
HAL Id: hal-02280915
https://hal.science/hal-02280915v1

Submitted on 6 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sindarin: A Versatile Scripting API for the Pharo
Debugger

Thomas Dupriez, Guillermo Polito, Steven Costiou, Vincent Aranega,
Stéphane Ducasse

To cite this version:
Thomas Dupriez, Guillermo Polito, Steven Costiou, Vincent Aranega, Stéphane Ducasse. Sindarin: A
Versatile Scripting API for the Pharo Debugger. Proceedings of the 15th ACM SIGPLAN International
Symposium on Dynamic Languages, Dec 2019, Athens, Greece. �10.1145/3359619.3359745�. �hal-
02280915�

https://hal.science/hal-02280915v1
https://hal.archives-ouvertes.fr

Sindarin: A Versatile Scripting API for the Pharo
Debugger

Thomas Dupriez
Univ. Lille, CNRS, Centrale Lille,

Inria, UMR 9189 - CRIStAL
France

thomas.dupriez@univ-lille.fr

Guillermo Polito
CNRS - UMR 9189 - CRIStAL, Univ.

Lille, Centrale Lille, Inria
France

guillermo.polito@inria.fr

Steven Costiou
Inria, Univ. Lille, CNRS, Centrale

Lille, UMR 9189 - CRIStAL
France

steven.costiou@inria.fr

Vincent Aranega
Univ. Lille, CNRS, Centrale Lille,

Inria, UMR 9189 - CRIStAL
France

vincent.aranega@univ-lille.fr

Stéphane Ducasse
Inria, Univ. Lille, CNRS, Centrale

Lille, UMR 9189 - CRIStAL
France

stephane.ducasse@inria.fr

Abstract
Debugging is one of the most important and time consuming
activities in software maintenance, yet mainstream debuggers
are not well-adapted to several debugging scenarios. This
has led to the research of new techniques covering specific
families of complex bugs. Notably, recent research proposes
to empower developers with scripting DSLs, plugin-based and
moldable debuggers. However, these solutions are tailored to
specific use-cases, or too costly for one-time-use scenarios.

In this paper we argue that exposing a debugging scripting
interface in mainstream debuggers helps in solving many chal-
lenging debugging scenarios. For this purpose, we present
Sindarin, a scripting API that eases the expression and au-
tomation of different strategies developers pursue during their
debugging sessions. Sindarin provides a GDB-like API, aug-
mented with AST-bytecode-source code mappings and object-
centric capabilities. To demonstrate the versatility of Sindarin,
we reproduce several advanced breakpoints and non-trivial
debugging mechanisms from the literature.

Keywords debugging, object centrics, scripting, Pharo

1 Introduction
Debugging is an important part of software development.
Literature describes it as a difficult task, on which develop-
ers spend sometimes more than 50% of their development
time [37–39, 41, 43]. Traditional debuggers, often called
breakpoint-based or online debuggers, support interactive
debug sessions via a graphical user interface. In such debug-
gers, the developer makes a hypothesis about the cwause of a
bug and manually places breakpoints in the relevant pieces
of the code. When the debugger stops in a breakpoint, the
developer explores the subsequent execution by commanding
a step-by-step execution on it.

DLS ’19, October 20, 2019, Athens, Greece

Studies and work on debugging acknowledge that main-
stream debuggers are not well adapted to several debugging
scenarios [3, 27, 31]. This has led to the appearance of new de-
bugging techniques proposing to augment traditional interac-
tive debuggers with, e.g., stateful breakpoints [4], control-flow
aware breakpoints [5], object-centric breakpoints [10, 34], the
automatic insertion of breakpoints based on dynamic execu-
tions [45], or declarative statements from the developer [21].
A line of research has also started to study scripting APIs to
empower developers to implement debugging scripts adapted
to their needs. These scripting APIs help developers to e.g.,
insert breakpoints based on cross-cutting concerns [42] or
declaratively explore post-mortem executions [32]. Even fur-
ther, the moldable debugger framework [6] allows developers
to create domain-specific debuggers with domain-specific
views and operations. With the exception of the moldable
debugger framework, all these solutions are dedicated tools
and the developer is left alone to benefit from them in an
integrated way.

Research questions. Our research question is:
• What is a debugger API that is powerful and versatile

enough to allow developers to perform many debugging
tasks that would normally require specific debugging
tools or tedious manual operations?

In this paper we present Sindarin1, a scriptable on-line de-
bugger API for Pharo2 [13], and we use it to reproduce several
debugging scenarios and advanced breakpoints from the liter-
ature. To do this, Sindarin exposes stepping and introspection
operations not always appearing in mainstream debuggers
such as VisualStudio or GDB. In addition, it simplifies the

1 This work was supported by Ministry of Higher Education and Research,
Nord-Pas de Calais Regional Council, CPER Nord-Pas de Calais/FEDER
DATA Advanced data science and technologies 2015-2020. The work is
supported by I-Site ERC-Generator Multi project 2018-2022. We gratefully
acknowledge the financial support of the Métropole Européenne de Lille.
2Pharo is a pure object-oriented dynamically typed programming language
inspired by Smalltalk - http://www.pharo.org.

http://www.pharo.org

DLS ’19, October 20, 2019, Athens, Greece Thomas Dupriez, Guillermo Polito, Steven Costiou, Vincent Aranega, and Stéphane Ducasse

creation of personalized debugging scripts by providing AST
mappings, thus also proposing different stepping granularity
over the debugging session. Finally Sindarin facilitates object
reachability to use object-centric debugging [12, 34].

Contributions. The contributions of this paper are:

• The identification of three main requirements that a
debugger API must satisfy to allow developers to solve
many debugging scenarios from the literature: step
granularity at the expression level, full access to execu-
tion contexts (reading and modifying) and a bytecode-
to-AST mapping.

• The design of a debugger API through which develop-
ers can express several debugging scenarios and break-
points from the literature, that would normally require
specific tools.

Outline. The paper is structured as follows: Section 2 presents
an overview of the Sindarin API and a usage example . Sec-
tion 3 presents debugging scenarios from the literature and
how they are solved with compact Sindarin scripts. Section 4
shows how to use Sindarin to express advanced breakpoints
from the literature. Section 5 shows how Sindarin facilitates
object-centric debugging. Section 6 analyses the requirements
of debugging scenarios and compares them to mainstream
debugger APIs. Section 7 gives a glance at the implemen-
tation of Sindarin in the Pharo debugger and its integration
in the Integrated Development Environment. It also explains
how Sindarin could be integrated in mainstream software
development and discusses its limitations Section 8 exposes
the related work. Finally, section 9 touches upon other as-
pects around Sindarin, like self debugging or the generation
of persistent artifacts from Sindarin scripts.

2 Sindarin’s Overview
Sindarin is a scripting API for the Pharo debugger, imple-
mented as an internal DSL. In this section we introduce Sin-
darin through an example making use of several of its features.
We then document an extract of Sindarin’s API, as it is used
in the rest of the paper to illustrate more advanced debugging
scenarios.

2.1 Sindarin by Example
To illustrate Sindarin, let’s consider a program that operates
on several files inside a directory. After some seconds running,
the program tries to re-open an already open file and fails.
The developer would like the program to stop when a file is
opened for the second time and know for this specific file how
and when it was opened the first time. The Sindarin script
shown in Listing 1 solves this problem3. It (a) first detects

3For readers unfamiliar with the Pharo/Smalltalk syntax:

• The message-send notation uses spaces instead of dots, and there are
no parenthesis to specify arguments: dbg currentNode is equivalent to
dbg.currentNode()

when a file is opened and records the stack when this happens,
then (b) it steps until an already open file is opened again.

1 result := nil
2 finished := false.
3 stackDictionary := Dictionary new.
4 [finished] whileFalse: [
5 (dbg currentNode isMessageNode
6 and: [(dbg messageReceiver isKindOf: File)
7 and: [dbg messageSelector = #open]])
8 ifTrue: [
9 result := stackDictionary

10 at: dbg messageReceiver
11 ifPresent: [finished := true]
12 ifAbsentPut: [dbg stack copy]].
13 dbg step]

Listing 1. Sindarin illustrated. Step until a file is open
twice and return the stack that was saved when it was first
opened.

This script continuously steps the execution (lines 4 and
13). After each step, it checks if the execution is about to
send a message (line 5) to an instance of the File class (line
6). If the message is #open (line 7), it checks in a dictionary
whether the file has already been opened (line 9-10). If the
file is being opened for the first time, an entry is added in
the dictionary with a copy of the current execution stack as
value (line 12). If there is already an entry (line 11) the stack
of interest is stored in result and the script terminates.

This example illustrates several aspects of the API:

Step Operations. Sindarin commands the execution
through a step method performing a step-into (line 13).

Stack frame access. The stack frame is queried multiple
times during the script to get the receiver of a mes-
sage before it is executed (lines 6, 10) and to obtain the
current stack trace (line 12).

AST Mapping. Sindarin’s currentNode method maps the
current program counter to the corresponding AST
node, allowing high-level queries on the execution
(lines 5, 7).

Object-reachability. All objects created and used dur-
ing the execution are reachable by the Sindarin script,
easing the construction of object-centric debugging
scripts (lines 6, 10).

Sindarin scripts are stateful: they can define and use variables.

• Arguments are specified by colons: e.g.,
dbg messageReceiver isKindOf: File
is equivalent to
dbg.messageReceiver().isKindOf(File)

• Square brackets [] delimit lexical closures.

DLS ’19, October 20, 2019, Athens, Greece

2.2 Sindarin’s API
Sindarin’s internal DSL exposes among others:

Expression-level Step Operations. Basic step operations
like step into and step over. Unlike in most other debug-
ging APIs, these operations work at the expression level
rather than the line level.

Full Context Access. Access to, and manipulation of the
stack trace and its stack frames.

AST Mapping. A bytecode-AST mapping, mapping the
debugged program’s program counter to the AST node
currently executed.

Object-Centric Debugging Operations. Scope break-
points to specific objects.

Breakpoint-related Operations. To set, customize and
remove breakpoints.

Sindarin’s API is further described in Table 1. The nota-
tions used in the table are as follows: dbg stands for scriptable
debugger, ctx stands for a context (a.k.a. stack frame), ast
stands for an AST node and bp stands for breakpoint.

3 Solving Debugging Scenarios with Sindarin
In this section we present debugging scenarios frequently
encountered by developers in the literature and we show how
they can be solved with Sindarin.

3.1 Monitoring Assignments to a Variable
In this scenario described originally in [42], a developer spots
that the foo instance variable of the class Bar has, at some
point of the execution, the unexpected value of 42. To find the
cause of the bug, she wants to know which assignments store
42 into the variable, for what she needs to manually search
all writes to that variable and set a conditional breakpoint on
them.
Fig. 2 shows a Sindarin script solving this problem. This script
steps the execution until an assignment with value 42 (line 3)
is about to be performed on the #foo variable (line 4) on an
instance of the Bar class (line 5). The assignment is detected
in line 2 using AST comparison. This condition makes sure
the script does not catch assignments to instance variables of
the same name but from another class. With this script, the
developer can quickly find the unexpected assignment and
proceed from there to find the cause of the bug.

1 dbg stepUntil: [
2 dbg currentNode isAssignment
3 and: [(dbg assignmentValue == 42)
4 and: [(dbg assignmentVariableName = #foo)
5 and: [dbg receiver isKindOf: Bar]]]
6]

Listing 2. Stopping on specific assignments with
Sindarin.

3.2 Stopping Before an Exception
When debugging, developers often want to stop the execution
just before a certain situation occurs, for example a specific
exception being raised. To raise an exception in Pharo, the
message signal must be sent to a subinstance of the class
Exception, so this is what the script will look for.

Using Sindarin the developer can write the script shown in
Listing 3, that steps the execution until it is about to raise an
exception.

1 dbg stepUntil: [
2 dbg currentNode isMessage
3 and: [(dbg messageSelector = #signal)
4 and: [dbg messageReceiver isKindOf: Exception]]]

Listing 3. Sindarin script to step until an exception is
about to be signalled.

This scenario is very close to the one proposed by Haihan
et al., where a developer observes a NullPointerException in
a chain of dereferences [42], as illustrated by the following
Java expression total.getObjects().addAll(current.getObjects()).

In Java, when the exception is raised, the context where
the problem happened and its intermediate expressions is lost:
only the line number where the error was raised is available.
If the developer wants to find the problematic sub-expression,
she needs to rewrite the expression with one statement per line,
or use a complex chaining of step into operations. However,
even if the two problematics are, somehow, equivalent (a
specific exception is raised), this time the developer wants to
stop before the call is performed, and not before the exception
is sent.

A Sindarin script solving this problem is illustrated in
Listing 4. This script steps the execution until a message
is about to be sent to a receiver with value nil. When the script
finishes, the debugger is in the state desired by the developer:
the execution is suspended in the problematic sub-expression.

1 dbg stepUntil: [
2 dbg currentNode isMessage
3 and: [dbg messageReceiver = nil]]

Listing 4. Catching message-sends to nil.

3.3 Placing Breakpoints on a Family of Methods
In this scenario, the execution opens the same file multiple
times, through different file-opening methods whose names
conform to a given regex pattern (e.g.,’.*open.*File.*’). The
developer wants to set breakpoints in all the methods that
call one of these file-opening methods to open the given
file (e.g.,’myFile.txt’). With Sindarin, the developer writes the
script shown in Listing 5. This way of expressing a location in
the code using an expression is close to pointcuts definitions
in Aspect-Oriented Programming [20].

DLS ’19, October 20, 2019, Athens, Greece Thomas Dupriez, Guillermo Polito, Steven Costiou, Vincent Aranega, and Stéphane Ducasse

Table 1. The Sindarin debugging API

Stepping

dbg step Executes the next instruction. If the instruction is a message-send, step inside it.
dbg stepOver Executes over the next instruction. If the instruction is a message-send, step it until it returns.
dbg stepUntil: aPredicate Steps the execution until the predicate is true.
dbg skipWith: obj Skips the execution of the current instruction, and puts the object obj on the execution stack.
dbg skip Skips the execution of the current instruction, and puts nil on the execution stack.
dbg continue Steps the execution until a breakpoint is hit. Returns a reification of the breakpoint hit.

Stack Access

dbg isExecutionFinished Returns whether the debugged execution is finished.
dbg context Returns a reification of the current stack-frame.
dbg stack Returns a list of context objects representing the current call stack.
ctx pc Returns the current program counter of the given context.
ctx sender Returns the sender context of the given context.
ctx receiver Returns the receiver of the given context.
ctx selector Returns the selector of the given context.
ctx method Returns the method of the given context.
ctx arguments Returns the arguments of the given context.
ctx temporaries Returns the temporary variable of the given context.

Stack Modification

ctx push: aValue Pushes aValue into the stack-frame’s value stack.
ctx pop Pops a value from the stack-frame’s value stack and returns it.

AST and AST Mapping

dbg currentNode Returns the node that corresponds to the current program counter.
ast accept: visitor Visits the current node using a visitor pattern.
ast is*Node Returns true if the receiver is a node of the specified kind (for example: ast isMessageNode).

Object-Centric Debugging

dbg haltOnCall: obj Breaks next time the object obj receives any message.
dbg haltOnCall: obj for: m Breaks next time the object obj receives the message m.
dbg haltOnWrite: obj Breaks next time any instance variable of the object obj is written.
dbg haltOnWrite: obj field: iv Breaks next time the instance variable iv of the object obj is written.

Breakpoints

dbg setBreakpoint Sets a breakpoint on the current node, returns an object reifying the breakpoint.
dbg setBreakpointOn: T Sets a breakpoint on T (a node or a compiled method), returns an object reifying the breakpoint.
bp whenHit: aBlock Defines a sequence of debugging operations to perform when a breakpoint bp is hit.
bp remove Removes the breakpoint bp.
bp once Configures the Breakpoint bp to remove itself the next time it is hit. Returns bp.

Stack Access Helpers

dbg receiver Returns the receiver of the current stack-frame.
dbg selector Returns the selector of the current stack-frame.
dbg method Returns the method of the current stack-frame.
dbg arguments Returns the arguments of the current stack-frame.
dbg temporaries Returns the temporary variables of the current stack-frame.
dbg messageReceiver Returns the receiver of the message about to be sent, if the current node is a message node.
dbg messageSelector Returns the selector of the message about to be sent, if the current node is a message node.
dbg messageArguments Returns the arguments of the message about to be sent, if the current node is a message node.
dbg assignmentValue Returns the value about to be assigned, if the current node is an assignment node.
dbg assignmentVariableName Returns the variable name about to be assigned to, if the current node is an assignment node.

DLS ’19, October 20, 2019, Athens, Greece

1 [dbg isExecutionFinished] whileFalse: [
2 (('.*open.*File.*' match: dbg selector) and:
3 [(dbg context arguments at: 1) = 'myFile.txt'])
4 ifTrue: [dbg setBreakpointOn: dbg context sender method].
5 dbg step]

Listing 5. Setting breakpoints on a family of methods.

This script steps through the whole execution (line 1).
When the selector of the current method matches the pat-
tern (line 2) and the argument of the current method is the
file the developer is interested in (line 3), the script places a
breakpoint in the method that called the current method (line
4). Once all the breakpoints are set, the developer can launch
again his program and start the debugging session knowing
she will stop each time the file myFile.txt is opened.

4 Expressing Advanced Breakpoints
In this section, we show how to use Sindarin to express more
advanced breakpoints.

4.1 Control-Flow Breakpoints
In [5], Chern and De Volder present a breakpoint-definition
language to define breakpoints based on control-flow aspects
of the execution. Their motivational example is that a method
ProjectBrowser»#trySaveAs: that they want to debug is called
by multiple other methods during the execution. They want
the execution to stop in this method, but not if it is called by
ActionSaveProjectAs»#actionPerformed: because they identified
that situation to be uninteresting.

To express this, a developer using Sindarin writes the script
shown in Listing 6. This script steps the execution until the
current method is the desired one (line 2) and the method of
the sender context is not the undesired one (lines 3-4).

1 dbg stepUntil: [
2 (dbg method = ProjectBrowser>>#trySaveAs:) and:
3 [(dbg context sender method =
4 ActionSaveProjectAs>>#actionPerformed:) not]]

Listing 6. Sindarin script for a control-flow breakpoint

This scenario is slightly more complicated if the ActionSave-
ProjectAs»#actionPerformed: method is not the direct sender
but is lower in the stack. The developer wants to stop the ex-
ecution in the ProjectBrowser»#trySaveAs: method, but not if
the ActionSaveProjectAs»#actionPerformed: method is present
anywhere in the stack. To solve this extended scenario, the
developer replaces line 3 of the original script to look up the
entire stack, as shown in Listing 7.

1 dbg stepUntil: [
2 (dbg method = ProjectBrowser>>#trySaveAs:) and:

3 [(dbg stack anySatisfy: [:ctx | ctx method =
ActionSaveProjectAs>>#actionPerformed:) not]]

Listing 7. Sindarin script for a control-flow breakpoint
(extended scenario).

4.2 Chaining Pitons
Some bugs are only reproducible deep inside an execution.
Long loops and recursive structures are examples of common
programming patterns that harm debugging. Debugging in
these scenarios is not only time consuming, but also requires
patience and discipline from the developer. On the one hand,
manual stepping is error prone: an extra step can go over the
cause of the bug, invalidating the debug session and forcing
the developer to restart the debug session. On the other hand,
a breakpoint inside a complex computation could be triggered
hundreds of times before the bug actually appears.

Pitons4, also called stateful breakpoints [4], are a sequence
of breakpoints that trigger only if they are activated in the right
order. That is, given a sequence of breakpoints (b1,b2...bn),
bn will only trigger if bn−1 already triggered, and bn−1 will
trigger only if bn−2 already triggered, and so on.

Building such a breakpoint with Sindarin boils down to a
sequence of instructions to step the execution until the pitons
are reached. Listing 8 shows a Sindarin script passing through
pitons method1, method2,... up to methodN.

1 dbg stepUntil: [dbg method = ClassA>>#method1].
2 dbg stepUntil: [dbg method = ClassB>>#method2].
3 ...
4 dbg stepUntil: [dbg method = ClassC>>#methodN]

Listing 8. Sindarin script stepping through pitons.

This script can be further enhanced by extracting common
behaviour into a new stepping function that receives as argu-
ment a collection of piton methods (Listing 9). The stepping
function iterates over the collection of pitons and steps until
it has found all of them during the execution.

1 self stepThroughPitons: {ClassA>>#method1. ClassB>>
#method2. ... ClassC>>#methodN}.

2

3 MyScript >> stepThroughPitons: anArray
4 anArray do: [:aMethod |
5 dbg stepUntil: [dbg method = aMethod]]

Listing 9. Refactored Sindarin script stepping through
pitons.

4Pitons in alpinism are sticks placed one by one to secure the path of an
alpinist. An alpinist carefully moves its secure rope from one piton to the
next one.

DLS ’19, October 20, 2019, Athens, Greece Thomas Dupriez, Guillermo Polito, Steven Costiou, Vincent Aranega, and Stéphane Ducasse

4.3 Divergence Breakpoints
Introducing a minor change in the source code can cause a
program to behave very differently. When facing this situation,
developers are left to manually step multiple executions with
and without the changes, and compare them manually [44].

The Pillar bug Scenario. Pillar5 is an open-source document
generator. It takes a source document written in a markup syn-
tax, and generates an output document (e.g., a pdf). The Pillar
test suite is made up of more than 3000 unit tests. One of the
tests failed after developers introduced an instance variable
and its accessor in a Pillar class named Configuration [11, 14].
This bug was difficult to solve because the symptoms of the
bug (a failing test) had no relation with the modification (in-
troducing an accessor) and its supposed impact.

Finding Execution Divergence with Sindarin. To solve this
scenario, we command two executions side-by-side and step
them until they diverge i.e., until both programs stack-traces
differ. First, we copied the Configuration class and the failing
test using this class. One test (TestOriginalClass) executes the
original behavior with the original class. This test passes. The
second test (TestCopyClass) uses the copy class, in which we
added an instance variable and its accessor method named
#disabledPhases. This test fails. Listing 10 shows a script
that commands the executions of the two tests until they step
in different methods. Lines 1-2, we create the two debug
sessions for the two tests. Line 3-4, we start a stepping loop,
in which the two sessions are stepped side-by-side until the
current method of both executions are different.

1 dbg1 := ScriptableDebugger debug: [TestOriginalClass run
].

2 dbg2 := ScriptableDebugger debug: [TestCopyClass run].
3 [dbg1 method = dbg2 method]
4 whileFalse:[dbg1 step. dbg2 step]

Listing 10. Script to debug the two executions side-by-
side.

Analysis. At first, one execution uses an instance of the orig-
inal Configuration class, and the second execution uses an
instance of its modified counterpart, with the initialized new
instance variable and its accessor. At some point of the exe-
cution, those instances are composed with new uninitialized
instances of their own class, named sub-configuration. When
a sub-configuration, instance of the modified Configuration
class, receives the #disabledPhases message, it answers an
uninitialized value. When a sub-configuration, instance of
the original Configuration class, receives the same message, it
raises a #doesNotUnderstand: exception, which starts a hidden
developer-defined lookup to retrieve the value from the orig-
inal Configuration instance. We are immediately able to see

5https://github.com/pillar-markup/pillar

where the two executions diverge, and notice that adding an
accessor prevents the hidden lookup to start, thus producing
our bug.

4.4 Domain Specific Breakpoints
Generic debugging operations such as step or stepOver are
useful because they are applicable to executions of many
different domains. However, when using generic stepping
operations, debugging high-level libraries and internal DSLs
such as Roassal [2] or Glamour becomes a repetitive and error
prone task. Indeed, the steps are too small and go through
a lot of places that the developer knows to be uninteresting.
Let’s take for example the internal iterators of the Pharo Col-
lections library such as #collect:6, whose code is shown in
Listing 11. This iterator receives a block closure as argument,
executes it over each element of the collection and returns a
new collection with the collected elements. This iterator is
defined using the #do: iterator, which applies a block closure
to every element of a collection. The #do: iterator is imple-
mented differently for each collection. When encountering a
call to #collect:, the developer usually does not want to step
inside the implementation of #collect: (and even less inside
the one of #do:). Instead, she would like to jump through
the Collection library’s code to when her block closure is
executed on the elements of the collection.

1 "Usage example"
2 self bigCollection collect: [:each | each double].
3

4 "Collect code"
5 Collection >> collect: aBlock
6 | newCollection |
7 newCollection := self species new.
8 self do: [:each | newCollection add: (aBlock value: each)].
9 ˆnewCollection

Listing 11. The #collect: internal iterator from Pharo
collections.

Listing 12 illustrates how the developer writes a script that
steps until the 173th iteration of a #collect: on a large collec-
tion. Line 1 steps inside the #collect:. Line 2 captures the first
argument of the invoked method: the block closure. We then
call repeatedly a custom stepping function #stepToNextItera-
tion that will step until the next invocation of the block. This
stepping detects the invocation of the block when the block
is used as method. Also, it recognizes a new invocation as a
context it has not seen before.

1 dbg stepUntil: [dbg method = (Collection >> #collect:)].
2 blockClosure := dbg arguments first.
3

6In Pharo, the #collect: method implements the well-known map function
from functional programming.

DLS ’19, October 20, 2019, Athens, Greece

4 "step to the third iteration"
5 173 timesRepeat: [self stepToNextIteration]
6

7 MyScript >> stepToNextIteration
8 dbg stepUntil: [:ctx | lastCtx ~~ ctx and: [ctx method =

blockClosure]].
9 lastCtx := dbg currentContext

Listing 12. The #collect: internal iterator from Pharo
collections.

5 Easing Object-Centric Debugging
Object-centric debugging focuses on debugging operations at
the level of objects rather than static method representations
and execution stacks [34]. For example, this includes stopping
the execution when a specific object receives a message, or
when the state of this particular object is accessed or modified.

The first step to debug an object is to find that object but
object-centric debuggers do not provide dedicated means
to find objects. We first give an example of application for
object-centric debugging, then, we show how scripting the
debugger with Sindarin eases acquiring objects for object-
centric debugging.

5.1 Why Object-centric Debugging: an Illustration
Imagine AtomViewer, an incarnation of the legendary Self [18]
graphical application, displaying lots of random small shapes
called atoms. Such atoms can be of different shapes (squares,
dots, circles, stars, etc.). Listing 13 shows the method called
by the display loop for each atom:

1 AtomViewer >> displayAtom: anAtom
2 anAtom renderWith: self randomAtomDrawer
3 CircleAtom >> renderWith: anAtomDrawer
4 anAtomDrawer renderCircle: self
5 TorusAtom >> renderWith: anAtomDrawer
6 anAtomDrawer renderTorus: self
7 SphereAtom >> renderWith: anAtomDrawer
8 anAtomDrawer renderSphere: self

Listing 13. How to debug atom drawers?

Each atom is instance of the Atom class. Every time the
display is refreshed, each atom is redrawn through the display-
Atom: method. It takes the atom instance to display, and passes
a random drawer object to it (line 2). This drawer knows how
to display atoms, as atoms have different shapes. Each drawer
uses specific display options to draw the atoms’ shapes (like
motion blur, glow, blend...). To that end, drawers implement
different display methods, and know which method to call
depending on the display options.

Imagine a bug that sometimes occurs when circular atoms
that have a radius higher than 50 pixels are rendered. It is
difficult to debug since we do not know which drawer is

erratic, and drawers are randomly chosen at display time. In
addition, circular atoms (spheres, torus, circles...) all call a
different rendering behavior from drawers (lines 4, 6, 8). To
avoid putting conditional breakpoints everywhere, we want
to put an object-centric breakpoint on the drawer object. We
also want to set this breakpoint before the drawer is passed
to an atom with a problematic radius, so that the drawer
halts each time it receives a rendering message. However, we
cannot easily access the drawer object. It is returned by a
call to the randomAtomDrawer method, used immediately as a
parameter to the acceptVisitor: message, then discarded and
garbage collected.

5.2 Easing Object-centric Debugging with Sindarin
With Sindarin, we control the execution when breakpoints are
hit: we navigate the execution to reach the right context, from
which we extract and capture objects of interest. We apply
object-centric debugging operations to those objects, then
continue the execution. It gives us a systematic and automatic
means to capture objects for object-centric debugging.

In Listing 14, we capture the object returned by the self
randomAtomDrawer message in Listing 13, before it is used as
parameter to the renderWith: method. To achieve this, we set
a breakpoint on the displayAtom: method (line 1). When the
breakpoint is hit, we first do a stepOver. It executes the self
randomAtomDrawer expression and puts the result on the value
stack. At this point, the debugger is about to send the render-
With: message, with anAtom as receiver, and the object that has
been put on the stack as argument (the atom drawer). We use
the execution introspection API to recover both objects (lines
4-5) and check conditions (line 6) before applying an object-
centric breakpoint to the drawer (line 8) and removing the
original breakpoint (line 9).

1 bpoint := dbg setBreakpointOn: AtomViewer>>
#displayAtom:.

2 bpoint whenHit: [
3 dbg stepOver.
4 atom := dbg messageReceiver.
5 drawer := dbg messageArguments first.
6 (atom shape isCircular and: [atom shape radius > 50])
7 ifTrue: [
8 dbg haltOnCallTo: drawer.
9 bpoint remove].

10 dbg continue]

Listing 14. Capture example: capturing an atom drawer.

5.3 Replaying Objects
Bugs can be hard to reproduce when programs contain non-
deterministic aspects. For instance, in our example from List-
ing 13, the drawer object is chosen randomly. To replay the

DLS ’19, October 20, 2019, Athens, Greece Thomas Dupriez, Guillermo Polito, Steven Costiou, Vincent Aranega, and Stéphane Ducasse

bug, we re-inject the problematic drawer in the control flow
using the skipWith: operation (illustrated in Figure 1).

Figure 1. Removing non-determinism: skipWith: anObject
steps over a node about to be executed (underlined) but with-
out executing it, and pushes anObject on the stack instead.

We show in Listing 15 how to achieve this with Sindarin.
Each time we break, we capture the node whose execution cre-
ates a random drawer (line 3), and the drawer it returns (line
4-5). If conditions for replay are satisfied (line 6), we remove
the original breakpoint and configure a replay breakpoint
on the drawer node (line 8). When this replay breakpoint is
hit (line 9), we instruct the debugger to skip over the current
node (the drawer creation node) and use the captured drawer
object instead (line 10).

1 bpoint := dbg setBreakpointOn: AtomViewer>>
#displayAtom:.

2 bpoint whenHit: [
3 drawerNode := dbg currentNode.
4 dbg stepOver.
5 drawer := dbg messageArguments first.
6 "condition for replay" ifTrue: [
7 bpoint remove.
8 replayPoint := dbg setBreakpointOn: drawerNode.
9 replayPoint whenHit: [

10 dbg skipWith: drawer.
11 dbg continue]].
12 dbg continue]

Listing 15. Replaying an atom drawer after an exception

6 Evaluation
We have already shown throughout the paper that Sindarin
is a versatile scripting DSL that covers different debugging
scenarios from the literature. In this section we Sindarin with
respect to mainstream debugger APIs such as GDB or JDI.
We first identify the different features required by Sindarin to
implement each debugging scenario described in this paper.
We then evaluate how those features are supported in several
mainstream debuggers with debugger APIs.

6.1 Sindarin Debugger Requirements
Each of the debugging scenarios used throughout this paper
requires a different set of features from Sindarin. We analyzed
and categorized those requirements into three different axis:

Step Granularity. The granularity required for the step
operation i.e., the minimal amount of code that is exe-
cuted between two step operations. In our debugging
scenarios, we observed the need for two different gran-
ularities: a fine-grained expression granularity and a
coarse-grained method granularity.

Context Access. The access provided to the execution
stack. We have categorized context access in two main
operations. Basic access refers to the access to the list
of stack frames and their methods, receiver and argu-
ment objects, and their temporary variables. Full ac-
cess refers to the access to the intermediate values of
expressions during the execution (Stack access), and
the ability to modify the current stack to e.g., pop or
push a value into it (Stack modification).

AST Mappings. Whether the scenario requires AST map-
pings or not to identify code of interest dynamically.

Table 2 summarizes our analysis for each of our debugging
scenarios. We observed that several scenarios require expres-
sion step granularity to operate at the level of expressions
instead of methods. All scenarios requiring expression step
granularity also require AST mappings to identify the inter-
esting expressions, and stack access to access intermediate
results of those expressions stored in the stack. For instance,
although it is possible, to some extent, to implement object-
centric breakpoints with those debuggers, the object capture
scenario is mandatory for their application. This scenario is
one example requiring stack access to access intermediate
results. Finally, replaying objects is the only scenario in our
scenario collection to require stack modification. Replaying
an object instead of an expression requires to skip the expres-
sion and push the object to replay in the stack.

6.2 Comparison with Debugger APIs
Several debugger implementations provide an API or proto-
col to connect to it and drive the debugging of a program.
Examples of these are GDB [35] and Java’s debugger inter-
face through JDI and JVMTI [19, 30]. In this section we take
several mainstream debuggers and compare their APIs to Sin-
darin’s, to analyze which debugging scenarios are applicable
to them.

The summary of our analysis is reflected in Table 3. We
identify five families of debugger APIs: (1) Unmanaged-code
debuggers (UCD) covers debuggers for non-managed run-
times, for which we analyzed GDB, LLDB, WinDBG, (2)
Python’s basic debugger functions (BDB) [8, 16], (3) NodeJS
debugging API, (4) Java’s debugger interface through JDI and
JVMTI [19, 30] and (5) Microsoft’s CLR EnvDTE debugger
interface.

DLS ’19, October 20, 2019, Athens, Greece

Table 2. Feature Requirements of the Debugging Scenarios

Scenario Step Granularity Context Access AST Mapping

Monitoring Assignments Expression
Stack Access ✓

to a Variable

Stopping before Expression
Stack Access ✓

an Exception

Placing Breakpoints on Method
Basic Access ✗

a Family of Methods

Chaining Pitons Method Basic Access ✗

Control-Flow Breakpoints Method Basic Access ✗

Divergence Breakpoints Method Basic Access ✗

DSL Stepping Method Basic Access ✗

Capturing Objects Expression Stack Access ✓

Replaying Objects Expression Stack Modification ✓

Table 3. Mainstream Debugging APIs.

Feature \ API UCD1 BDB NodeJS JDI CLR4 Sindarin
Step Granularity line2 expression line line line expression
Context Access full3 basic basic basic basic full
AST Mapping ✗ ✗ ✗ ✗ ✗ ✓

(1) Unmanaged Code Debuggers: GDB, WINDBG, LLDB.
(2) A line stepping operation at the machine instruction level is available.
It matches the source code, but developers must know when to start and

stop stepping to achieve an expression level granularity, as many assembly
instructions/bytecodes can be related to a single instruction in source code.

(3) Possible by reading and writing directly into the memory of the program.
(4) Common Language Runtime debuggers (C#, J#, .NET).

From our analysis we observe that most debuggers provide
a rather coarse grained granularity for stepping of an entire
line of code, which prevents a straight forward implemen-
tation of the scenarios discussed in this paper. Indeed, this
granularity does not allow developers to differentiate between
different expressions (and sub-expressions) within a single
line. Unmanaged code debuggers, on the other hand, provide
by default a step operation that operates at the line level while
a second stepping operation does it at the machine instruction
level.

Another point of divergence is the fact that not all debug-
ger APIs allow full stack manipulation, preventing advanced
scenarios such as object-replay. We consider that unmanaged
code debuggers support full stack manipulation since they
can modify the execution stack and the objects pointed by it
as any other memory region.

Finally, no mainstream debugger provides high level map-
pings between instructions and AST such as Sindarin’s AST
mappings.

7 Implementation
We implemented Sindarin for the Pharo programming lan-
guage. In this section we briefly describe the infrastructure of
our implementation, how it integrates within the Integrated
Development Environment, how it could be integrated into
mainstream software development, as well as its limitations.

Figure 2. Creation process of a scriptable debugger instance

7.1 Infrastructure
Starting a Sindarin session. Sindarin drives a scriptable de-
bugger instance and configures it for a dedicated piece of code

DLS ’19, October 20, 2019, Athens, Greece Thomas Dupriez, Guillermo Polito, Steven Costiou, Vincent Aranega, and Stéphane Ducasse

that will be executed. Figure 2 shows the creation process of
a scriptable debugger instance. The developer first provides a
block closure of the code she wants to debug (1). The script-
able debugger then creates a process to run the closure (2),
and a DebugSession to step and access the execution being
debugged (3). Finally, the developer sends commands written
using the Sindarin API to the scriptable debugger to control
and/or inspect the debugged execution (4).

Contexts. The contexts exposed by our Sindarin implementa-
tion are of the same class as the ones returned by the Smalltalk
thisContext pseudo-variable.

Step Granularity. Our implementation of Sindarin runs in
Pharo. Pharo code is compiled into bytecode, that is inter-
preted by a virtual machine. Through reflection, Pharo pro-
grams can access the bytecode interpreter of the virtual ma-
chine and step it to progress a frozen execution. The dbg step
operation of Sindarin is implemented using this feature to
provide a stepping granularity at the expression level.

Context Access. Sindarin provides full access to the contexts
of the debugged execution through instances of the Context
class. Context objects are automatically reified by the Pharo
virtual machine when needed for reflection purposes.

Mapping AST to bytecode. The Pharo compiler keeps a map-
ping between the AST and the bytecode, as well as a mapping
between the AST and the source code. By default, the gran-
ularity of each step is at the level of expressions. Sindarin
makes use of this infrastructure to provide fine grained con-
trol over stepping, without losing the bytecode abstraction.
This granularity eases the ability to set breakpoints inside
statements. The direct access and handling of the AST also
enables to express complex conditions for breakpoints.

Breakpoints. The imperative design of Sindarin means that
users will often set breakpoints on the AST node the de-
bugged execution is currently at. Typical implementation of
breakpoints modify the bytecode of the method to insert the
breakpoint behaviour. This approach does not fit the use-case
of Sindarin, because modifying methods that are already on
the call stack is hard [40]. To go around this limitation, the
breakpoints set by Sindarin are "virtual" in the sense that no
code modification is performed. Instead, Sindarin remembers
the AST nodes on which breakpoints were set, and stops
debugged execution that would step through these nodes.

7.2 IDE Integration
We modified the Pharo debugger to make it scriptable through
the Sindarin API. The developer writes Sindarin scripts in an
editor or directly in the debugger (Figure 3). When scripts are
run in the debugger, the dbg variable is automatically bound
to the current debugger.

7.3 Integration into Mainstream Software
Development

We highlighted a few existing debugger APIs from main-
stream languages in section 6.2. These could be used as a
basis to implement the Sindarin API in these languages. The
three main challenges of such implementations are those out-
lined in section 6.2: step granularity, context access and AST
mapping.

Implementing expression-level step granularity in the lan-
guages that do not natively support it can be achieved with
automatic program rewriting [22], to rewrite the expressions
over multiple lines, or AOP weaving [42].

From Table 3, UCD already provides full context access
through direct memory access. For Python, Python code can
interact in an indirect way with the Python virtual machine to
access/modify the context stack of the execution. An alterna-
tive method is probably achievable for Java. Of note is that
these solutions require significant engineering effort.

AST mapping is not present in any of the debugging APIs
we considered. It could maybe be achieved by modifying the
compiler of the host language to keep the AST that is gener-
ated during the compilation, and build a binding between the
bytecode generated by the compiler and this AST.

Figure 3. Command line implementing Sindarin integrated
into the Pharo debugger

7.4 Limitations
A limitation of Sindarin is its low-level aspect. It offers a lot
of possibilities, but lacks a higher-level layer that would offer
a quick and expressive way for developers to express higher-
level debugging operations. This limitation is mitigated by
the ability to write and re-use debugging scripts. Another
limitation is that effectively using Sindarin to debug requires
understanding and manipulating the concepts of contexts,
AST nodes and stack.

8 Related work
We present in the following related work on debugger cus-
tomization and means to control debugging sessions.

DLS ’19, October 20, 2019, Athens, Greece

8.1 Domain Specific Debugging Operations
Kompos [29] is a concurrency-agnostic debugger protocol,
which decouples the debugger from the concurrency models
employed by the target application. As a result, the underlying
language run-time can define custom breakpoints, stepping
operations, and execution events for each concurrency model
it supports, and a debugger can expose them without having
to be specifically adapted. With Sindarin, it is possible to
place standard breakpoints and to step in concurrent code. We
plan to introduce additional support for concurrent debugging,
including specific breakpoints like Kompos’.

The Moldable Debugger framework [6] allows developers
to create domain-specific debuggers, by defining and com-
bining domain-specific debugging operations and views. The
moldable debugger adapts itself to a domain by selecting at
run-time the appropriate appropriate debugging operations
and views. Debugging operations executes the program until
a debugging predicate is matched, or performs an action every
time a debugging predicate is matched. Debugging predicates
are either primitive predicates like attribute reads or method
calls, or combinations of these. A key difference with Sin-
darin is the “immediacy”. With Sindarin, developers write a
script on the fly to help with the particular bug under inves-
tigation. By contrast, the moldable debugger framework is
geared towards investing time into creating a debugger able
to assist the debugging of a specific domain, rather than a spe-
cific bug. Both approaches are not incompatible, we believe
that Sindarin can be used to build moldable debuggers and to
script their specialized parts.

Expositor [32], inspired by the work on MzTake [28], com-
bines scripting and time-travel debugging. The fundamen-
tal abstraction provided by Expositor is the execution trace,
which is a time-indexed sequence of program state snapshots.
Developers can manipulate traces as if they were simple lists
with operations such as map and filter. From that perspec-
tive Expositor has a conceptual interface close to the Pharo
thisContext pseudo-variable that reifies stack on demand.

Barr et al., describe a time-traveling debugger for JavaScrip-
t/Node.js [1]. In particular, they describe three time-travel
operations: reverse-step (rs) to step to the previously executed
line in the current stack frame, reverse-step dynamic (rsd)
to step back in time to the previously executed statement in
the any frame, and reverse to callback origin (rcbo): a more
specific operation to step back from the currently executing
callback to the point in time when the callback was regis-
tered. These three operations are good candidates to extend
the Sindarin API with time-traveling capabilities.

CBD is a Control-flow Breakpoint Debugger [5]. CBD
uses a dynamic pointcut language to characterise control-
flow breakpoints. These breakpoints are conditions on the
control-flow, through which they were reached. As such, CBD
leverages aspect-oriented programming to assist debugging
operations. The difference between CBD and Sindarin is

the versatility. CBD is specialised in expressing control-flow
breakpoints, and as a result expresses them in a concise fash-
ion. Sindarin allows developers to express the same break-
points as CBD, and to combine these breakpoints with other
features such as object-centric debugging.

Bugloo [7] is a source level debugger for Scheme programs,
that are compiled into JVM bytecode by the Bigloo compiler.
Bugloo traces methods that are entered, and the source code
location where a given variable is read/written. The debugging
commands are recorded, which allows developers to replay
their debugging sessions. A command line is available for
interactive debugger control.

Other solutions focus on exposing bugs through execution
traces. PTQL [17] is a query language, through which devel-
opers express what part of their program they want to trace.
Queries are automatically translated to instrumentation. ange
et al., [23] combines Prolog-like queries on program traces
and visualization to understand program execution. Working
on traces implies a post-mortem approach, such works do not
support controlling step by step execution of the debugged
program, the precise queries of an execution moment nor
object-centric facilities.
8.2 Querying Objects
Finding objects of interest for debugging is difficult. Using tra-
ditional debugging tools, developers have to put breakpoints
to halt the execution and manually select objects [10, 34].
This approach requires much interaction from developers and
forbids any automation, e.g. breakpoints in loops break the
execution at each loop iteration.

Developers need systematic ways to obtain objects, for
object-centric debugging or to provide more details about the
debugged execution. Fox [33] is a language to perform queries
over the object graph of an execution snapshot. Bugloo [7]
provides a heap inspector allows some access to the object
graph of the execution. Query-based debugging [25, 26] refers
to debuggers which build collections of objects from user-
defined queries, written in a dedicated query language. Re-
active object queries [24] are user-defined requests on a pro-
gram, which results create and maintain dynamic collections
of objects. Both solutions automatically search the object
space to update their collections of objects. However they
cannot express conditions regarding the context from which
an object is obtained [12]. These solutions are good candi-
dates for extending Sindarin. Sindarin allows the developer to
bring executions to points of interest, from where developers
could perform queries over the object space.

8.3 Aspect-Oriented Programming
Aspect-oriented programming (AOP) [9, 15, 20] is a program-
ming paradigm where the developer can add cross-cutting
behavior (an "advice") to existing code without modifying the
latter, by specifying which code is modified via a "pointcut"
specification. AOP can be used for debugging purposes [42]
and is able to solve some of the scenarios we described in

DLS ’19, October 20, 2019, Athens, Greece Thomas Dupriez, Guillermo Polito, Steven Costiou, Vincent Aranega, and Stéphane Ducasse

this paper. AOP cannot directly tackle the Divergence Break-
points scenario, as it requires two executions to be ran side-by-
side. The Capturing Objects and Replaying Objects scenarios
could be implemented with AOP. This would however require
additional work to define a model for storing and re-using
objects across executions. AOP differs from Sindarin in the
way debugging operations are expressed. Sindarin is imper-
ative while AOP is declarative. The imperative paradigm is
closer to the interactions developers have with mainstream
debuggers: for example repeatedly clicking on the "step" but-
ton until the desired state is reached. We could use AOP to
implement the Sindarin API in other languages. We leave as
future work a comparison between the imperative (Sindarin)
and declarative (AOP) styles in terms of learning curve and
convenience for developers.

9 Discussion
In this section, we discuss a few points of note about Sindarin,
namely the advantages of implementing it as an internal DSL,
the ability and limits of debugging a Sindarin implementation
with itself, and ideas about how Sindarin scripts written for
debugging purposes could be leveraged as persistent artifacts.

9.1 Internal DSL
Our implementation of Sindarin is an internal DSL of Pharo.
This brings advantages in terms of usability, as a developer
debugging Pharo code will already be familiar with the gen-
eral syntax of Sindarin scripts (e.g. how to define a variable,
block closures...) and have access to the standard libraries. In
addition, this makes Sindarin directly usable within the Pharo
IDE, with no additional integration work.

9.2 Self-debugging
Since Sindarin is an internal DSL, a debugging session using
Sindarin is a program execution in the same host language. As
such, Sindarin can be used to debug itself. This is in contrast
to other debugging tools that cannot debug themselves. For
example, Aspect-oriented programming is unable to debug
itself in this fashion, as aspects cannot be added to other
aspects [42]. A limit to the self-debugging ability of Sindarin
is when a core feature is impacted, for example the step
operation itself. Indeed, if step itself does not work, the buggy
execution of step cannot be stepped to be debugged. This
limitations echoes that of Kansas [36]: a reflective system
where developers interact with objects in a world. When a
Kansas world is broken, another one is created from which
the first world can be repaired. However, when a core feature
like the ability to create new worlds is broken, Kansas cannot
be debugged from within itself.
9.3 Artifact Generation
By debugging with Sindarin, a developer generates debugging
scripts. These scripts constitute valuable artifacts that can be
harvested and used for other purposes. For example, a script
written to reach a certain point in the execution and check
a property on a variable can be turned into a test. A script

defining a particular domain-specific stepping operation (like
in our DSL Stepping scenario) can be kept to assist future
developers in debugging the same section of the code. A script
written to reach a point in the execution that is relevant for a
given bug can be shared on the issue tracker. This allows other
developers to immediately reach the relevant point without
requiring a tedious textual description of which buttons to
click in the debugger. These alternative, long-term uses for
Sindarin scripts give additional value to the time spent by
developers to write them during debugging sessions.

Additionally, debugging scripts could be automatically gen-
erated from a developer’s interaction with a mainstream de-
bugger. For example the sequence of buttons she clicked.

10 Conclusion
In this paper we presented Sindarin, a versatile API for script-
ing an online debugger. Sindarin supports the definition of
advanced stepping operations: It offers different interfaces
such as AST or runtime stack introspection letting the devel-
oper use the abstractions she needs. Sindarin supports object-
reachability in the sense that all the objects accessed during
execution can be manipulated. This eases the construction
of object-centric debugging scripts. Sindarin will be shipped
with Pharo 80 as a central part of the new debugging solution.

As a future work we will add support for concurrent pro-
gramming debugging, back-in-time debugging, and provide
ways to support the debugging based on multiple execution
stacks. In addition, we would like to perform a user-study with
experimented developers to assess multiple characteristics of
Sindarin like its learning-curve and how much it helps with
debugging scenarios that are impractical to tackle without
the support of specialized debugging tools. This study could
also compare Sindarin to aspect-oriented-programming tech-
niques on these two points to evaluate the difference between
the imperative and declarative styles of debugging.

References
[1] E. Barr, M. Marron, E. Maurer, D. Moseley, and G. Seth. Time-travel

debugging for javascript/node.js. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium, pages 1003–1007, nov 2016.

[2] A. Bergel. Agile Visualization. LULU Press, 2016.
[3] A. Bergel, F. Banados, R. Robbes, and D. Röthlisberger. Spy: A flexible

code profiling framework. Journal of Computer Languages, Systems
and Structures, 38(1), Dec. 2011.

[4] E. Bodden. Stateful breakpoints: A practical approach to defining
parameterized runtime monitors. In ESEC/FSE’11, 2011.

[5] R. Chern and K. De Volder. Debugging with control-flow breakpoints.
In Proceedings of the 6th International Conference on Aspect-oriented
Software Development, AOSD ’07. ACM, 2007.

[6] A. Chis, M. Denker, T. Girba, and O. Nierstrasz. Practical domain-
specific debuggers using the moldable debugger framework. Journal of
Computer Languages, Systems and Structures, 44:89–113, 2015.

[7] D. Ciabrini and M. Serrano. Bugloo: A source level debugger for
scheme programs compiled into jvm bytecode. In Proceedings of the
International Lisp Conference 2003, oct 2003.

DLS ’19, October 20, 2019, Athens, Greece

[8] A. L. Coetzee. Combining reverse debugging and live programming
towards visual thinking in computer programming. PhD thesis, Stellen-
bosch University, 2015.

[9] A. Colyer and C. A. Aspect-oriented programming with aspectj. IBM
Systems Journal, 44(2):301–308, 2005.

[10] C. Corrodi. Towards efficient object-centric debugging with declarative
breakpoints. In SATToSE 2016, 2016.

[11] S. Costiou. Unanticipated behavior adaptation : application to the
debugging of running programs. Theses, Université de Bretagne occi-
dentale - Brest, Nov. 2018.

[12] S. Costiou, M. Kerboeuf, A. Plantec, and M. Denker. Collectors. In
PX’18 - Programming Experience 2018, Companion of the 2nd Inter-
national Conference on Art, Science, and Engineering of Programming,
page 9, Nice, France, Apr. 2018. ACM Press.

[13] S. Ducasse, D. Zagidulin, N. Hess, D. C. O. written by A. Black,
S. Ducasse, O. Nierstrasz, D. P. with D. Cassou, and M. Denker. Pharo
by Example 5. Square Bracket Associates, 2017.

[14] T. Dupriez, G. Polito, and S. Ducasse. Analysis and exploration for
new generation debuggers. In Proceedings of the 12th Edition of the
International Workshop on Smalltalk Technologies, IWST ’17, pages
5:1–5:6, New York, NY, USA, 2017. ACM.

[15] J. Fabry and D. Galdames. Phantom: a modern aspect language for
pharo smalltalk. Software: Practice and Experience, 2012.

[16] P. S. Foundation. bdb - debugger framework. https://docs.python.org/
3/library/bdb.html, 2019.

[17] S. Goldsmith, R. O’Callahan, and A. Aiken. Relational queries over
program traces. In Proceedings of Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’05), pages 385–402,
New York, NY, USA, 2005. ACM Press.

[18] U. Hölzle, B.-W. Chang, C. Chambers, and D. Ungar. The SELF
Manual. Computer Systems Laboratory of Stanford University, 1991.

[19] Sun microsystems, inc. JVM tool interface (JVMTI).
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/.

[20] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-Oriented Programming. In M. Aksit
and S. Matsuoka, editors, Proceedings ECOOP ’97, volume 1241 of
LNCS, pages 220–242, Jyvaskyla, Finland, June 1997. Springer-Verlag.

[21] A. J. Ko and B. A. Myers. Debugging reinvented: Asking and answering
why and why not questions about program behavior. In Proceedings of
the International Conference on Software Engineering, ICSE 08, 2008.

[22] I. Kume, E. Shibayama, M. Nakamura, and N. Nitta. Cutting java
expressions into lines for detecting their evaluation at runtime. In
Proceedings of the International Conference on Geoinformatics and
Data Analysis, ICGDA 2019, pages 37–46, New York, NY, USA, 2019.
ACM.

[23] D. Lange and Y. Nakamura. Interactive visualization of design pat-
terns can help in framework understanding. In Proceedings ACM
International Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA’95), pages 342–357, New York
NY, 1995. ACM Press.

[24] S. Lehmann, T. Felgentreff, J. Lincke, P. Rein, and R. Hirschfeld. Re-
active object queries. In Constrained and Reactive Objects Workshop
(CROW), 2016.

[25] R. Lencevicius, U. Hölzle, and A. K. Singh. Query-based debugging
of object-oriented programs. In OOPSLA’97, pages 304–317, 1997.

[26] R. Lencevicius, U. Hölzle, and A. K. Singh. Dynamic query-based
debugging. In R. Guerraoui, editor, Proceedings of European Confer-
ence on Object-Oriented Programming (ECOOP’99), volume 1628 of
LNCS, pages 135–160, Lisbon, Portugal, June 1999. Springer-Verlag.

[27] H. Lieberman. Introduction. Commun. ACM, 40(4):26–29, Apr. 1997.
[28] G. Marceau, G. H. Cooper, S. Krishnamurthi, and S. P. Reiss. A

dataflow language for scriptable debugging. In IEEE International
Conference on Automated Software Engineering (ASE’04), 2004.

[29] S. Marr, C. Lopez, D. Aumayr, E. Gonzalez Boix, and H. Mossenbock.
Kompos: A platform for debugging complex concurrent applications.
In Programming’17, pages 1–2, apr 2017.

[30] Oracle. Java debug interface (jdi). http://docs.oracle.com/javase/7/
docs/jdk/api/jpda/jdi/index.html, 2013.

[31] M. Perscheid, B. Siegmund, M. Taeumel, and R. Hirschfeld. Study-
ing the advancement in debugging practice of professional software
developers. Software Quality Journal, 25(1):83–110, 2017.

[32] K. Y. Phang, J. S. Foster, and M. Hicks. Expositor: Scriptable time-
travel debugging with first-class traces. In International Conference on
Software Engineering (ICSE), pages 352–361, may 2013.

[33] A. Potanin, J. Noble, and R. Biddle. Snapshot query-based debugging.
In Proceedings of the Australian Software Engineering Conference
(ASWEC’04), page 251. IEEE Computer Society, 2004.

[34] J. Ressia, A. Bergel, and O. Nierstrasz. Object-centric debugging. In
Proceeding of the International Conference on Software Engineering,
2012.

[35] S. S. Richard Stallman, Roland Pesch. Debugging with GDB. Gnu
Press, 2003.

[36] R. B. Smith, M. Wolczko, and D. Ungar. From kansas to oz: col-
laborative debugging when a shared world breaks. Commun. ACM,
40(4):72–78, Apr. 1997.

[37] D. Spinellis. Modern debugging: The art of finding a needle in a
haystack. Commun. ACM, 61(11):124–134, Oct. 2018.

[38] G. Tassey. The economic impacts of inadequate infrastructure for
software testing. National Institute of Standards and Technology, 2002.

[39] M. Telles and Y. Hsieh. The science of debugging. Coriolis Group
Books, 2001.

[40] P. Tesone, G. Polito, L. Fabresse, N. Bouraqadi, and S. Ducasse. Dy-
namic software update from development to production. Journal of
Object Technology, 2018.

[41] I. Vessey. Expertise in debugging computer programs: An analysis of
the content of verbal protocols. IEEE Transactions on Systems, Man,
and Cybernetics, 16, 1986.

[42] H. Yin. Defusing the Debugging Scandal - Dedicated Debugging Tech-
nologies for Advanced Dispatching Languages. PhD thesis, University
of Twente, Dec. 2013.

[43] A. Zeller. Why programs fail: a guide to systematic debugging. Elsevier,
2009.

[44] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing
input. IEEE Transactions on Software Engineering, SE-28(2):183–200,
Feb. 2002.

[45] C. Zhang, D. Yan, J. Zhao, C. Yuting, and S. Yang. Bpgen: An auto-
mated breakpoint generator for debugging. In ICSE ’10, 2010.

https://docs.python.org/3/library/bdb.html
https://docs.python.org/3/library/bdb.html
http://docs.oracle.com/javase/7/docs/jdk/api/jpda/jdi/index.html
http://docs.oracle.com/javase/7/docs/jdk/api/jpda/jdi/index.html

	Abstract
	1 Introduction
	2 Sindarin's Overview
	2.1 Sindarin by Example
	2.2 Sindarin's API

	3 Solving Debugging Scenarios with Sindarin
	3.1 Monitoring Assignments to a Variable
	3.2 Stopping Before an Exception
	3.3 Placing Breakpoints on a Family of Methods

	4 Expressing Advanced Breakpoints
	4.1 Control-Flow Breakpoints
	4.2 Chaining Pitons
	4.3 Divergence Breakpoints
	4.4 Domain Specific Breakpoints

	5 Easing Object-Centric Debugging
	5.1 Why Object-centric Debugging: an Illustration
	5.2 Easing Object-centric Debugging with Sindarin
	5.3 Replaying Objects

	6 Evaluation
	6.1 Sindarin Debugger Requirements
	6.2 Comparison with Debugger APIs

	7 Implementation
	7.1 Infrastructure
	7.2 IDE Integration
	7.3 Integration into Mainstream Software Development
	7.4 Limitations

	8 Related work
	8.1 Domain Specific Debugging Operations
	8.2 Querying Objects
	8.3 Aspect-Oriented Programming

	9 Discussion
	9.1 Internal DSL
	9.2 Self-debugging
	9.3 Artifact Generation

	10 Conclusion
	References

