

∣∣∣+
m∑

j=1

ηj |yj | ≥
m∑

j=1

ηj |yj| ≥ αηmin|x| =
|x|

1 + η−1
min

.

This ends the proof of Lemma 6.14. �

To end this subsection, let us detail why Lemma 6.12 can be applied to the functions G and Gα

respectively defined in (3.14) and (4.22).

Lemma 6.15. The function G defined in (3.14) satisfy the assumptions of Lemma 6.12.

Proof. Let us recall that the function G is given by

(6.57) G(M,N) =

(√
e−2i(M+iN)e−2i(M−iN) + I2n

2

)−1

.

The matrix exponential being defined as the sum of an absolutely convergent series, the product of
the two exponentials is given by the following Cauchy product for all (M,N) ∈ M2n(R)×M2n(R),

(6.58) e−2i(M+iN)e−2i(M−iN) =

+∞∑

j=0

(−2i)j

j!

j∑

ℓ=0

(
j

ℓ

)
(M + iN)ℓ(M − iN)j−ℓ.

Let us consider the non-commutative polynomial P defined by

P (X,Y ) =

k0∑

j=1

(−2i)j

j!

j∑

ℓ=0

(
j

ℓ

)
(X + iY )ℓ(X − iY )j−ℓ ∈ Ck0,0〈X,Y 〉.

We also consider the function R : (M,N) ∈ M2n(R) × M2n(R) → M2n(C) defined for all
(M,N) ∈ M2n(R)×M2n(R) by

R(M,N) =
+∞∑

j=k0+1

(−2i)j

j!

j∑

ℓ=0

(
j

ℓ

)
(M + iN)ℓ(M − iN)j−ℓ.

With these notations, the product of exponentials takes the following form for all
(M,N) ∈ M2n(R)×M2n(R),

(6.59) e−2i(M+iN)e−2i(M−iN) = I2n + P (M,N) +R(M,N).

Notice that the term R(M,N) is a remainder since for all ρ > 0 there exists a positive constant
c > 0 such that for all (M,N) ∈ B((0, 0), ρ),

‖R(M,N)‖ ≤ c‖(M,N)‖k0+1
∞ .

Now applying Lemma 6.11 with ρ = 1 (it could be chosen arbitrarily) and the analytic function

(6.60) f : z ∈ D(1, 1) 7→ ((
√
z + 1)/2)−1,

we deduce that there exists ρ′ ∈ (0, 1) such that the function G is well defined on B((0, 0), ρ′) and
satisfies the assumptions (6.21) and (6.22) of Lemma 6.12 on B((0, 0), ρ′) (with no dependence
with respect to the parameter 0 ≤ α ≤ 1 here).

Always in order to apply Lemma 6.12 to the function G, it remains to check that for all t ≥ 0
such that (tReF, t ImF ) ∈ B((0, 0), ρ′),

G(tReF, t ImF )(S + iS) ⊂ S + iS.
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Notice that G(tReF, t ImF ) = Φt from the definitions (3.3) and (6.57) of the matrices Φt and of
the function G respectively. The inclusion we aim at proving is therefore equivalent to the following
one for all t ≥ 0 such that (tReF, t ImF ) ∈ B((0, 0), ρ′),

(6.61) Φt(S + iS) ⊂ S + iS.

Since the matrix function ((
√· + I2n)/2)

−1 is analytic on B(I2n, 1) (from the analyticity of the
function (6.60) on D(1, 1)), there exists a sequence of complex numbers (σj)j≥1 such that

∀A ∈ B(I2n, 1),

(√
A+ I2n

2

)−1

= I2n +

+∞∑

j=1

σj(A− I2n)
j .

It follows that the matrix Φt is the sum of the following series for all t ≥ 0 such that
(tReF, t ImF ) ∈ B((0, 0), ρ′),

(6.62) Φt = I2n +
+∞∑

j=1

σj(e
−2itF e−2itF − I2n)

j .

Since (ReF )S = {0} and (ImF )S ⊂ S from (1.11), the two inclusions FS ⊂ S+iS and FS ⊂ S+iS

hold. They imply in particular that e−2itFS ⊂ S + iS and e−2itFS ⊂ S + iS for all t ≥ 0. The
inclusion (6.61) is then a consequence of this observation and (6.62). �

Lemma 6.16. The family of functions (Gα)0≤α≤1 defined in (4.22) satisfies the assumptions of
Lemma 6.12.

Proof. We recall that the matrix functions Gα are defined for all 0 ≤ α ≤ 1 by

(6.63) Gα(M,N) = exp
(
− α

2
Log

(
e−2i(M+iN)e−2i(M−iN)

))
.

Similarly to the previous study of the function G in the proof of Lemma 6.15, we deduce that there
exists ρ > 0 and C > 0 such that the function

(M,N) 7→ Log
(
e−2i(M+iN)e−2i(M−iN)

)
,

is well defined on B((0, 0), ρ) and can be written as

∀(M,N) ∈ B((0, 0), ρ), Log
(
e−2i(M+iN)e−2i(M−iN)

)
= P (M,N) +R(M,N),

where P ∈ Ck0,0〈X,Y 〉 and R is a remainder term

∀(M,N) ∈ B((0, 0), ρ), ‖R(M,N)‖ ≤ C‖(M,N)‖k0+1
∞ .

Now, observing that the set {−(α/2)P : 0 ≤ α ≤ 1} is bounded, we deduce from Lemma 6.11
applied with f = exp that there exists ρ′ ∈ (0, ρ) and C′ > 0 (independent of α) such that for all
0 ≤ α ≤ 1, the function Gα is well defined on B((0, 0), ρ′) and there exists Rα : B((0, 0), ρ′) →
M2n(C) satisfying

∀(M,N) ∈ B((0, 0), ρ′), ‖Rα(M,N)‖ ≤ C‖(M,N)‖k0+1
∞ ,

such that

∀(M,N) ∈ B((0, 0), ρ′), Gα(M,N) = I2n +Ψ(−α

2
P )(M,N) +Rα(M,N).

Since Ψ is a continuous map, the family of functions (Gα)0≤α≤1 satisfies the assumptions (6.21)
and (6.22) of Lemma 6.12 on B((0, 0), ρ′).

It remains to check that for all 0 ≤ α ≤ 1 and t ≥ 0 such that (tReF, t ImF ) ∈ B((0, 0), ρ′),

(6.64) Gα(tReF, t ImF )(S + iS) ⊂ S + iS.

Let 0 ≤ α ≤ 1 and t ≥ 0 such that (tReF, t ImF ) ∈ B((0, 0), ρ) fixed. Since the complex function
exp(−(α/2) Log ·) is analytic on the disk D(1, 1), the matrix function exp(−(α/2) Log ·) is analytic
on B(I2n, 1). Thus, there exists a sequence (σα,j)j≥0 of complex numbers such that

∀A ∈ B(I2n, 1), exp
(
− α

2
LogA

)
=

+∞∑

j=0

σα,j(A− I2n)
j .

We deduce from this series expansion that

(6.65) Gα(tReF, t ImF ) =

+∞∑

j=0

σα,j(e
−2itF e−2itF − I2n)

j .
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However, we have already noticed that the vector space S + iS is stable by the matrices e−2itF

and e−2itF . The inclusion (6.64) is therefore a consequence of this observation and (6.65). �
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