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ABSTRACT
Traditional radio interferometric correlators produce regular-gridded samples of the true uv-
distribution by averaging the signal over constant, discrete time–frequency intervals. This
regular sampling and averaging then translate to be irregular-gridded samples in the uv-space,
and results in a baseline-length-dependent loss of amplitude and phase coherence, which is
dependent on the distance from the image phase centre. The effect is often referred to as
‘decorrelation’ in the uv-space, which is equivalent in the source domain to ‘smearing’. This
work discusses and implements a regular-gridded sampling scheme in the uv-space (baseline-
dependent sampling) and windowing that allow for data compression, field-of-interest shaping,
and source suppression. The baseline-dependent sampling requires irregular-gridded sampling
in the time–frequency space, i.e. the time–frequency interval becomes baseline dependent.
Analytic models and simulations are used to show that decorrelation remains constant across
all the baselines when applying baseline-dependent sampling and windowing. Simulations
using MeerKAT telescope and the European Very Long Baseline Interferometry Network show
that both data compression, field-of-interest shaping, and outer field-of-interest suppression
are achieved.

Key words: instrumentation: interferometers – methods: data analysis – methods: numerical –
techniques: interferometric.

1 IN T RO D U C T I O N A N D M OT I VAT I O N S

A variety of new radio telescopes, precursors (e.g. ASKAP,
Johnston et al. 2008; MeerKAT, Jonas 2009), and Pathfinders (e.g.
LOFAR, Van Haarlem et al. 2013; NenuFAR, Zarka et al. 2015)
for the Square Kilometre Array (SKA, Dewdney et al. 2009) are
under development or used to image wide field of view (FoV, i.e.
the fractional portion of the primary beam, PB, at the full width
at half-maximum, FWHM) sky surveys at high sensitivity, wide
bandwidth, and high spectral and temporal resolutions. These radio
telescopes produce an extremely large volume of data, such that
data storage and analysis are becoming more challenging for sci-
entific research and engineering requirements, e.g. to transmit the
data from the receivers to the correlator or in data reduction such
as calibration and imaging. A typical example is the LOFAR

� E-mail: m.atemkeng@gmail.com

telescope. Its uv-data (visibilities), assuming 24 core stations (ex-
cluding the remote and international stations) using 244 sub-bands
with 64 channels per sub-band, 4 h observation time with a 1 s tem-
poral resolution is predicted to be ∼8376 GB using the dual high
band antenna (see LOFAR calculator1). However, observations with
all the LOFAR national and international stations are capable of pro-
ducing data volumes of the order of petabytes (Sabater et al. 2017).
Survey capabilities with the future SKA (unprecedented sensitivity,
resolution, and bandwidth) are expected to generate data by many
orders of magnitude higher than any existing radio interferometer.
This data volume will be even larger for any SKA survey science
that will integrate multiple beams and/or multiple phase tracking
e.g. African Very Long Baseline Interferometry (VLBI) Network
(Gaylard et al. 2014), European VLBI Network (EVN, Keimpema
et al. 2015), etc. New techniques for data compression and storage

1 lofar.astron.nl/service/pages/storageCalculator/calculate.jsp
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4512 M. Atemkeng et al.

Figure 1. Amplitude loss: the apparent intensity of a 1 Jy source at 0.65, 1.32, and 2.25 deg as seen by MeerKAT at 1.4 GHz as a function of east–west
baseline components; left: data are simple averaged across 15 s in time and frequency resolution is fixed to 84 kHz; right: data are simple averaged across
0.84 MHz in frequency and time resolution is fixed to 1 s.

systems must be developed for the transition from the current radio
interferometers to the SKA. Data compression is an advantageous
solution for increasing the speed of the data transmission and to
decrease the computational requirements for post-processing. Data
compression also offers an alternative possibility for wide FoV ob-
servations because it offers significant reduction of the data volume
while preserving useful information to improve discovery and anal-
ysis accuracy.

Traditionally, radio interferometric correlators compress the vis-
ibility data by simply averaging the data, which may be averaged
further in post-correlation to speed up processing. However, the
challenge in compressing the visibilities by simple averaging is that
these visibilities decorrelate and the decorrelation is time–frequency
and baseline dependent . The visibility from a baseline pq (with
vector upq = (u, v, w)) of a point source with brightness S and
coordinates l = (l, m, n − 1) is given by:

Vpq = S exp
{

− iφ
}

, φ(upq) = 2πupq · l. (1)

For sources with an increasing separation from the phase centre,
the phase φ is increasingly large for a given baseline, and at some
distance phase wrapping within the averaging time–frequency will
cause a strong decorrelation of the signal. Fig. 1 is a simulated ob-
servation with MeerKAT at 1.4 GHz showing the amplitude decor-
relation for a 1 Jy point source located at 0.65, 1.32, and 2.25 deg
away from the phase tracking centre as a function of east–west
baseline length. At this frequency, a MeerKAT survey must be able
to image sources up to an angular distance of 0.65 deg (edge of
the FoV at the FWHM of the PB) from the phase tracking centre
with little to no smearing effects. But modern calibration and imag-
ing techniques such as MEQTREES (Noordam & Smirnov 2010) or
DDFACET (Tasse et al. 2018) are able to correct for PB effects far ex-
ceed the second side lobe of the PB (Mitra et al. 2015). An accurate
PB model is necessary for calibrating out the effects of the PB, and
for improving image fidelity. A good PB model can significantly
reduce artefacts in the image and improve its dynamic range, and an
appropriate direction-dependent calibration procedure can further
reduce artefacts and increase the dynamic range (Mitra et al. 2015).
Throughout this paper, we use the term field of interest (FoI) to
differentiate from the FoV when the region of interest to be imaged
exceeds ‘the fractional portion of the PB at the FWHM’.

The first and the second null of the PB of MeerKAT at 1.4 GHz
fall at ∼1.32 and ∼2.25 deg, respectively. In Fig. 1, the pre-averaged
data are simulated using 1 s and 84 kHz for time and frequency res-
olutions, respectively. To evaluate the time smearing, the data are
simple averaged across 15 s and the frequency resolution remains
fixed to 84 kHz. Similarly, for the bandwidth smearing the time
resolution is maintains to 1 s and the data is simple averaged across
0.84 MHz in frequency. Results show that decorrelation/smearing
is severe on longer east–west baselines than shorter east–west base-
lines and that smearing is a function of source position in the sky.

Simple averaging could be used in a way to increase the signal-
to-noise ratio (S/N) within the FoI by suppressing the side lobes
from sources out of the FoI, but the drawback is that sources at the
edges of the FoI will be smeared (Lonsdale, Doeleman & Oberoi
2004; Atemkeng et al. 2016). However, increasing the S/N based on
averaging is feasible only if both the FoI and its edges are preserved
from smearing, and sources out of the FoI are suppressed. The later
is resumed mathematically as follows:

S/N ≈ Ssmear

Cnoise + Tnoise
, (2)

where Ssmear is the signal of a source in the FoI (including the edges)
that must be preserved from smearing, Cnoise the signal from sources
outside the FoI (i.e. confusion noise) that must be subtracted from
the FoI or must strongly decorrelate, and Tnoise the thermal noise
which is usually Gaussian and intrinsic to the visibility measurement
process. Ideally, one wants an increase in Ssmear and a decrease in
Cnoise within the FoI, so that the overall S/N increased even if there
is an increase in Tnoise in the case of weighted averaging.

If the uv-coverage of an interferometer is condensed at the centre
then must of the data come from the shorter baselines. An example
of this type of centrally condensed uv-coverage along with the uv-
coverage histogram is illustrated in Fig. 2. The histogram shows the
uv-coverage data density as a function of effective baseline length.
If more samples should be averaged at the centre and fewer at the
outer, decorrelation can be avoided on the longer baselines and data
compression would be carried out on the shorter baselines. This
method, often referred to as baseline-dependent averaging (BDA),
was first proposed by Cotton (1989, 1999) as an approach for deal-
ing with wide-field imaging with little to no bandwidth and time
averaging effects.
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Baseline-dependent sampling and BDWFs 4513

Figure 2. MeerKAT uv-coverage at 1.4 GHz and histogram depicting the data density as a function baselines length, 4 h observation and 8 MHz bandwidth
showing clearly that the data are condensed at the centre. Most of the data at the centre come from the short baselines.

The idea of BDA is thus not novel, and has also been subject of
discussion in many radio interferometry conferences, particularly
the ability to use BDA for the SKA data processors. Atemkeng et al.
(2016) discussed a baseline-dependent window functions (BDWFs)
scheme that has the effect to shape the FoI. Several other techniques
to shape the FoI using window functions have been proposed
(Lonsdale et al. 2004; Parsons & Backer 2009; Parsons et al. 2016).
BDWFs are weighted-moving averaging of the irregular sampled
visibilities in the uv-space. The mathematical derivations for the
BDWFs show that the dirty image is the apparent sky multiplied
by the inverse Fourier transform of each of the BDWFs. This work
removes the restriction of irregular sampling in uv-space adopted
in Atemkeng et al. (2016) and considers regular sampling and av-
eraging in the uv-space as a BDA formalism. To shape the FoI,
the BDA formalism is applied to BDWFs, i.e. applying weighted-
moving averaging to the regular sampled visibilities in the uv-space.
Throughout this paper, we will be referring BDA applied to BDWFs
as BDAWFs. Since an unweighted average represents theoretically
maximum sensitivity at the centre of the FoI, a weighted averaging
will result in a loss in nominal sensitivity. However, to alleviate the
decrease in sensitivity, BDWFs are further extended by Atemkeng
et al. (2016), showing that the use of overlapping BDWFs has the
benefit of suppressing the far FoI sources compared to simple av-
eraging, and could even recover some of the lost sensitivity while
decreasing the overall far-field confusion noise. Overlapping BD-
WFs are sets of polyphase finite impulse response filters with order
depending on the overlapping bins in the uv-space. The overlapping
bins compensate for the missing bins windowed with the BDWF. We
refer the reader to Atemkeng et al. (2016) for an intensive discussion
on BDWFs and properties of overlapping BDWFs. The mathemat-
ical framework derived from the BDAWFs formalism shows that
the dirty image is the apparent sky multiplied by the inverse Fourier
transform of a single BDWF.

2 MATH E M AT I C A L BAC K G RO U N D

We use the radio interferometry measurement equation (RIME) for-
malism, which provides a model of a generic interferometer. For
details on the RIME formalism, see Hamaker, Bregman & Sault
(1996), and Smirnov (2011a,b). In a single mathematical equa-
tion, the RIME describes all the direction-dependent and direction-

independent effects that may occur when an interferometric mea-
surement is in process. The 2D Fourier transform full sky RIME,
following Smirnov (2011a,b), is given by:

Vpq = Gptν

( ∫∫
lm

DptνIDH
qtνe−iφdldm

)
GH

qtν, (3)

where the superscript (.)H denotes a Hermitian transpose operator.
Here, a single visibility value is denoted by Vpq or in functional form
by Vpq ≡ V(upq) and the sky distribution function by I ≡ I(l, m).
The formalism groups the product of direction-independent Jones
matrices corresponding to antenna p into the matrix Gptν , and all its
direction-dependent effects into the matrix Dptν . We note that the
PB pattern of each of the antenna that defines the directional sensi-
tivity and the FoV of each of the antennas is part of the direction-
dependent effects. The term DptνIDH

qtν is the apparent sky seen
by baseline pq, and varies in time and frequency. For simplicity,
throughout this work, we assume that both the sky and the direction-
dependent gain are invariant; therefore each of the baselines will
see the same apparent sky throughout the measurement process.

Rotation of the Earth causes the baseline phase to vary in time, and
for multifrequency observations, the phase is constantly changing
with time and frequency. In practical situations, an interferometer
can only measure an average visibility over a fixed time–frequency
lengths as given by the sampling bin:

B[�t�ν]
kr =

[
tk − �t

2
, tk + �t

2

]
×

[
νr − �ν

2
, νr + �ν

2

]
, (4)

where �t centred at tk and �ν centred at νr are the sampling in-
tervals in time and frequency, respectively. The sampling bin has
two dimensions: the width and height measured in time and fre-
quency, respectively. Let us denote Vpq(u(t, ν)) ≡ V(upq(t, ν)) as
the ideal visibility distribution. After averaging in the correlator, the
measured visibility becomes:

Ṽpqkr = 1

�t�ν

∫ ∫
B

[�t�ν]
kr

V(upq(t, ν))dνdt . (5)

In the time–frequency space, the bins are sampled equally on each
baseline (assuming baseline-independent sampling), while in con-
trast in uv-space, they are not. Ideally, all spatial frequencies up
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to the resolution of the longest baseline are sampled in a 2D con-
tinuous sky image. This requires Nyquist sampling of the time–
frequency space up to the highest spatial frequencies, correspond-
ing to the longest baselines. This is rarely possible because of the
unsampled uv-space ‘holes’ during an observation, the lower spatial
frequency cut-off due to physical element limitations and sampling
bias in the low spatial frequency region of the uv-space compared to
higher spatial frequencies due to baseline distribution. For a fixed
time–frequency length, a long baseline will cover a longer track
in uv-space compared to a shorter baseline, which results in the
lower Fourier modes being oversampled compared to higher Fourier
modes. On shorter baselines, the sampling bin width and height are
smaller compared to longer baselines; assuming baseline-dependent
mapping. However, this work considers two major sub-domains. (1)
The correlator domain or the tν-space where the baselines are sam-
pled equally on to a rectangular grid. (2) The visibility domain or
uv-space where the baselines are sampled differently and the overall
data are mapped on to elliptical arcs/ribbons.

Let us denote by B[uv]
pqkr the matched uv-space sampling bin, which

is baseline dependent. The relation in equation (5) can be rewritten
as:

Ṽpqkr = [Vpq ◦ �[tν]](tk, νr), in tν−space or (6)

Ṽpqkr = [Vpq ◦ �
[uv]
pqkr](upq(tk, νr)), in uv−space. (7)

Here, ◦ stands for the convolution operator, and �[tν] and �
[uv]
pqkr are

normalized boxcar window functions defined in tν- and uv-spaces,
respectively. The detailed derivations for these equations are de-
veloped in Atemkeng et al. (2016). Equations (6) and (7) are of
importance because they clearly show that visibility averaging is
equivalent to convolution at the centre of the sampling bin of the
true visibilities and the boxcar window function. We emphasize that
the discussion above provides an alternative way to look at decor-
relation/smearing. With averaging in effect, a useful mathematical
model may be of the following form:

Ṽpqkr = δpqkr(V ◦ �
[uv]
pqkr), (8)

where δpqkr denotes the Dirac delta functions i.e. a single nail sam-
pling function.

2.1 Imaging

To derive the effect of averaging on the image, we can reformulate
equation (8) as:

Ṽpqkr = F
{
Ppqkr

}(
F

{
I
}

◦ �
[uv]
pqkr

)
, (9)

where the apparent skyI is the inverse Fourier transform of the ideal

visibility measurement I = F−1
{
V

}
and the point spread function

(PSF)Ppqkr is the inverse Fourier transform of the sampling function
for the baseline pq at the discrete time–frequency bin kr, i.e.Ppqkr =
F−1

{
δpqkr

}
. Here F and F−1 represent the Fourier transform and

its inverse, respectively. Inverting the Fourier transform of the sum
over all baselines of equation (9) and sampling at each kr results in
an estimate of the sky image i.e. the ‘dirty image’:

ID = F−1

{ ∑
pqkr

WpqkrṼpqkr

}
, (10)

where Wpqkr is the weight at the sampled point pqkr; in all the extent
of the uv-space W = ∑

pqkr Wpqkrδpqkr in functional form, i.e. the

weighted-sampling function. Substituting equation (9) into equation
(10) and applying the convolution theorem, we now have:

ID =
∑
pqkr

WpqkrPpqkr ◦ (I · Tpqkr), (11)

with the apparent sky I now tapered by the baseline-dependent
window response function Tpqkr, the latter being the inverse Fourier
transform of the baseline-dependent boxcar window:

Tpqkr = F−1

{
�

[uv]
pqkr

}
. (12)

Interestingly, equation (11) explicitly enforces conditions on the
dirty image which has the dependence on all the individual image-
plane response (IPR) tapers, Tpqkr. It should be noted that these
IPR tapers are not completely arbitrary; in the sense that they de-
pend on each baseline length and orientation. Longer baselines have
narrower IPR and are thus prone more to smearing than shorter
baselines.

In synthesis imaging, we assume that the sky is a constant signal
(transient events are ignored), but a time variable signal is measured
because the projected baseline change in orientation and length as
the Earth rotates. Also, the frequency coverage and array layout are
used to fill in the synthesized aperture, making the signal depending
on frequency and array layout. The boxcar window functions are
linear but depend on baseline length, which varies with time and
frequency: this is why in the entire uv-space, simple averaging is
not a true convolution as demonstrated in Atemkeng et al. (2016).
We refer this as a ‘pseudo-convolution’. However, if one considers
only a single east–west baseline, then simple averaging becomes a
true convolution because the lengths of the boxcar window do not
change along the uv-track. Simple averaging still remains a pseudo-
convolution for a baseline with a non-zero south–north component.
When considering the entire uv-space then it is not sufficient to
simply analyse the boxcar window functions IPRs. As opposed to
true convolution, the pseudo-convolution is a linear time–frequency
variant system, which leads to complexity in the analysis of the
signal conditioning. In practical situations, all the boxcar window
functions are window-function-unweighted, moving averages of the
measured visibilities, rather than the ideal visibilities. Consider that
V S

pqij is the measured visibility sample at pqij with high temporal
and spectral resolution. In this sense, we assume that V S

pqij ≡ Vpqij if
the noise term across all the visibility samples is ignored. Averaging
becomes a discrete convolution:

Ṽpqkr =

∑
i,j∈Bkr

V S
pqij�

[uv]
pqkr(upqij − upqkr)∑

i,j∈Bkr

�
[uv]
pqkr(upqij − upqkr)

, (13)

where the set Bkr corresponds to the bin indices of the sampling bin,
i.e. Bkr = {ij : tiνj ∈ B[�t�ν]

kr }.
This work investigates an alternative approach for visibilities

sampling, which emphasizes that in the entire uv-space all the base-
lines should be regularly sampled then window function should be
applied to shape the FoI. If the window function is a boxcar window
or a BDWF then the regular sampling will results to an invariant
window length in uv-space, which is now a true convolution in the
entire uv-space as opposed to the work discussed in Atemkeng et al.
(2016). A true convolution in the entire uv-space means that in the
tν-space, the time–frequency sampling intervals now varies across
baselines: longer sampling intervals on short baselines and shorter
on long baselines. Using this novel approach, the sampling bin de-
fined in equation (4) becomes baselines dependent: the width and
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Baseline-dependent sampling and BDWFs 4515

Figure 3. An east–west interferometer array: BDAWF defined in uv-space (top) and in tν-space (bottom). In uv-space, the sampling bin, the window resolution
and length remain constant across all the baselines, while the sampling rate varies with respect to the baseline length with shorter baselines oversampled and
longer baselines downsampled. In tν-space, all the baselines are sampled equally but the sampling bin, window resolution, and length are now varying.

height of the sampling bin vary as a function of east–west baselines
length. Also, with the novel approach the BDWFs in the tν-space are
sampled equally but are changing in lengths and resolution across
baselines. Each of these properties are shown in Fig. 3. Interest in
such techniques comes from the fact that:

(i) There are some longer baselines where the data should be
averaged more than some shorter baselines. This can be seen in the
histogram of Fig. 2, where data are condensed for baseline lengths
between ∼3.5 and ∼4.2 km than some shorter baselines. These
longer baselines have smaller east–west components and are less
prone to decorrelation/smearing, and so the data should be averaged
more.

(ii) The sampling bin for a single baseline with a non-zero east–
west and south–north components should vary along the baseline
uv-track depending on the baseline direction. This variation of the
sampling bin should be taken into account for regular sampling in
the uv-space.

(iii) The IPR taper for all the baselines may result in the same de-
gree of decorrelation/smearing if the visibilities are regular sampled
in the uv-space.

(iv) One may adapt signal processing methods that assume a true
convolution to find the optimal matched IPR. Finding an optimal-
matched IPR is beyond the scope of this paper, and part of an
ongoing study.

3 BASELINE-DEPENDENT SAMPLING AND
AV E R AG I N G : B DA

3.1 Effect on the image

An interferometer measures the average visibility over a rectan-
gular time–frequency bin given by �t and �ν: this is the sam-
pling bin defined in equation (4). In tν-space, for a fixed length of
time–frequency, the corresponding sampling bin swept by differ-
ent baselines in uv-space are not equal: shorter east–west baselines
sweep smaller sampling bin and vice versa. Similarly, for a fixed
sampling bin across all baselines in uv-space (baseline-independent
sampling bin in uv-space), the corresponding time–frequency in-
tervals in the tν-space vary with east–west baseline length: shorter
time–frequency intervals on long east–west baselines and longer
time–frequency intervals on short east–west baselines. Let us con-

sider a baseline-independent sampling bin in uv-space and let us
denote the variant time and frequency intervals by �upq t and �upqν

in tν-space, respectively. The sampling bin becomes baseline de-
pendent in tν-space [indicated here by the extra index upq, which is
not found in equation (4)]:

B
[�upq t,�upq ν]
kr =

[
tk − �upq t

2
, tk + �upq t

2

]

×
[
νr − �upqν

2
, νr + �upqν

2

]
. (14)

Fig. 3 shows a typical baseline-independent sampling bin in uv-
space (top left) and baseline-dependent sampling bin in tν-space
(bottom left). If we denote in function form by D the area of the
baseline-independent sampling bin in uv-space, then we have:

D : B[�upq t,�upq ν] → R
t, ν 	→ dupqkr ,

where R is the set of real numbers. One can decomposed dupqkr as
the product of the width dupqk and height dupqr of the sampling bin:

dupqkr = dupqk × dupqr . (15)

For (ti, ν j) 
= (tk, νr), dupqk and dupqr are given by:

dupqk =
∑
tiνj

∥∥upq(ti − tk, ν)
∥∥ , (16)

dupqr =
∑
tiνj

∥∥upq(t, νj − νr)
∥∥ , (17)

where tiνj ∈ B
[�upq t,�upq ν]
kr . If the visibilities are regular sampled

along all the baselines in the uv-space then for all east–west base-
lines αβ 
= pq with

∥∥uαβ

∥∥ 
= ∥∥upq

∥∥ the following constraints must
be satisfied:

duαβk = dupqk
and duαβr = dupqr . (18)

Let us see what equation (11) becomes in the case of regular
sampling along all the baselines in uv-space. The uv-space boxcar
window, �[uv]

pqkr is now approximately equal in length across all east–
west baselines, i.e. for all east–west baselines αβ 
= pq:

�
[uv]
αβkr ≈ �

[uv]
pqkr. (19)
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Does this meant that Tαβkr ≈ Tpqkr? The latter will be always true in
theory and not in practice. Note that while the length of the boxcar
window is equal for all baselines in uv-space, the boxcar window is
sampled differently (the top panel of Fig. 3 illustrates this in the case
where the boxcar window is replaced with a sinc-like window). The
boxcar window is downsampled on the longer east–west baselines
and oversampled on the shorter east–west baselines, which then
results to Tαβkr 
= Tpqkr. However, if the pre-averaged visibilities are
sampled at significantly higher temporal and spectral resolution (at
the cost of computation), then one can assume that all these boxcar
windows at different baselines are sampled equally. Considering
this assumption, we can write:

Tpqkr ≈ Tαβkr. (20)

Equation (11) becomes:

ID ≈
∑
pqkr

WpqkrPpqkr ◦ I · T, (21)

where T = Tpqkr ≈ Tαβkr is the smearing response, which is now the
effect of a single taper on the image. One can summarize equation
(21) as:

ID ≈ IA · T, (22)

where IA is the apparent image corrupted by all the effects that
affect the signal from the source to the measurement and noise.
The result in equation (22) is one of the mathematical derivation
achieved in this work, which shows that with BDA or BDAWFs in
effect, the dirty image is the apparent sky multiplied by a single
taper.

3.2 Implementation with current storage schemes

In practice, most existing software implementations assume that the
correlation matrix is a regular grid in time and frequency. Averaging
entries in this correlation matrix over long times for short baselines
and short times for long baselines results in an irregular grid. A
better idea is to map this irregular grid on to a correlation matrix
(i.e. regular grid) by either flagging out the supplementary points,
or duplicating the averaged values onto these supplementary points.

Flagging: most of the radio interferometric data reduction soft-
ware has a flagging capability, through which bad data can be
flagged and ignored. For BDA, we exploit this capability to force
interferometric data reduction software to ignore some entries of the
regularly gridded plane (e.g. the correlation matrix). In the flagging
procedure, one has to make sure that the sampling bin contains an
odd number of data points in time as well as in frequency. This con-
dition must be verified on all baselines otherwise the average base-
line vector may not coincide with the mid-time and mid-frequency
vector and this could lead to a phase shift. If this condition is satis-
fied, the average value is assigned to the mid-point of the sampling
bin. The other entries of the sampling bin are flagged. This flag will
cause missing samples to be ignored during post-processing.

Duplication: this method consists of duplicating the average
value at all entries of the sampling bin in tν-space. While this
process is easier to implement than the flagging method, it may not
serve the purpose of data compression and/or quick computation
for post-processing. It is easier to implement in the sense that one
may not care or always verify that the number of visibility points
in the sampling bin is an odd number. Furthermore, the data size of
the resulting data set remains the same as the pre-averaged data set,
since all values are duplicated along the pre-averaged data set. This
method may be used in practice for cases where one does not want

to estimate the averaged uv-coordinates from the pre-averaged data
set.

Semi-duplication and flagging: this method consists of combin-
ing the flagging and the duplicate methods in order to benefit from
their full advantages. In doing so, we seek both data compression
and quick computation, while making implementation easier to
handle. The idea is to duplicate the averaged bin along two central
entries of the sampling bin if the total number of entries within this
sampling bin is even, otherwise, the averaged bin is assigned only
to the central point of the sampling bin. Any other entry is then
flagged.

3.3 Compression and computation

The compression factor is defined as the ratio between the sizes of
the pre-averaged (high-res) data and the averaged (low-res) data. In
terms of the number of visibility samples, the high-res data size is:

Nhires
vis = Nbl × Nsub × Npol × Nhires

t × Nhires
ν , (23)

where Nbl is the number of baselines, Nsub the number of sub-bands,
Npol the number of polarization, and Nhires

t and Nhires
ν the number

of time slots and channels of the high-res data, respectively. For
npqkr = npqk × npqr number of samples in the sampling bin for a
given baseline pq, with npqk and npqr the baseline number of time
and frequency samples, respectively. If one were to adopt a new
storage scheme for BDA where there is no flagging or duplicated
visibility samples, the data size in terms of number of visibility
samples will be:

NBDA
vis =

∑
pqkr

Nsub × Npol × Nhires
t × Nhires

ν

npqk × npqr
. (24)

The compression factor after simplifications is then:

CF=
Nhires

vis

NBDA
vis

= Nbl ×
⎛⎝ ∑

pqkr

1

npqk × npqr

⎞⎠−1

. (25)

In the case of simple averaging, npqk = nt, npqr = nν with nt and nν

the number of time and frequency samples averaged on each of the
baselines. After simplifying equation (25), we have:

CF = nt × nν. (26)

In the following sections, we refer to the compression factor as
CF=CFt×CFν , where CFt and CFν are the compression factors
in time and frequency for the interferometer array, respectively.
The notations CF=CFt×1 and CF=1×CFν imply that the data are
compressed only in time by a factor of CFt and only in frequency
by a factor of CFν respectively. For BDA formalism, the shorter
baselines are compressed by much more than CF and the longer
baselines by much less, while this corresponds to CF for the inter-
ferometer overall compression factor, which remains constant for
all the baselines with simple averaging.

The computational cost Ccost during the compression of the over-
all data for an individual interferometer remains equivalent for both
BDA and simple averaging if their resulting compressed data are of
the same size. The compression cost will scale as:

Ccost ∼ O(NBDA
vis CF) (27)

∼ O(NblNvCF) (28)

∼ O(NblNvntnν), (29)
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Baseline-dependent sampling and BDWFs 4517

where Nv is the number of visibilities and O(Nvntnν) the com-
pression cost on each individual baseline after simple averaging,
respectively. But note that on each individual baseline, the cost
Ccost

pq then varies for BDA which scale as:

Ccost
pq ∼ O(Npqvnpqknpqr), (30)

with Npqv the baseline-dependent number of resulting visibilities on
pq after BDA. For shorter baselines Ccost

pq � O(Nvntnν) while on
the longer baselines Ccost

pq � O(Nvntnν) but the overall computation
cost leads to:

Ccost ∼ O
( ∑

pqkr

Npqvnpqknpqr

)
(31)

∼ O
(
NblNvntnν

)
. (32)

3.4 Noise and noise penalty

Let us look at what the estimates theoretical thermal noise induced
by BDA become in each of the averaged visibilities. If for the high-
res data, we assume that the noise term has constant rms σ s across
all the baselines, then the noise induced in each of the BDA visibility
is given by:

σ 2
pqkr,BDA = 1

n2
pqkr

npqkr∑
i=1

σ 2
s = σ 2

s

npqkr
. (33)

Let us assume that the noise is uncorrelated across averaged visi-
bilities. The average of the squared error norm in each pixel of the
dirty image is then:

σ 2
pix,BDA = (

∑
pqkr W

2
pqkrσ

2
pqkr,BDA)

(
∑

pqkr Wpqkr)2
, (34)

which for natural image weighting W ≡ 1 simplifies to:

σ 2
pix,BDA =

⎛⎝ CFσs

Nhires
vis

⎞⎠2 ∑
pqkr

1

npqkr
. (35)

It is clear that the noise induced by BDA is completely different
across baseline visibility samples because the number of averaged
samples are quite different; this is expected from equation (33). In
the case of simple averaging, equation (35) is reduced to:

σ 2
pix,AVG = CF

Nhires
vis ntnν

σ 2
s (36)

= 1

Nhires
vis

σ 2
s = 1

NAVG
vis ntnν

σ 2
s , (37)

where NAVG
vis is the number of visibilities in the simple-averaged data,

the index AVG stands for simple averaging. Refer to Appendix A
for a detailed proof of equations (35) and (37). The derivation in
equation (37) matches the result of the mathematical expectation
of the squared error norm in each pixel of the dirty image in the
case of simple averaged as shown in Atemkeng et al. (2016). It is
clearly shown in equation (37) that σpix,BDA = σpix,AVG. Note that
this is always true because both compression methods use a boxcar
window as a weighting function in the uv-space which means that all
the pre-averaged visibilities are equally weighted for both BDA and
simple averaging. If we compress the visibilities using a BDWF X(u,
v) or a BDAWF XBDA(u, v), the noise term still remains different
per each visibility pqkr:

σ 2
Xpqkr

=
∑

X2(upqij − upqkr)[ ∑
X(upqij − upqkr)

]2 σ 2
s , (38)

where the sums are taken over the baseline-independent sampling
bin indices and

σ 2
Xpqkr,BDA =

∑
X2

BDA(upqij − upqkr)[ ∑
XBDA(upqij − upqkr)

]2 σ 2
s , (39)

where the sums are taken over the baseline-dependent sampling
bins indices.

Equations (38) and (39) are of critical importance on the squared
error norm in each pixel of the dirty image and so they merit detailed
explanation:

(1) In tν-space, the length of the window X(u, v) (BDWF) remains
constant across all baselines, while the window resolution varies on
different baselines: in this sense, X(u, v) is baseline dependent.
Because the length of X(u, v) is constant along all the baselines, the
compression factor also remains constant across all the baselines,
as when applying a simple averaging (see Atemkeng et al. 2016).

(2) In tν-space, the window XBDA(u, v) (BDAWF) varies in
length (hence the extract index BDA) and resolution across all
baselines. Because the length of XBDA(u, v) varies along baselines,
the compression factor thus varies on different baselines (looking
back to Fig. 3).

(3) If one were to constrain the compression factor CF to be
equal for both ‘BDWF’ and ‘BDAWF’, the squared error norm in
each pixel of the dirty image will change radically. This can be
understood by looking at steps (1) and (2): X(u, v) and XBDA(u, v)
produce completely different weights for each (u, v) point. In other
words, X(u, v) 
= XBDA(u, v) for a given (u, v) point.

The visibility noise penalty induced by BDA or BDAWF is the
relative increase in noise over simple averaging:

�Xμ = σXμ

σAVG
. (40)

Here, σAVG = σ 2
s /(ntnν) is the noise on the simple-averaged visi-

bility and σXμ is either the noise induced by BDA or BDAWF. The
centre pixel noise penalty in the image with imaging weights W:

�W
μ = σ 2

pix,X

σpix
= (

∑
μ W 2

μ�2
Xμ)

(
∑

μ Wμ)2
. (41)

Note that the noise penalty properties induced by overlapping BD-
WFs defined in Atemkeng et al. (2016) remains valid for BDA and
BDAWF.

Simulations confirm the theoretical noise penalty estimate dis-
cussed above. The simulation consists of two data sets; the high-
and the low-res data sets using the MeerKAT telescope. The high-
res data set is simulated with σ s = 1 Jy thermal noise during a total
period of 4 h with 1 s integration time and 84 MHz bandwidth di-
vided into channels of 84 kHz. We then compress the high-res using
simple averaging, then BDA and BDAWFs, and save the resulting
visibilities to the low-res data set. For both compression schemes,
we fixed the compression factors to CF=15×10 and CF=30×20,
which then correspond to simple averaging across 15 s × 0.84 MHz
and 30 s × 1.68 MHz, respectively. We use the sinc tuned to an FoI
of 1.3 deg with overlap factors of 6 × 5 of the baseline-dependent
sampling bins. For each case of compression, we then consider
the rms pixel noise as an estimator of σ pix (simple averaging) and
σpix,X (BDA or BDAWFs). The analytical estimated and simulated
noise penalty are compared in Table 1. Results confirm that both
analytical estimates and simulations agree.
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4518 M. Atemkeng et al.

Table 1. A comparison of image noise penalties associated with different
BDA and BDAWFs, computed analytically (� theo) versus simulations (�
sim). The analytical noise penalty for BDA is equal to 1, this is straightfor-
ward by looking at equations (35) and (37).

Filters � theo � sim

BDA 15 s × 0.84 MHz 1.00 1.03
BDA 30 s × 1.68 MHz 1.00 1.004
BDA-sinc-6×5–1.3 deg 15 s × 0.84 MHz 1.19 1.23
BDA-sinc-6×5–1.3 deg 30 s × 1.68 MHz 1.51 1.56

4 SI M U L ATI O N S A N D R E S U LTS

Having explored the mathematics and implementation of BDA, we
now turn to the simulation aspects. The simulations are performed
with the MeerKAT and the EVN telescopes. The simulated images
are not calibrated and deconvolved to avoid introducing additional
effects relative to calibration and/or deconvolution algorithms. Two
test scenarios are considered and both of them are simulated using
MEQTREES (Noordam & Smirnov 2010):

(i) We consider a 1 Jy point source at various sky positions, with
no noise or other corruptions included. We evaluate the efficiency of
a BDA correlator using two different procedures. First, we simulate
the source at a fixed sky position, apply BDA, BDAWFs and mea-
sure the compression effects separately on each baseline. Secondly,
we simulate the point source at various angular distances from the
phase centre and apply BDA and BDAWFs, thereby evaluating the
interferometer cumulative decorrelation effects on all baselines. We
measure the source peak amplitude in each dirty image after com-
pression. Since each dirty image corresponds to a single source,
the peak gives us the degree of smearing associated with a given
compression method and compression factor.

(ii) The PB on its own could be used for source suppression, the
higher the frequency the less sources out of the FoI contaminate
the image. Tests are performed when the PB is included during the
simulations, BDA and BDWFs are applied to evaluate the combined
degree of suppression for sources out of the FoI.

4.1 Application to MeerKAT data

4.1.1 Source amplitude and east–west baselines

The experiment in Fig. 1 is repeated. The simulation consists of two
high-res measurement sets (MSs), each with a source at 2.25 deg
relative to the observation phase centre. Two low-res MSs are gener-
ated to receive the compressed visibilities. The results of the decor-
relation when applying simple averaging and BDA are compared in
the top panel of Fig. 4 and the BDA compression factors achieved
with the simulation are plotted in the bottom panel of Fig. 4.

(i) Time decorrelation and compression factors, Fig. 4 (left): the
MS consists of 64 frequency channels of 84 kHz width each, and
7200 s time slots of 1 s integration time. The compression factor is
fixed to CF=15×1 for both simple averaging and BDA. For BDA,
the shorter baselines are compressed by a lot more than 15 and
the longer baselines by a lot less, while for simple averaging this
corresponds to 15 factor of compression along all the baselines.

(ii) Bandwidth decorrelation and compression factors, Fig. 4
(right): the MS consists of 100 time slots of 1 s integration, and
1000 frequency channels of 84 kHz (total bandwidth of 84 MHz).
The compression factor is fixed to CF=1×10 both for simple av-
eraging and BDA. For BDA, the shorter baselines are compressed

by a lot more than 10 and the longer baselines by a lot less, and for
simple averaging this corresponds to a compression factor of 10.

It is clearly noticeable in the top panels of Fig. 4 that on shorter
baselines, the smearing rates of simple averaging and BDA are ap-
proximately equivalent despite the little percentage of signal lost
with BDA in the region between 0.2 and 0.8 km. This can be un-
derstood by looking at the MeerKAT histogram depicted in Fig. 2,
this is the region where one wants to compress the data as bigger
as possible. However, for a source at 2.25 deg and at these BDA
compression factors the degree of the decorrelation remains ap-
proximately equal across all the baselines. This result confirms our
mathematical prediction in equation (20). It appears from the simu-
lated time and frequency BDA compression factors depicted in the
bottom of Fig. 4 that the data are compressed more in frequency than
in time. This is because, for MeerKAT, the uv-track along 0.84 MHz
is smaller than the uv-track along 15 s. We can still constrain the
compression factors to be equal in both time and frequency, in prin-
ciple, the shape of the 2D uv-track should be square-like. To derive
this, we note that the averaged bandwidth must be equal to weνr�t,
where the constant we, is the Earth rotation velocity (Thompson,
Moran & Swenson 1986).

4.1.2 Source amplitude and distance from the phase centre

We simulate data at high time–frequency resolution of 1 s integra-
tion during 4 h and 84 kHz channels width for a total bandwidth of
84 MHz centred at 1.4 GHz. The sky model is a single 1 Jy point
source at a given distance from the phase centre. Three MSs are
generated to store the compressed visibilities:

(i) Two MSs contain the compressed visibilities for
15 s × 0.84 MHz and 30 s × 1.68 MHz, this result in compres-
sion factors of CF=15×10 and CF=30×20, respectively.

(ii) A third MS to receives the compressed visibilities for BDA
and BDAWFs. This MS is a copy of the high-res MS where the flag-
ging implementation for BDA described in Section 3.2 is applied.
Two compression factors are adopted for the BDA and BDAWFs:
CF=15×10 and CF=30×20.

Fig. 5 shows the performance of different compression schemes
and compression factors associated with their noise penalty. BDA
applied to a sinc-like BDWF is considered in this test and is turned to
three different FoI settings, as indicated by the plot: 0.65, 1.32, and
2.25 deg. The results can be alternatively appreciated by regarding
the performance of BDAWFs:

BDA with CF=15×10 provides good results in flux recovery,
i.e. for 6 per cent smearing we can image up to 4.5 deg FoI, while
simple averaging at the same compression factor can only recover
this FoI at 10 per cent smearing. The BDA with compression factor
CF=30×20 still provides better source recovery compared to simple
averaging at the same compression factor. We can also note that at
the same compression factor, the source suppression performance
of BDA is worse than that of simple averaging.

At the different compression factors, we see that all the BDAWFs
filters provide excellent performance in source recovery and far-field
suppression compared to simple averaging or BDA: smearing across
the FoI is less than 2 per cent (horizontal grey dashed line), and
out-of-FoI suppression is almost two orders of magnitude higher
than simple averaging or BDA. Note the tapering behaviour for
BDAWFs at the different compression factors. As the compression
factor increases, the response of BDAWFs becomes flat: this clearly
illustrates their excellent performance. The reason for this is that,
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Baseline-dependent sampling and BDWFs 4519

Figure 4. Top: amplitude loss: the apparent intensity of a 1 Jy source at 2.25 deg as seen by MeerKAT at 1.4 GHz, as a function of east–west baseline
components; left: compression carried out only in time with compression factor fixed to 15 time bins; and right: compression is carried out only in frequency
with compression factor fixed to 10 frequency bins. Bottom: baseline-dependent compression factors in time (left) and frequency (right) both in logarithm
scale as a function of east–west baseline length.

a unique sinc-like window function is applied on all the baselines
(recall from Fig. 3). For larger compression factors the sinc-like
window function becomes more proximate to the ‘sinc’, which
results in a more optimal ‘boxcar-like’ taper in the image domain. In
general, the noise penalty does depend on the compression scheme
and parameters, this is the case for BDAWF, where all the parameters
i.e. compression factors, overlapping bins and FoI result in noise
penalty dependent.

4.1.3 Relative S/Ns using MeerKAT data

Simulations are used to separate the variables Ssmear, Cnoise, and
Tnoise in equation (2). The simulated MS in Section 4.1.2 is reused.
We consider to evaluate the S/N of an image of ∼0.5 × 0.5 deg
centred at 0.65, 1.32, and 2.25 deg. For each case, we know Ssmear

from Fig. 5. To evaluate the contamination, and for each case, we
simulate two sources: a nearby source of 1 Jy (1 deg away from
each case) and a distant source of 10 Jy (20 deg away from each
case), and make an image. The image will be empty, except for
the contribution from these two sources. For the thermal noise, an
empty sky is simulated with 1 Jy thermal noise for each of the cases
listed above. The different compression methods are applied and

their resulting S/N are listed in Table 2. Results show that our com-
pression technique demonstrates better performance in S/N when
compared to simple averaging. Comparatively, using BDAWFs pro-
vide the best performance in S/N, up to a factor of ∼4 higher than
simple averaging or BDA. Note that in regions where the source
suppression response of BDAWFs kicks in, the S/N quickly drops,
since BDAWFs are suppressing the source signal itself at this point.

4.1.4 BDAWFs combined with the primary beam and source
suppression

The additional degree of source suppression provided by BDAWFs
augments the source suppression provided by the PB, as investigated
by e.g. Mort et al. (2017). Note that BDA by itself (without window
functions) actually provides ‘less’ source suppression than simple
averaging, at the same compression factor.

In this section, we investigate and compare the combined suppres-
sion factor achieved by the PB and averaging, BDA and BDAWFs.
A PB model for MeerKAT at 1.4 GHz along with a nearby 20 Jy
source located at the second side lobe of the PB is simulated us-
ing the MS described in Section 4.1.2. We supposed imaging up
to the FWHM of the MeerKAT PB at 1.4 GHz (i.e. 0.65 deg away
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4520 M. Atemkeng et al.

Figure 5. Amplitude loss: the apparent intensity of a 1 Jy source as seen by the MeerKAT telescope at 1.4 GHz as a function of distance from phase centre, for
simple averaging with 15 s × 0.84 MHz and 30 s × 1.68 MHz bins, and for BDA and BDAWFs. The compression factor is fixed to CF=15×10 and CF=30×20
for all the compression methods.

Table 2. Simulated S/N as decribed in equation (2), i.e. S/N ≈
Ssmear/(Cnoise + Tnoise), where Ssmear, Cnoise, and Tnoise are defined as the
signal of a source of interest, and the contamination signals that affect the
signal of interest and the thermal noise, respectively. Here, Tnoise = σ pix, X

defined in Section 3.4.

Filters 0.65 deg 1.32 deg 2.25 deg

AVG 15 s × 0.84 MHz 16.827 16.437 15.672
BDA 15 s × 0.84 MHz 14.767 14.544 14.072
BDA-sinc-6×5–1.3 deg 15 s × 0.84 MHz 64.354 11.590 1.144
BDA-sinc-6×5–2.6 deg 15 s × 0.84 MHz 40.256 64.538 9.554
BDA-sinc-6×5–4.5 deg 15 s × 0.84 MHz 32.576 32.569 60.249

from the field centre). Three filters are considered and compared,
AVG 15 s × 0.84 MHz, BDA 15 s × 0.84 MHz, and BDA-sinc-
6×5–1.3 deg 15 s × 0.84 MHz both having for compression factor
CF=15×10. Fig. 6 shows dirty images of size 40 × 40 arcmin
at different pixel scales. These images should be empty except
the contamination from the nearby source. The top left and top
right images of Fig. 6 show the high-res (i.e. image produced
with the pre-averaged MS) and the simple-averaged images, re-
spectively. The bottom left and bottom right images are produced
after applying BDA 15 s × 0.84 MHz and BDA-sinc-6×5–1.3 deg
15 s × 0.84 MHz, respectively. For both cases, the high-res image is
confusion noises dominated across the FoI. The compressed images
show a more confusion noise-free images. Unlike BDA that con-
siders only a flux recovery in the image domain, BDAWFs consider
both flux recovery in the given FoI and source suppression out of
this FoI. This is clearly seeing in Fig. 6 that BDA on its own does
not remove the contamination than simple averaging but BDAWF
does remarkably well.

4.2 BDAWFs and the EVN

In VLBI, the baselines are so long (up to ∼10 000 km) that the
FoV is always limited, and normally it is only a tiny fraction of
the PB at the FWHM because of decorrelation due to time and
bandwidth averaging. To keep decorrelation/smearing at accept-
able level, one may apply wide-FoV correlation, but handling the
resulting data volumes has been challenging (e.g. Chi, Barthel &
Garrett 2013). Another solution is to uv-shift wide-field correlated
data to various phase centres and apply averaging then to obtain a
number of smaller FoV within the PB (Morgan et al. 2011; Ruiz
et al. 2017). This has been fully implemented in the EVN Soft-
ware Correlator (Keimpema et al. 2015). Multiphase centre corre-
lation makes milliarcsecond-resolution imaging of a-priori known
sources spread over a wide FoV possible, this has now been ap-
plied routinely at the EVN. But some applications (e.g. transient
search within the full PB in VLBI data, or to build up a wide-
FoV EVN archive) would require storing the raw data from all
telescopes, however, this results in very large volumes unless there
are alternative approaches. We investigate the possibility of using
BDA and BDAWFs in VLBI to preserve a significant fraction of
the PB while significantly reducing the data volume. We repeated
the simulation scenarios described in Section 4.1.2 using the full
EVN (i.e. Badary, Effelsberg, Hartebeesthoek, Jodrell Bank, Medic-
ina, Noto, Onsala, Shanghai, Svetloe, Torun, Westerbork, and Ze-
lenchukskaya) at 1.6 GHz. The results are given in Fig. 7. It can be
seen that for a certain compression rate with simple averaging that
would result in an FoI of 6 arcmin, an equivalent compression rate
using BDA or BDAWFs would result in an FoI of 18 arcmin. We also
note that, if one aims at imaging an FoI of 18 arcmin with simple
averaging, then this is possible with BDA reducing data by a factor
of 9.38, and the factor can be even higher with BDAWFs. While
these initial tests are very promising, in VLBI there is a significant
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Baseline-dependent sampling and BDWFs 4521

Figure 6. Contamination in the FoI from a 20 Jy source located at the second null of the MeerKAT PB. Initially, the data are imaged without data compression
been carried out (top left panel). After data compression is applied using AVG 15 s × 0.84 MHz (top right), BDA 15 s × 0.84 MHz (bottom left), and
BDA-sinc-6×5–1.3 deg 15 s × 0.84 MHz (bottom right). The colour bars of the images are in Jansky and are in different scales. BDAWFs offer better reduction
in source contamination compared to AVG 15 s × 0.84 MHz and BDA 15 s × 0.84 MHz.

trade-off in sensitivity and resolution, therefore the best approach
should be investigated in detail independently for each science
application.

5 C O N C L U S I O N A N D P E R S P E C T I V E S

As discussed above compression of visibilities by simple averaging
shows that decorrelation/smearing is more significant on longer
baselines than shorter ones and that decorrelation can only be
avoided if the correlator performs the averaging procedure over
smaller bins, which however results in high data rates. We now make
predictions pertaining to sample the visibilities regularly across all
the baselines in the entire uv-space and apply BDA and BDAWFs.
Intuitively, in the time–frequency space (or the correlator domain),
this corresponds to averaging within sufficiently large sampling
bin for shorter baselines, while the longer baselines are averaged
within shorter sampling bin. The question is then whether such
averaging technique will not only decrease smearing within the ob-
servation FoI, but, also reduce the data size. The second question
pertains to calibration issues for this method given that calibra-
tion is a complex visibilities correction process. BDA could intro-

duce complexity further down the line: it could, for example, mean
that a dynamic calibration solution interval would become neces-
sary. This implies that the calibration solution interval will change
differently with baselines and each of the frequency and/or time
intervals.

We have established that BDA by itself can only achieve data
compression but not FoI shaping: BDA does decrease smearing
over the FoI, while on the other hand, sources out of FoI are
not suppressed compared to simple averaging. We have found that
BDAWFs result in excellent tapering behaviour, which can decrease
smearing to about 2 per cent or less over a selected FoI, with out-
of-FoI source suppression almost two orders of magnitude higher
than simple averaging, while the data are compressed at the same
rate.

We should note that like simple averaging, BDA and BDAWFs
also distort the PSF, which becomes position dependent and reacts
differently compared to simple averaging. However, for an efficient
use of BDA and BDAWFs, one requires to predict this PSF at differ-
ent sky positions during deconvolution. There exists a faceting imag-
ing framework that accounts for this PSF variation during deconvo-
lution when applying BDA (see DDFACET, Tasse et al. 2018). DDFACET
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Figure 7. Amplitude loss: the apparent intensity of a 1 Jy source as seen by EVN at 1.6 GHz as a function of distance from phase centre. Results show that
the data can be compressed a lot more than a factor of 9.38 using BDAWFs.

uses the brute-force approach to compute the PSF at the centre of
each facet, and this PSF is used to deconvolve the facet. However,
a brute-force computing load is tolerable for small size facets. For
large facets and for any non-faceting deconvolution algorithm, an
approximation based method to derive all these PSFs must be imple-
mented with the aims to reduce computing cost (Atemkeng et al. in
preparation) .

This paper opens up several possibilities for future work. First,
designing an optimally matched filter for a BDAWF is an inter-
esting avenue of further research. In practical situations, the IPR
of a sinc-like low-pass filter is far from ideal in the sense that a
sinc-like filter is band-limited (zero outside some intervals) and
sampled. Filter design theory for low-pass filters could, therefore,
be used to explore an ideal IPR, by using an approximation to
define the ideal filter coefficients and parameters, such as the pass-
band, the transition band and the stopband. The second avenue
involves evaluating the degree of source suppression as a function
of array layout and BDAWFs parameters, i.e. the passband, tran-
sition band, stopband, and the size of the filter. The third avenue
of exploration consists of investigating and exploring calibration
with BDA and BDAWFs. Currently, BDA and BDAWFs can only
be used post-calibration. Exploring the calibration parameters for
BDA and BDAWFs could open a new research avenue in radio in-
terferometry, in view of the effective use of BDA and BDAWFs.
Another possible work on BDA will be to explore a possible new
storage scheme to take full advantage of the compression capabili-
ties of BDA. In this work, we have considered and used only data
structures that an MS and other software packages we used can
support. The MS has a lot of flagging entries that still reside in
memory.

Finally, this document was restricted to simulations. The next
step will be to implement each of the techniques presented in this
work in practical research scenarios, e.g. applying the filters to real
interferometric data.
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A P P E N D I X A : MATH E M AT I C A L D E TA I L S FO R
T H E N O I S E VA R I A N C E

Assuming an uncorrelated noise across the BDA-averaged visi-
bilities, the variance in each pixel in the uncleaned map for any
weighting scheme W is derived as:

σ 2
pix,BDA =

∑
pqkr W

2
pqkrσ

2
pqkr,BDA

(
∑

pqkr Wpqkr)2
, (A1)

Setting W ≡ 1 (natural weighting), we have:

σ 2
pix,BDA =

∑
pqkr σ

2
pqkr,BDA

(N lores
vis )2

, (A2)

where N lores
vis is the total number of visibilities interring the uv-

space after BDA. Recall that σ 2
pqkr,BDA = σ 2

s /npqkr, see equation

(33). Equation (A2) leads to:

σ 2
pix,BDA =

⎛⎝ σs

N lores
vis

⎞⎠2 ∑
pqkr

1

npqkr
. (A3)

We defined in equation (25), the compression factor as CF =
Nhires

vis /N lores
vis , thus N lores

vis = Nhires
vis /CF replacing the latter in equa-

tion (A3), we then have:

σ 2
pix,BDA =

⎛⎝ CFσs

Nhires
vis

⎞⎠2 ∑
pqkr

1

npqkr
, (A4)

which is the result in equation (35). In the case of simple averag-
ing, where the time–frequency compression factor remains constant
across all the interferometer baselines (i.e npqkr = ntnν = CF), the
sum in equation (A4) will now yield to:∑
pqkr

1

npqkr
= 1

ntnν

N lores
vis . (A5)

If one replace equation (A5) in equation (A4), then we have:

σ 2
pix,AVG = CF2

Nhires
vis

N lores
vis

Nhires
vis

1

ntnν

σ 2
s , (A6)

knowing that CF = ntnν = Nhires
vis /N lores

vis , after simplifications we
then arrived at:

σ 2
pix,AVG = CF

Nhires
vis ntnν

σ 2
s (A7)

= 1

Nhires
vis

σ 2
s = 1

N lores
vis ntnν

σ 2
s , (A8)

which is the result presented in equation (37), where N lores
vis is simply

the number of visibilities in the simple-averaged data, i.e. N lores
vis =

NAVG
vis .

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 477, 4511–4523 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/477/4/4511/4935184 by guest on 15 M
ay 2023

http://dx.doi.org/10.1109/JPROC.2009.2020713
http://dx.doi.org/10.1007/s10686-005-2546-6
http://dx.doi.org/10.1051/0004-6361/201015775
http://dx.doi.org/10.1051/0004-6361/201015013
http://dx.doi.org/10.1088/0004-6256/138/1/219
http://dx.doi.org/10.3847/0004-637X/820/1/51
http://dx.doi.org/10.1051/0004-6361/201731163
http://dx.doi.org/10.1016/j.ascom.2017.04.001
http://dx.doi.org/10.1051/0004-6361/201116434
http://dx.doi.org/10.1051/0004-6361/201016082
http://dx.doi.org/10.1051/0004-6361/201220873

