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TLA+ is a language for formal specification of all kinds of computer systems. System designers use this
language to specify concurrent, distributed, and fault-tolerant protocols, which are traditionally presented in
pseudo-code. TLA+ is extremely concise yet expressive: The language primitives include Booleans, integers,
functions, tuples, records, sequences, and sets thereof, which can be also nested. This is probably why the
only model checker for TLA+ (called TLC) relies on explicit enumeration of values and states.

In this paper, we present APALACHE — a first symbolic model checker for TLA+. Like TLC, it assumes that
all specification parameters are fixed and all states are finite structures. Unlike TLC, APALACHE translates the
underlying transition relation into quantifier-free SMT constraints, which allows us to exploit the power of
SMT solvers. Designing this translation is the central challenge that we address in this paper. Our experiments
show that APALACHE outperforms TLC on examples with large state spaces.

CCS Concepts: • Theory of computation→ Logic and verification; • Software and its engineering→
Model checking; Specification languages.
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1 INTRODUCTION

Distributed algorithms and protocols are hard to get right, especially, when they have to tolerate
faults. Recent examples include Raft [Ongaro 2014] and Kafka [Gustafson 2019]. Traditionally
distributed algorithms and protocols are given in pseudo-code [Attiya and Welch 2004; Lynch 1996;
Raynal 2010]. One of the reasons is that distributed algorithms vary in their assumptions about the
distributed system: the communication medium, system synchrony, possible faults, etc. As a result,
it is hard to find a formal language that would encompass a large set of distributed algorithms,
while offering flexibility and expressiveness that is required by the algorithm designers.
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Two long-term projects for designing such formal languages were initiated in the 1980s: In-
put/Output Automata (IOA) by [Lynch and Stark 1989] and Temporal Logic of Actions (TLA)
by [Lamport 1994]. As TLA was initially designed for writing mathematical proofs about algo-
rithms, it did not offer a concrete syntax for their specification. Rather, the algorithm designers were
expected to present their algorithms in first-order logic and choose a convenient interpretation.
This gap was closed by [Lamport 2002] with the introduction of TLA+, which offers a rich syntax
for sets, functions, tuples, records, and sequences on top of first-order logic.

The TLA+ toolset offers a model checker and a theorem prover: the model checker TLC enumer-
ates states by intepreting TLA+ specifications [Yu et al. 1999], whereas the theorem prover TLAPS
aids the user in writing and verifying interactive proofs [Chaudhuri et al. 2010]. While progress
towards proof automation in TLAPS has been made in the last years [Merz and Vanzetto 2012],
writing interactive proofs is still a demanding task. Hence, the users prefer to run TLC for days,
rather than writing proofs [Newcombe et al. 2015; Ongaro 2014]. TLC is an explicit-state model
checker, and thus it inevitably suffers from state-space explosion. A partial remedy to this problem
is to run TLC in distributed mode, in order to split the state exploration over dozens of computers.
Perhaps, the most prominent application of TLA+ tools are fault-tolerant algorithms for dis-

tributed consensus. In academia, several such algorithms were specified in TLA+: Paxos [Lamport
et al. 2001], Disk Paxos [Gafni and Lamport 2003], Egalitarian Paxos [Moraru et al. 2013], Flexible
Paxos [Howard et al. 2016], BFT [Lamport 2011], Abstract [Guerraoui et al. 2010], and Raft [Ongaro
2014]. In industry, [Newcombe et al. 2015] and [Gustafson 2019] reported on finding real bugs by
checking TLA+ specifications by running the TLC model checker.

Our Approach. We are developing a more efficient symbolic model checker that is powered by a
satisfiability-modulo-theory (SMT) solver such as Microsoft Z3 [De Moura and Bjørner 2008]. To
make the tool usable for the TLA+ community, we aim at introducing as few restrictions to the
language as TLC does. Hence, whenever we have a choice between an efficient SMT encoding
that restricts the input and a less efficient but general SMT encoding, we choose the general one.
(Indeed, we plan optimizations for the special fragments of TLA+ in the future.) Similar to TLC, we
make several pragmatic assumptions about the input specifications:
(1) All input parameters are fixed. Although TLA+ specifications are typically parameterized,

the users restrict parameters to run TLC.
(2) Reachable states and the values of the parameters are finite structures, e.g., finite sets and

functions of finite domains. This is also a requirement of TLC.
(3) Following our previous work [Kukovec et al. 2018], we assume that for each variable x , there

is a set of expressions x ′ = e and x ′ ∈ S that can be be treated as assignments to x ′. As a
consequence, the specification can be decomposed into a set of symbolic transitions.

(4) The specification is well-typeable in our type system.
The main challenge of this work comes from the expressiveness of TLA+. Among basic types, it

supports Booleans, integers, and uninterpreted constants. Among structured types, it supports sets,
functions, tuples, records, and sequences; all of them can be arbitrarily nested in each other. More-
over, it is common to use powersets, sets of functions, and set cardinalities in TLA+ specifications.
Multiple techniques were developed for sets and cardinalities in SMT [Berkovits et al. 2019; Cristiá
and Rossi 2016; Drăgoi et al. 2014; Kuncak et al. 2005; Tinelli et al. 2018; von Gleissenthall et al.
2016; Yessenov et al. 2010]. Although these techniques can be used to reason about some TLA+

expressions, they pose various constraints on the set theory that would not easily accommodate
typical TLA+ specifications. [Merz and Vanzetto 2018] introduced an unsorted SMT encoding
of TLA+ for discharging proof obligations in TLAPS. This encoding did not scale to model checking
in our preliminary experiments. Hence, we introduce a multi-sorted encoding.
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Fig. 1. The basic workflow of APALACHE. The dashed area shows the preprocessing phases.

Contributions. Our main contributions in this paper are as follows:
(1) We introduce the kernel fragment KerA+ to capture all but few TLA+ operators over finite

structures.
(2) We define operational semantics of KerA+ in terms of reduction rules. Given a KerA+

formula ϕ, the reduction system produces SMT constraints that are equisatisfiable to ϕ.
(3) We prove soundness of the rewriting rules.
(4) We show how to use the reduction system for: (a) checking inductive invariants, and (b) check-

ing safety of TLA+ specifications by bounded model checking.
(5) We implement the rewriting system and run experiments on a number of benchmarks from

the public TLA+ repository. The experiments demonstrate that our tool APALACHE is often
more efficient than TLC on the benchmarks with large state spaces.

Figure 1 shows the main phases of APALACHE [Konnov et al. 2019]. First, the call sites of user-
defined operators are replaced with their bodies, which produces a flat specification. Second, the
technique by [Kukovec et al. 2018] finds symbolic transitions in the specification. Third, basic type
inference labels expressions with types. Finally, the reduction system produces SMT constraints. A
query to the SMT solver gives us an answer to the model checking question.

Structure of the Paper. We begin with a motivating example in Section 2. We discuss the prepro-
cessing steps in Section 3. In Section 4, we introduce the kernel language KerA+. We introduce the
reduction framework in Section 5 and the reduction rules in Sections 6–10. The soundness of the
framework is discussed in Section 11. In Sections 12 and 13, we discuss the implementation and the
experiments. We finish with the discussion of related and future work in Sections 14 and 15.

2 EXAMPLE: THE TWO-PHASE COMMIT PROTOCOL IN TLA+

A comprehensive manual on TLA+ can be found in the book by [Lamport 2002]. We introduce
typical TLA+ constructs by discussing the famous two-phase commit protocol by [Lampson and
Sturgis 1979]. In this protocol, several resource managers (e.g., databases) have to agree on whether
to commit or abort a distributed transaction. The resource managers are coordinated by the
transaction manager. If one of them aborts a transaction, all managers have to abort it too.
Figure 2 shows the TLA+ specification of two-phase commit by [Gray and Lamport 2006]. The

specification is parameterized with the set of resource managers RM , which, once defined, never
changes in a system execution. Four variables describe the system state:

• The variable tmState stores the state of the transaction manager, which gets assigned one of
the three constants “init”, “committed”, or “aborted”.

• The variable rmState is a function from a resource manager in RM to one of the four constants
“working”, “prepared”, “committed”, or “aborted”.

• The variable tmPrepared ⊆ RM stores the set of resource managers that have sent a message
of type “Prepared” to the transaction manager.

• The variable msgs stores the set of messages sent by the managers. It contains records of
three kinds: [type 7→ “Commit”], [type 7→ “Abort”], and [type 7→ “Prepared”, rm 7→ S]. The
records of the third kind have an extra field rm containing a set S ⊆ RM of resource managers.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 123. Publication date: October 2019.
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module TwoPhaseReformatted
constant RM The set of resource managers (a parameter)

variables
rmState, rmState[rm] is the state of resource manager RM

tmState, The state of the transaction manager

tmPrepared , The set of RMs from which the TM has received “Prepared” messages

msgs The set of all messages sent in the distributed system

Init
∆
= ∧ rmState = [rm ∈ RM 7→ “working”] constraints on the initial states

∧ tmState = “init” ∧ tmPrepared = {} ∧msgs = {}
The transitions by the transaction manager and the resource managers:

TMRcvPrepared(rm)
∆
= The TM receives a “Prepared” message from RM rm

∧ tmState = “init” ∧ [type 7→ “Prepared”, rm 7→ rm] ∈ msgs
∧ tmPrepared ′ = tmPrepared ∪ {rm} ∧ unchanged 〈rmState, tmState, msgs〉

The transaction manager commits the transaction:

TMCommit
∆
= tmState = “init” ∧ tmPrepared = RM ∧ tmState ′ = “committed”

∧msgs ′ = msgs ∪ {[type 7→ “Commit”]} ∧ unchanged 〈rmState, tmPrepared〉
The transaction manager spontaneously aborts the transaction:

TMAbort
∆
= tmState = “init” ∧ tmState ′ = “aborted”

∧msgs ′ = msgs ∪ {[type 7→ “Abort”]} ∧ unchanged 〈rmState, tmPrepared〉
Resource manager rm prepares:

RMPrepare(rm)
∆
= rmState[rm] = “working”

∧ rmState ′ = [rmState except ! [rm] = “prepared”]
∧msgs ′ = msgs ∪ {[type 7→ “Prepared”, rm 7→ rm]}
∧ unchanged 〈tmState, tmPrepared〉

Resource manager rm spontaneously decides to abort:

RMChooseToAbort(rm)
∆
= rmState[rm] = “working”

∧ rmState ′ = [rmState except ! [rm] = “aborted”]
∧ unchanged 〈tmState, tmPrepared , msgs〉

Resource manager rm is told by the TM to commit:

RMRcvCommitMsg(rm)
∆
= [type 7→ “Commit”] ∈ msgs

∧ rmState ′ = [rmState except ! [rm] = “committed”]
∧ unchanged 〈tmState, tmPrepared , msgs〉

Resource manager rm is told by the TM to abort:

RMRcvAbortMsg(rm)
∆
= [type 7→ “Abort”] ∈ msgs

∧ rmState ′ = [rmState except ! [rm] = “aborted”]
∧ unchanged 〈tmState, tmPrepared , msgs〉

A transition of the distributed system

Next
∆
= ∨ TMCommit ∨ TMAbort a transition by the transaction manager

∨ ∃ rm ∈ RM : a transition by the resource manager

TMRcvPrepared(rm) ∨ RMPrepare(rm) ∨ RMRcvCommitMsg(rm)
∨ RMChooseToAbort(rm) ∨ RMRcvAbortMsg(rm)

1

Fig. 2. The two-phase commit protocol in TLA
+
as specified in [Gray and Lamport 2006].

(We have only changed the indentation and comments to save some space.)
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The initial system states are defined by the operator Init. This operator requires tmState to
be equal to “init”, the sets tmPrepared and msgs to be empty, and rmState to be a function that
constrains every resource manager rm ∈ RM to be in the “working” state.
System transitions are defined with the operator Next, which is idiomatically written as a

disjunction of simpler operators, called actions. In our example, there are two actions by the
transaction manager and five actions by a resource manager. A resource manager is chosen with
the existential quantifier ∃rm ∈ RM . The actions are TLA+ formulas over two sets of variables:
the variables without primes and the variables with primes. The former capture the state before a
transition, while the latter capture the state after the transition.

For example, the action RMPrepare(rm) is enabled when the state of rm equals to “working”. This
action updates the function rmState, so that rmState[rm] becomes “prepared”, whereas the values
for the other elements of RM \ {rm} are not changed. Further, the action adds the record [type 7→

“Prepared”, rm 7→ rm] to the set of messages msgs. Finally, the action requires that tmState
′ =

tmState and tmPrepared
′ = tmPrepared, as indicated by unchanged ⟨tmState, tmPrepared⟩.

The algorithm is designed to satisfy the following invariant:

∀r1, r2 ∈ RM : rmState[r1] , “committed” ∨ rmState[r2] , “aborted” (TCConsistent)

TLA+ uses syntax f [x] for function application, e.g., see rmState[rm]. Although it looks like an
array access, it is not. In contrast to arrays in programming languages, the function domains are
not ordered. Hence, f [x] cannot be interpreted as efficiently as an array access.

Although this example is simple in comparison to fault-tolerant protocols such as Raft [Ongaro
2014], it demonstrates several idiosyncrasies of TLA+. First, there is no fixed order of evaluating
the expressions. An operator such as Next is just a logical formula. As soon as a vector of values
for primed and non-primed variables satisfies the formula, it gives us a system transition. Second,
there is no notion of an assignment. Hence, constraints on the primed variables may have different
forms. Third, the language is untyped. As a result, the same variable may contain values of different
types during an execution, and sets may contain type-incompatible elements.

In Section 3, we discuss how to deal with these issues before doing the translation to SMT.

3 PREPROCESSING: FLATTENING, ASSIGNMENTS, AND TYPES

3.1 Flattening

As exemplified by Section 2, TLA+ specifications are normally written as a collection of operator
definitions. They can be also organized in modules. As the operator Next describes one step of a
system execution, the operators in TLA+ are usually non-recursive. They are similar to macros in
programming languages. As a first step, our technique replaces calls to the user-defined operators
with the operator bodies; as expected, the formal arguments are substituted with the arguments at
the call sites. The same applies to the local operators that are defined with the let-in expression. We
also instantiate modules, in order to obtain a single-module specification, in which the operators Init
and Next contain only the calls to the built-in TLA+ operators. The flattening phase is purely
syntactic, so we obviously obtain an equivalent TLA+ specification.

Note on Recursive Operators. [Lamport 2018] recently added recursive operators to TLA+ version 2.
Hence, the users can conveniently write expressions in terms of recursion instead of logical formulas.
As is common in bounded model checking, we could unroll a call to a recursive operator up to
a bound predefined by the user, which would produce a large TLA+ formula. To implement an
incremental unrolling, we would need an advanced type checker, which we postpone for the future.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 123. Publication date: October 2019.
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3.2 Assignments and Symbolic Transitions

As noted earlier, there is no notion of variable assignment in TLA+. However, the model checker TLC
interprets expressions x ′ = e and x ′ ∈ S as assignments, if x ′ has not been assigned a value before.
TLC evaluates formulas in a fixed order: from top to bottom and from left to right. Moreover, it
treats some disjunctions as non-deterministic choice.

Recently, we introduced a symbolic technique for finding such assignments without evaluating
the TLA+ formula [Kukovec et al. 2018]. Additionally, we proposed a technique for decomposing
a TLA+ formula into a disjunction of formulas T1, . . . ,Tk in the following way:
(1) Assignment completeness: For every variable v , each Ti has at least one assignment to v , and
(2) Single assignment: For every variable, each Ti contains exactly one assignment to it.
We apply this technique to find assignments and symbolic transitions.

Example 3.1. Consider the example in Figure 2. There are 7 symbolic transitions, corresponding
to the possible actions TMCommit, TMAbort, TMRcvPrepared(rm), and so on. The body of TMAbort

contains assignments to all five variables; two of them are unchanged. ◁

3.3 Types

Whereas TLA+ is untyped by design, TLC dynamically computes types and rejects some combina-
tions of legal TLA+ expressions, e.g., {1, “a”}. However, TLC’s type system is not defined. We use
the following type system, which is similar to the type system by [Merz and Vanzetto 2012]:

τ ::= Name | Bool | Int | τ → τ | Set[τ ] | Seq[τ ] | τ ∗ · · · ∗ τ | [nm1 : τ , . . . , nmk : τ ]

The type system rejects some TLA+ expressions that are legal in the untyped language. Impor-
tantly, elements of sets must have the same type. For example, {1, {2, 3}} is ill-typed. Similarly,
TLA+ functions can be defined on values of different types and return values of different types,
but such functions are rejected by the type system. Finally, our type system clearly distinguishes
between functions, sequences, tuples, and records.
Developing a fully automatic type inference engine for TLA+ is a challenge on its own. In

this paper, we follow a simple approach: In most cases, the types are computed automatically by
propagation; when the tool fails to find a type, it asks the user to write a type annotation. Given
the syntax tree of a TLA+ expression, our basic type inference algorithm works as follows:
(1) A leaf expression is assigned the respective type. For instance, the literals 0, 1,−1, . . . have

type Int, and the literals false and true have type Bool. If the type is ambiguous, as in {},
then type inference fails, and the user has to annotate the expression with a type.

(2) A non-leaf expression is an application of a built-in operator. The type signatures of these
operators are predefined, e.g., + : Int ∗ Int → Int. Some operators introduce bound variables,
e.g., ∃x ∈ S : e or {e : x ∈ S}. As expected, the type of the binding set is computed first, and
then the type of e is computed.

In practice, the user has only to give the types of empty sets, empty sequences, and records. It
is common to mix records of different types. In Section 2, records [type 7→ “Abort”] and [type 7→

“Prepared”, rm 7→ rm] are both added to the set msgs. The user has to annotate the records and
their sets with a super type, e.g., [type : Name, rm : Set[Name]].

4 KERA+: THE KERNEL LANGUAGE OF TLA+ EXPRESSIONS

Ourmain goal is to checkTLA+ specifications using an SMT solver as a back-end. A direct translation
of the rich TLA+ syntax would be tedious and error-prone. Hence, we introduce KerA+: A small
set of operators that can express all but a few TLA+ expressions. For example, it includes the
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Table 1. The language KerA
+
. We highlight the expressions that do not have counterparts in pure TLA

+
.

Literals: false, true 0,1,-1,2,-2,. . . c1, . . . , cn (constants)
Integers: i1 • i2 where • is one of: +,−, ∗,÷,%, <, ≤, >, ≥,=,,
Sets: {e1, . . . , en} {x ∈ S : p} {e : x ∈ S} union S

i1 .. i2 Cardinality(S) x ∈ [S1 → S2] x ∈ subset S
Control: ite(p, e1, e2)

e1 ⊕ . . . ⊕ en x ′ D S x ′ D [S1 → S2] x ′ D subset S
Quantifiers: ∃x ∈ S : p choosex ∈ S : p from e1, . . . , en byθ
Functions: [x ∈ S 7→ e] f [e] domain f [f except ![e1] = e2]
Records: [nm1 7→ e1, . . . , nmn 7→ en] domain r e .nm
Tuples: ⟨e1, . . . , en⟩ t[i] domain t
Sequences: ⟨e1, . . . , en⟩ s[i] domain s [s except ![i] = e]

Len(s) s ◦ t Head(s), Tail(s) SubSeq(s, i, j)

operator union {S1, . . . , Sn}, which constructs the union S1 ∪ · · · ∪ Sn . The binary operator S1 ∪ S2
is equivalent to union {S1, S2}. We add a few auxiliary operators that simplify the translation.

A list of KerA+ expressions is given in Table 1. It might seem surprising that very basic operators
such as Boolean operators are missing. In fact, they can be expressed with if-then-else:

¬p ≡ ite(p, false, true) p ∧ q ≡ ite(p,q, false) p ∨ q ≡ ite(p, true,q)

Several KerA+ operators do not originate from TLA+:
• Assignment x ′ D S : Following TLC, under the conditions given by [Kukovec et al. 2018], we
treat an expression x ′ ∈ S as an assignment of a value from the set S to the variable x ′. Note
that an expression x ′ = e is a special case of this rule, which can be written as x ′ ∈ {e}. We
label such assignments with x ′ D S , to distinguish them from membership tests x ′ ∈ S .

• Non-deterministic disjunction ϕ1 ⊕ . . . ⊕ ϕn : This operator formalizes the special form of TLC
disjunction. It evaluates to true if and only if the disjunction ϕ1 ∨ · · · ∨ ϕn evaluates to
true. However, non-deterministic disjunction adds constraints on the variable assignments:
For every i, j ∈ 1..n and i , j, formula ϕi contains an assignment to a variable x ′ if and
only if formula ϕ j contains an assignment to x ′. Note that this property is implied by the
single-assignment property of symbolic transitions (see Section 3.2). Hence, we use it to
compose the symbolic transitions.

• Choice with an oracle from e1, . . . , en byθ : This operator returns expression ei when θ = i
and 1 ≤ i ≤ n; otherwise, it returns an arbitrary value of the same type as e1, . . . , en .

KerA+ is a subset of TLA+ —except for the three operators discussed above— and the meaning of
the operators coincides with the description in the book by [Lamport 2002]. Denotational semantics
of TLA+ in first-order logic is given by [Merz 2008]. In Sections 6–10, we give a brief description of
each KerA+ operator along with the semantics for finite structures in terms of rewriting rules.

5 REWRITING FRAMEWORK

Our goal is to translate a KerA+ expression into an equisatisfiable quantifier-free SMT formula. To
this end, we introduce an abstract reduction system that allows us to iteratively transform a KerA+

expression by applying reduction rules. The central idea of our approach to rewriting is to construct
an overapproximation of the data structures with a graph whose edges connect values such as sets
and their elements. We call this graph an arena, as it resembles the in-memory data structures that
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are created by the explicit-state model checker TLC. While some rules for KerA+ operators extend
the arena with new nodes and edges, other rules use this graph to produce SMT constraints on the
actual values. The reduction rules collapse a complex KerA+ expression into a so-called cell that
captures the result of symbolically evaluating the expression. The rewriting process terminates,
when the input KerA+ formula ϕ has been collapsed to a single cell. In this case, the reduction
rules have produced a set of SMT constraints that are equisatisfiable to the formula ϕ.

5.1 Cells

In our framework, a cell is simply a first-order constant that is annotated with a type τ : The cells
of types Int and Bool are interpreted in SMT as integers and Booleans respectively, whereas the
cells of the other types remain uninterpreted. In the following, we use notation ci or cname to refer
to a cell. We assume fixed a finite set of cells C, which contains sufficiently many elements for
rewriting a KerA+ expression.

New cells are introduced when rewriting a KerA+ expression. For example, the expression {1, 2}
is rewritten by a series of rewriting steps: {1, 2}⇝ {c1, 2}⇝ {c1, c2}⇝ c3. We give the precise
definition of⇝ in Section 5.4. While the original expression does not contain cells, the rewritten
expressions do. In fact, cells are well-formed KerA+ expressions, as they can be seen as KerA+

constants. Hence, the introduced cells can be seen as: (1) first-order constants in SMT, and (2) KerA+

constants in KerA+, which would be introduced in TLA+ using the string notation, e.g., “abc”.

5.2 Arenas

An arena is a directed acyclic labelled graph A = (V, E), where V ⊆ C is a finite set, called arena

cells, and E ⊆ V × (1..|V|) × V is a relation between the cells, called arena edges, that have the
following properties:

(1) There are no duplicate labels. Formally, for every pair (v1, i1,w1), (v2, i2,w2) ∈ E, if v1 = v2
andw1 , w2, then i1 , i2.

(2) There are no gaps in the labels. Formally, for every (v, i,w) ∈ E, and every index j ∈ 1..(i − 1),
there is a cellw ∈ V with the property (v, j,w) ∈ E.

We writeV(A) and E(A) to refer to the cells and edges of arenaA respectively. With c1
i
−→A c2,

we denote that (c1, i, c2) ∈ E. Similarly, we write c →A c1, . . . , cn to say that c points to c1, . . . , cn
in this order, that is, c

i
−→A ci for 1 ≤ i ≤ n and for every c

′ ∈ V(A) and j > n, it holds that
(c, j, c′) < E(A). We use the following notation to extend an arena A:

• NotationA, c : τ to introduce the arena (V ′, E ′) such thatV ′ = V(A)∪{c} and E ′ = E(A),
provided that c is a fresh cell of type τ , i.e., c < V(A).

• Notation A, c → c1, . . . , cn to introduce the arena A ′ such that V(A ′) = V(A) and
E(A ′) = E(A) ∪ {(c, i, ci ) | 1 ≤ i ≤ n}.

Example 5.1. Figure 3 shows examples of memory arenas for several KerA+ expressions. In
example (a), the arena contains six cells: three cells of type Int that represent integers 1, 2, 3; two
cells of type Set[Int] that represent the sets {1, 2} and {2, 3}; and one cell of type Set[Set[Int]] that
represents the set of sets {{1, 2}, {2, 3}}. Importantly, the arena only gives us a static overapproxi-
mation of the set. The actual contents of the set encoded by cell c6 may be {∅} or {{1}, {2}}. The
further constraints on the cell contents are encoded in SMT, see Section 5.3.

In example (b), the arena contains five cells: three cells to encode the integers, the cell c14 to encode
the record [b 7→ 0, c 7→ 3], and the cell c15 to encode the tuple ⟨“a”, 3, [b 7→ 0, c 7→ 3]⟩. In case of
tuples, the cell type gives us unambiguous relation between the tuple fields and the cells pointed
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c6 : Set[Set[Int]]

c4 : Set[Int] c5 : Set[Int]

c1 : Int c2 : Int c3 : Int

1 2

1 2 1 2

(a) set of sets

{{1, 2}, {2, 3}}

c15 : Name ∗ Int ∗ [b : Int, c : Int]

c14 : [b : Int, c : Int]

c11 : Name c12 : Int c13 : Int

1 2

3

2 1

(b) tuple and record

⟨“a”, 3, [b 7→ 0, c 7→ 3]⟩

c27 : Int → Int

c26 : Set[Int ∗ Int]

c24 : Int ∗ Int c25 : Int ∗ Int

c21 : Int c22 : Int c23 : Int

1

1 2

1 2 1 2

(c) function

[x ∈ {1, 2} 7→ 1 + x]

Fig. 3. Examples of arenas for data structures in KerA
+
. The leaf cells are equal to the following constants:

c1 = c21 = 1, c2 = c22 = 2, c3 = c23 = 3, c11 = a, c12 = 3, and c13 = 0

by the cell. For instance, from the edge c15
1
−→ c11 and the tuple type Name ∗ Int ∗ [b : Int, c : Int],

we immediately obtain that cell c11 is the first field of the tuple c15. The same applies to records.
Finally, example (c) shows the arena that is constructed for the function f = [x ∈ {1, 2} 7→ 1+x].

In our encoding, a function f is represented with its relation, that is, the set {(x, f [x]) : x ∈

domain f }. Hence, the cells c21, c22, and c23 encode the integers 1, 2, and 3 respectively. The
cells c24 and c25 encode the pairs ⟨1, 2⟩ and ⟨2, 3⟩ of the relation respectively. The cell c26 encodes
the function relation, which is pointed by the function cell c27. While the function cell c27 may look
redundant in the presence of the cell c26, we keep the both, as they have different types. ◁

Although the values of leaf cells are fixed in our examples, they do not have to be. In example (c)
we could leave the values of the cells c21, c22, and c23 unconstrained. Then, the SMT solver would
find values that satisfy the symbolic constraints such as c22 = 1+c21, as prescribed by the function f .

5.3 SMT constraints

We recapitulate the necessary notions related to many-sorted first-order logic. We assume fixed a
set of sorts S, which includes exactly one sort sτ per type τ that is defined in Section 3. Further,
let F be a set of functional symbols, each functional symbol is assigned a non-negative arity. For
convenience, we say that the set of cells C coincides with the set of functional symbols of arity 0
from the set F . Each symbol f ∈ F is assigned a sort sort(f ) ∈ S. The ground terms are defined as
follows: (1) every constant c ∈ C is a ground term, and (2) if t1, . . . , tn are ground terms and f ∈ F

has arity n, then f (t1, . . . , tn) is a ground term, if the sorts of f , t1, . . . , tn are compatible.
We distinguish the set of predicates P ⊆ F , which contains the symbols that are assigned a

sort sτ1×···×τn→Bool for n ≥ 0 and some types τ1, . . . , τn . A ground first-order quantifier-free for-

mula (FO-formula) is a Boolean combination of predicates. We assume that set F contains the
standard symbols of integer arithmetic along with uninterpreted functions, and their interpre-
tation is standard. In particular, the sorts sBool and sInt are the sorts of Booleans and integers,
respectively. The sorts for the other types are uninterpreted. Hence, we deal with the formulas of
logic QF_UFNIA [Barrett et al. 2017]. (Integer arithmetic in TLA+ does not have to be linear.)

Encoding Arenas in SMT. When rewriting a KerA+ expression e , our reduction system introduces
new cells that encode symbolic values of e’s subexpressions. In SMT, these cells are introduced
as constants of the respective sorts. To keep track of the arena edges, we introduce instrumental
Boolean constants in SMT. Formally, given an arenaA = (V, E), for each edge e ∈ E, we introduce
a Boolean constant en⟨e⟩, whose value indicates, whether the edge e is enabled or not.
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Example 5.2. Consider the edge e41 = (c4, 1, c1) in Figure 3 (a). If en⟨e41⟩ evaluates to true, then
the cell c1 belongs to the set encoded by the set c4; otherwise, c1 does not belong to the set. ◁

5.4 Abstract Reduction System (ARS)

We assume fixed a finite set of variables Vars that are used in KerA+ expressions as free or bound
variables. We define an abstract reduction system (S,⇝), where S are the states of the reduction
system and⇝ ⊆ S × S is a transition relation. A state of the abstract reduction system is defined
as a tuple (e,A,ν,Φ), whose elements have the following meaning:

• e is a KerA+ expression, possibly containing cells,
• A is an arena,
• ν is a partial function from Vars to V(A), which is called binding, and
• Φ is a set of first-order formulas, which represents SMT constraints.

We define⇝ via a set of reduction rules. For instance, the rules (Bool) and (Int) below define
transitions that reduce Boolean and integer literals to cells. In the reduction rules, we write the
premises above the bar and the new state of the reduction system below the bar. By convention,
the state is always written as the first premise, using the notation

〈
e | A | ν | Φ

〉
.〈

b | A | ν | Φ
〉

b is false or true〈
c | A, c : Bool | ν | Φ, c = b

〉 (Bool)

〈
n | A | ν | Φ

〉
n is 0, 1,−1, . . .〈

c | A, c : Int | ν | Φ, c = n
〉 (Int)〈

cℓ ▷◁ cr | A | ν | Φ
〉

▷◁ is one of <, ≤, >, ≥,=,,〈
cr es | A, cr es : Bool | ν | Φ, cr es ↔ cℓ ▷◁ cr

〉 (IntCmp)

Once we have introduced integer cells for the literals, we can reduce integer comparisons using
the rule (IntCmp) and reduce integer arithmetics using the rule (IntArith). The reduction rules
add new SMT constraints to the set Φ.〈

cℓ ◦ cr | A | ν | Φ
〉

◦ is one of +,−, ∗,÷,%〈
cr es | A, cr es : Int | ν | Φ, cr es = cℓ ◦ cr

〉 (IntArith)

In general, expressions contain multiple operators and thus cannot be reduced with a single rule.
The rule (RedArg) rewrites operator arguments from left to right. Unless stated otherwise, we
assume that this rule can be freely applied to an expression before the other rules are applied. A
few KerA+ operators require special treatment, e.g., ∃x ∈ S : p and {x ∈ S : p}.

〈
Op(e1, . . . , en) | A0 | ν0 | Φ0

〉 〈
ei | Ai−1 | νi−1 | Φi−1

〉〈
ci | Ai | νi | Φi

〉
for 1 ≤ i ≤ n〈

Op(c1, . . . , cn) | An | νn | Φn
〉 (RedArg)

To apply the reduction system to a KerA+ expression e , e.g., to Init and Next, we introduce an
initial state

〈
e0 | A0 | ν0 | Φ0

〉
, whose arena, binding, and SMT constraints are empty. Formally,

A0 = (∅, ∅), Φ0 = ∅, and ν (x) = ⊥ for x ∈ Vars. Usually, the expression e0 is a formula, that is, it
has type Bool. For simplicity, we also assume that all constants that appear in e0 have basic types,
that is, Int, Bool, and Name, while the expressions of more complex types are constructed with
built-in TLA+ operators. This restriction is not crucial, as one can initialize TLA+ parameters (called
“CONSTANTS” in TLA+) by evaluating an additional formula, similar to Init. Then, we apply the
reduction rules until one of the following states is reached: (1) an error state, in which no rule
applies, or (2) a terminal state, in which the expression is a single cell. If an error state has been
reached, then the expression e is not well-formed.
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When a terminal state cterm is reached, and the terminal cell cterm has type Bool, we add the
assertion cterm to the SMT constraints and check their satisfiability. In Sections 6–10, we introduce
rewriting rules for sets, functions, tuples, records, sequences, and control operators. Section 11
contains soundness proofs.

6 SETS

Sets lie in the theoretical foundation of TLA+, as it builds upon Zermelo-Fränkel set theory with
choice (ZFC). Hence, in theory, every TLA+ value is a set. However, in practice, we distinguish sets
from the other objects, that is, Booleans, integers, functions, tuples, records, and sequences. One
implication of using ZFC is that every set is constructed out of sets of smaller rank, the terminal
sets being the objects of non-set types (or empty sets). Importantly, we only consider finite sets.

Set Enumeration. The simplest way to construct a set is by enumerating its elements, e.g., by
writing {1, 2, 3}. The rule (Enum) reduces a set of cells to a fresh cell cset . The rule links the elements
c1, . . . , cn to cset in the arena and adds the constraint en⟨cset , i, ci ⟩ for each 1 ≤ i ≤ n. Several
important observations should be made. First, we only add constraints on the edges from cset to
the cells c1, . . . , cn , as the reduction rules for sets refer only to the cells pointed by cset in the arena.
Second, the set elements may be not unique, as uniqueness test cannot be done at the time of
rewriting, and most set operations do not require uniqueness. In other words, we encode multisets.〈

{c1, . . . , cn} : Set[τ ] | A | ν | Φ
〉〈

cset : Set[τ ] | A, cset , cset → c1, . . . , cn | ν | Φ,
∧

1≤i≤n
en⟨cset , i, ci ⟩

〉 (Enum)

Set Membership. An expression cx ∈ cS such that cS →A c1, . . . , cn is reduced to
∨

1≤i≤n cx = ci .

Set Filter. An expression {x ∈ S : p} constructs the set T that has only the elements of S that
satisfy the predicate p. 〈

{x ∈ cS : p} : Set[τ ] | A | ν | Φ
〉〈

p[c1/x], . . . ,p[cn/x] | A | Φ | ν
〉〈

c
p
1 , . . . , c

p
n | A ′ | Φ′ | ν ′

〉
cS →A c1, . . . , cn〈

cT : Set[τ ] | A ′, cT → c1, . . . , cn | ν ′ | Φ′, InFilter
〉 (Filter)

The rule (Filter) implements this semantics in two steps. First, it reduces the applications of
predicate p to all potential set elements c1, . . . , cn , that is, it rewrites the expressions p[ci/x] for
1 ≤ i ≤ n. (As usual, the notation p[e/x] means that x is replaced by e in p.) Second, it adds the
constraint (InFilter) that requires every cell ci to be in the new set cT if and only if it is in cS and it
satisfies the predicate p instantiated to ci , that is, c

p
i is true:

en⟨cT , i, ci ⟩ ↔
(
c
p
i ∧ en⟨cS , i, ci ⟩

)
for 1 ≤ i ≤ n (InFilter)

Union of Sets. By definition, union S produces the set that comprises of the elements of the sets
in S . For example, union {{1, 2}, {2, 3}} produces the set {1, 2, 3}. The rule (Union) captures this.
It introduces a fresh cell cU for the union and points to the cells pointed by the descendants of cS .〈

union cS : Set[Set[τ ]] | A | ν | Φ
〉

cS →A c
1
S , . . . , c

n
S c

i
S →A c

i
1, . . . c

i
mi

for 1 ≤ i ≤ n〈
cU : Set[τ ] | A, cU , cU → c

1
1, . . . , c

1
m1, c

2
1, . . . , c

2
m2, . . . , c

n
mn

| ν | Φ, InU
〉 (Union)

The SMT constraint (InU ) simply requires a cell cij to be in cU if and only of it is in the set
containing it, that is, in c

i
S , and the set ciS belongs to cU :
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cS : Set[Int]

c2 : Int c3 : Int c4 : Int

1 2 3
cT : Set[Int]

c0 : Int c1 : Int

1 2 3

Fig. 4. An arena constructed for the set comprehension {x ÷ 3 : x ∈ {2, 3, 4}}. Every cell ci has value i for
0 ≤ i ≤ 4. Cell cS encodes the set {2, 3, 4}, and cell cT encodes the result of the set comprehension.

en⟨cU , idxi , j , c
i
j ⟩ ↔

(
en⟨ciS , j, c

i
j ⟩ ∧ en⟨cS , i, c

i
S ⟩

)
for 1 ≤ i ≤ n, 1 ≤ j ≤ mi , (InU )

where the edge index idxi , j is defined asm1 + · · · +mi−1 + j.
The constraint (InU ) may seem to be unsound. Indeed, consider the arena in Figure 3 (a) and

assume that we compute union c6. Further, assume that the SMT solver sets en⟨c5, 1, c2⟩ to true and
en⟨c4, 2, c2⟩ to false, that is, 2 is a member of the set encoded by c5 and 2 is not a member of the set
encoded by c4. Equation (InU ) produces the following constraints (among others): en⟨cU , 2, c2⟩ ↔
en⟨c4, 2, c2⟩ ∧ en⟨c6, 1, c4⟩ and en⟨cU , 3, c2⟩ ↔ en⟨c5, 1, c2⟩ ∧ en⟨c6, 2, c5⟩. As a result, en⟨cU , 2, c2⟩
is false, whereas en⟨cU , 3, c2⟩ is true. There is no contradiction here, as for the set membership of c2
in cU , it is sufficient to find one enabled edge, that is, (cU , 3, c2).

Set Map. By definition, {e : x ∈ S} constructs the set T with the following property: For every z,
it holds that z ∈ T if and only if there is y ∈ S such that z = e[y/x]. For example, the expression
{x ÷ 3 : x ∈ {2, 3, 4}} constructs the set {0, 1}. The operator ÷ denotes integer division in TLA+.
Rule (Map) implements this. Figure 4 shows the arena that is constructed in the process of reduction.

〈
{e : x ∈ cS } | A | ν | Φ

〉
and

cS →A c1, . . . , cn

〈
e[c1/x], . . . , e[cn/x] | A | Φ | ν

〉〈
c
e
1 : τ , . . . , c

e
n : τ | A ′ | Φ′ | ν ′

〉〈
cT | A ′, cT : Set[τ ], cT → c

e
1, . . . , c

e
n | ν ′ | Φ′, InMap

〉 (Map)

The rule works in two steps. First, it reduces the applications of expression e to all potential
set elements c1, . . . , cn , that is, it rewrites the expressions e[ci/x] to c

e
i for 1 ≤ i ≤ n. Second, the

constraint (InMap) enforces that a cell cei belongs to the set encoded by the cell cT if and only if its
preimage ci belongs to the set encoded by the cell cS :

en⟨cT , i, c
e
i ⟩ ↔ en⟨cS , i, ci ⟩ for 1 ≤ i ≤ n (InMap)

Example 6.1. Consider Figure 4. The cell c1 is mapped to the cell c0, whereas the cells c3 and c4
are mapped to the cell c1. Assume that the SMT solver sets en⟨cS , 3, c4⟩ to true and en⟨cS , 2, c3⟩ to
false. Hence, en⟨cT , 3, c1⟩ holds true and en⟨cT , 2, c1⟩ does not. Still, c1 belongs to the set encoded
by cT , as the edge (cT , 3, c1) is enabled. ◁

Integer Interval a..b. This operator is quite often used in TLA+ to define the set {i ∈ Z : a ≤ i ≤ b}.
The latter set cannot be defined in KerA+, as our language supports only finite sets. When the
bounds a and b are integer constants, we reduce a..b to the set enumeration {a,a + 1, . . . ,b}.
Otherwise, the user has to find a static set S ⊇ a..b that can be filtered by the KerA+ expression {i ∈
S : a ≤ i ∧ i ≤ b}. It is often easy to find such a set S , as the specification parameters are fixed.

Set Equality. As sets are encoded as constants of uninterpreted sorts in SMT, it is not sound
to use the SMT equality. One way of imposing equality constraints is by writing down the set
equality axioms as done by [Merz and Vanzetto 2018]. However, such axioms immediately introduce
quantified formulas in SMT. Instead of axioms, we implement lazy equality in the rule (SetEq).
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Whenever two cells cS and cT are compared for the first time, (SetEq) rewrites the definition of set
equality into a Boolean cell ceq . Additionally, it adds the SMT constraint cS = cT ↔ ceq , which
allows us to use SMT equality in the later occurrences of cS = cT .

〈
cS = cT | A | ν | Φ

〉 〈
(∀x ∈ cS : x ∈ cT ) ∧ (∀x ∈ cT : x ∈ cS ) | A | ν | Φ

〉〈
ceq : Bool | A ′ | ν ′ | Φ′

〉〈
ceq | A ′ | ν ′ | Φ′, cS = cT ↔ ceq

〉 (SetEq)

Set Cardinality. In TLA+, an expression Cardinality(S) produces a natural number that equals to
the number of elements in a finite set S . Cardinalities are used in TLA+ specifications in various
ways. For instance, to compare cardinalities, that is, Cardinality(S) ≥ Cardinality(T )/2 + 1, or to
construct a set of integers 1..Cardinality(S), or as a function argument. Hence, we use a generic
approach to computing the set cardinality by the recurrence relation in Equation (1), assuming that
a set cell cS is pointing to the element cells c1, . . . , cn :

k0 = 0 and ki+1 = ite(en⟨cS , i, ci ⟩ ∧ notSeeni , 1 + ki ,ki ) for 0 < i ≤ n (1)

Equation (2) requires that the ith element contributes to the cardinality, if the previously consid-
ered elements are either outside of the set, or are different from the ith element:

notSeeni =
∧

1≤j<i
(en⟨cS , j, cj ⟩ → cj , ci ) for 0 < i ≤ n (2)

Hence, Cardinality(cS ) = kn . A more efficient approach can be applied to a more restricted
fragment, e.g., BAPA by [Kuncak et al. 2005]. We plan to use specialized approaches in the future.

7 PICKING SET ELEMENTS

While developing rewriting rules for TLA+ operators, we found that many rules can be reduced to
the auxiliary operator from e1, . . . , en byθ , where θ is an integer constant and e1, . . . , en are TLA+

expressions of the same type τ . The meaning of this operator is as follows: If θ ∈ 1..n, then
from e1, . . . , en byθ returns eθ ; Otherwise, it returns an arbitrary value of type τ . The constant θ
defines the value to be picked from the sequence e1, . . . , en . Hence, we call it an oracle.
The operator from e1, . . . , en byθ is not part of TLA+. The syntax for TLA+ proofs [Lamport

2018] has a similar operator pick x ∈ S , which returns an arbitrary element of the set S . However,
pick does not provide us with fine control of which element could be picked. We define several
reduction rules for from e1, . . . , en byθ , which vary by the types of the expressions e1, . . . , en .

Picking Basic Values. The rule (FromBasic) applies to Booleans, integers, and constants. It
introduces a new cell cpick and requires that cpick equals to the θ th value as prescribed by the
oracle. When the oracle has a value outside of 1..n, the picked value is unconstrained.〈

from c1, . . . , cn byθ | A | ν | Φ
〉

c1 : τ , . . . , cn : τ τ is basic〈
cpick | A, cpick : τ | ν | Φ,

∧
1≤i≤n

(
θ = i → cpick = ci

)〉 (FromBasic)

Picking Sets. The second rule (FromSet) picks a set element which is itself a set. This is the
most intricate rule, as it requires us to construct a set that mimics the structure of every set that is
captured by the cells c1, . . . , cn . The rule assumes that every cell ci has the same type Set[τ ] for
some type τ and 1 ≤ i ≤ n. Without loss of generality, we assume that every cell points to exactly
the same number of cells, that is, if ci →A c

1
i , . . . , c

k
i and cj →A c

1
j , . . . , c

m
j , then k =m. If it is not

the case we can introduce additional edges by replicating the last element of the sequence, e.g., if
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c
1
1 c

2
1 c

3
1

c
1
2 c

2
2 c

3
2

from c
i
1, c

i
2 byθ

c1

c2

c
1
pick c

2
pick c

3
pickcr es

Fig. 5. Picking a set among two set cells c1 and c2, pointing to c
1
1, c

2
1, c

3
1 and c

1
2, c

2
2, c

3
2 respectively. The

result cpick points to c
1
pick , c

2
pick , c

3
pick , which are picked from three sequences of two cells (in red boxes).

k < m, then we would extend the arena as ci →A c
1
i , . . . , c

k
i , . . . , c

k
i , where c

k
i is repeatedm −k + 1

times. (When k = 0, we copy the elements from the longest sequence and disable the new edges.)
The rule (FromSet) works in two steps. First, for every index j ∈ 1..m, it picks an element cjpick

among the jth elements of the sets c1, . . . , cn . Importantly, the operators from c j1, . . . , c
j
n byθ are

using the same oracle θ for every j ∈ 1..m. As a result, they pick the respective elements from the
same set cθ . Second, the resulting set cr es points to the picked elements c1pick , . . . , c

m
pick .〈

from c1, . . . , cn byθ | A0 | ν0 | Φ0
〉

ci : Set[τ ] for 1 ≤ i ≤ n and θ : Int

ci →A0 c
1
i , . . . , c

m
i for 1 ≤ i ≤ n

〈
from c

j
1, . . . , c

j
n byθ | Aj−1 | νj−1 | Φj−1

〉〈
c
j
pick : τ | Aj | Φj | νj

〉
for 1 ≤ j ≤ m〈

cr es | A, cr es : Set[τ ], cr es → c
1
pick , . . . , c

m
pick | νm | Φm, InPicked

〉 (FromSet)

The constraint (InPicked) requires the new set cell cr es to contain a cell cjpick if and only if the
respective set chosen by the oracle θ contains the jth cell.

en⟨cr es , j, c
j
pick ⟩ ↔

∨
1≤i≤n

θ = i ∧ en⟨ci , j, c
j
i ⟩ for 1 ≤ j ≤ m (InPicked)

Example 7.1. Figure 5 shows an example of the rule applied to from c1, c2 byθ . The cells c1 and
c2 have type Set[τ ], each of them pointing to three element cells c1i , c

2
i , and c

3
i for i ∈ {1, 2}. The

rule first applies from c
j
1, c

j
2 byθ three times for j ∈ {1, 2, 3} to pick one element cjpick from each

pair. Note that use of θ guarantees us that the elements are drawn from the same set. The resulting
cell cr es is pointing to the three picked cells c1pick , c

2
pick , and c

3
pick . ◁

Picking Other Values. We have also defined the rules for picking a value from: a set of functions,
a set of tuples, a set of records, a set of sequences, and a powerset (constructed with subset S).
They are similar to (FromBasic) and (FromSet) and are omitted for brevity.

8 TUPLES AND RECORDS

Tuples and records are easy to express in our framework, since the types give us precise information
about the number of fields and their types. Importantly, we assume that the tuple elements and
record fields are accessed with constant expressions, e.g., tuple[3] or record .name , but not tuple[x]
and record[x], where x is a variable. This is usually the case for TLA+ specifications.
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ct : Int ∗ Bool ∗ Name

c1 : Int c2 : Bool c3 : Name

Case (a)

1 2 3
cr : [a 7→ Int,b 7→ Bool, c 7→ Name]

Case (b)
c4 : Int c5 : Bool c6 : Name

1 2 3

Fig. 6. (a) The arena constructed for the tuple ⟨1, true, ”abc”⟩, assuming that the expressions 1, true, and ”abc”
were rewritten into cells c1, c2, and c3. (b) The arena constructed for the record [a 7→ 1,b 7→ true, c 7→ ”abc”],
assuming that the expressions 1, true, and ”abc” were rewritten into cells c4, c5, and c6.

Tuple Constructor. A tuple constructor adds a new cell pointing to the element cells in their index
order. Figure 6 (a) shows an example of applying the rule (TupCtor).〈

⟨c1, . . . , cn⟩ : τ1 ∗ · · · ∗ τn | A | ν | Φ
〉〈

cnew | A, cnew : τ1 ∗ · · · ∗ τn, cnew → c1, . . . , cn | ν | Φ
〉 (TupCtor)

Tuple Application. The tuple application rule returns the ith cell pointed by the tuple cell:〈
ct [i] | A | ν | Φ

〉
ct →A c1, . . . , cn i ∈ {1, . . . ,n}〈
ci | A | ν | Φ

〉 (TupApp)

Tuple Domain. For a tuple t of type τ1 ∗ · · · ∗ τn , the expression domain t is reduced to 1..n.

Records. The rules for records are similar to the rules for tuples. We assume that the field names
in each record type [nm1 7→ e1, . . . ,nmn 7→ en] are lexicographically sorted. Obviously, there is
bijection between {nm1, . . . ,nmn} and 1..n. Hence, we use the rules for tuples to rewrite most
of the record operators. The only exception is domain r , which returns the set {nm1, . . . ,nmn}.
Figure 6 (b) shows an example of rewriting a record constructor.

9 FUNCTIONS AND SEQUENCES

Functions are the second most used data structure after sets in TLA+. [Lamport 2002] introduces
tuples, sequences, and records as functions, so in pure TLA+ any data structure different from a set is
a function. As KerA+ is well-typed, we treat general functions differently from tuples, records, and
sequences. A function in KerA+ has a type τ1 → τ2, which implies that it always returns elements
of the same type. Below, we define the reduction rules for function operators. In arenas, we encode
a function f with its associated relation, that is, as the set of pairs {⟨x, f [x]⟩ : x ∈ domain f }. As a
result, we reuse the rules for sets (Section 6) and tuples (Section 8). For instance, equality of two
functions is simply the set equality of their associated relations.

At the arena level, a function cell cf is always pointing to a single cell that stores the associated
relation. See Figure 3 (c) for example. We use the notation funrel(cf ) to refer to this relation cell.

Function Definition (FunCtor). In TLA+, an expression [x ∈ S 7→ e] defines a function with the
domain S that maps every valuev ∈ S to e[v/x], where x is substitutedwithv in the expression e (see
[Lamport 2002, p. 302]). This expression is similar to the set map {e : x ∈ S}. Hence, for the function
constructor [x ∈ S 7→ e], we apply the rewriting rule (SetMap) to the expression {⟨x, e⟩ : x ∈ S}.
This rule produces a cell crel that encodes the associated relation crel of type Set[τ1 ∗ τ2], where τ1
is the type of elements of S , and τ2 is the type of e . We add a cell cf of type τ1 → τ2 and make it
point to crel , that is, cf →A crel . The rule (FunCtor) produces cf as a result.

Function Domain (FunDom). Assuming that f is reduced to a cell cf , we rewrite domain cf as
{t[1] : t ∈ funrel(cf )}, that is, we map every pair in the relation funrel(cf ) to its first element.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 123. Publication date: October 2019.



123:16 Igor Konnov, Jure Kukovec, and Thanh-Hai Tran

Function Update (FunExc). In TLA+, an expression [f except ![a] = r ] produces a new function д
that has three properties: (1) It has the same domain as f , (2) д[x] = f [x] for x ∈ domain f \ {a},
and (3) д[a] = r if a ∈ domain f . (See [Lamport 2002, p. 302].) Assuming that expression f has
been rewritten to a cell cf , we update the associated relation funrel(cд) as follows:

{ite(p[1] = a, ⟨a, r ⟩,p) : p ∈ funrel(cf )} (Except)

In (Except), all pairs that contain a as the first component are replaced with the pair ⟨a, r ⟩, while
the other pairs stay unchanged. It is easy to see that the above properties (1)-(3) are satisfied. We
give the rewriting rule for ite in Section 10.

Function Application (FunApp). In TLA+, an expression f [e] returns the result of applying the
function f to e , provided that e ∈ domain f . When e < domain f , the result is unspecified. The
rule (FunApp) implements this semantics.〈

cfun[carд] | A | ν | Φ
〉

cfun

1
−→A crel →A c1, . . . , cn〈

from c1, . . . , cn by cora | A, cora : Int | ν | Φ, 0 ≤ cora ≤ n
〉〈

cpair | A2 | Φ2 | ν2
〉〈

cpair [2] | A2 | ν2 | Φ2,WhenInDomain ∧WhenOutsideDomain

〉 (FunApp)

First, the rule (FunApp) introduces an integer oracle cora, which points either to a cell from
c1, . . . , cn (when 1 ≤ cora ≤ n), or an arbitrary cell of proper type (when cora = 0). Second, a cell cpair
is picked using the operator from c1, . . . , cn by cora. This is the tuple that comprises a function
argument and the respective result, so the rule (FunApp) returns the function result cpair [2]. Third,
the SMT formula (WhenInDomain) requires the oracle to pick the right pair, that is, the one that
actually belongs to the relation and whose first component is equal to the argument. Finally, the
SMT formula (WhenOutsideDomain) allows the oracle value to be zero, only if there is no pair that
matches the passed argument carg . Importantly, as the rule uses equality, we require that the lazy
equality constraints carд = ci [1] are generated for 1 ≤ i ≤ n.

cora = i →
(
ci [1] = carд ∧ en⟨cfun, i, ci ⟩

)
for 1 ≤ i ≤ n (WhenInDomain)

cora = 0 →
(
ci [1] , carд ∨ ¬en⟨cfun, i, ci ⟩

)
for 1 ≤ i ≤ n (WhenOutsideDomain)

Sequences. We briefly discuss sequences. In principle, sequence operators can be expressed with
function operators, we omit them here for brevity. However, these equivalent expressions are
unnecessarily complex. Instead, we encode a sequence q of type Seq[τ ] as a tuple ⟨start, end, fun⟩.
The components start and end are integers that store the first index of the sequence and the index
right after the end of the sequence respectively. The component fun is a function of type Int → τ
that maps integers 1..n to values of type τ for some n ≥ 0. The sequence operators maintain
the invariant: start ≥ 1 ∧ end ≤ n + 1. Hence, the elements of sequence q are in the window of
indices [start, end).

10 CONTROL OPERATORS AND QUANTIFIERS

Branching. The operator ite(cp, c1, c2) operator returns the value of one of its branches, depend-
ing on the Boolean condition cp . We use the from c1, c2 byθ for θ ∈ {1, 2}.〈

ite(cp, c1, c2) : τ | A | ν | Φ
〉 〈

from c1, c2 byθ | A, θ : Int | ν | Φ, 1 ≤ θ ≤ 2
〉〈

cr es | A2 | ν2 | Φ2
〉〈

cr es | A2 | ν2 | Φ2, θ = 1 ↔ cp
〉 (ite)
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Interestingly, we do not compare cr es to c1 and c2, as one would expect from the standard
if-then-else semantics. Instead, we delegate the job to the oracle θ .

Assignments. An assignment x ′ D cS in KerA+ specifies that a variable x ′ takes a value from the
set S . Since any element of the set may be chosen, we use from c1, . . . , cn byθ for the cells pointed
by the cell cS . We reserve the value θ = 0 for the case when the set is empty, which results in
assigning an arbitrary value of proper type to the variable x ′.〈

x ′ D cS | A | ν | Φ
〉

cS →A c1, . . . , cn〈
from c1, . . . , cn byθ | A, θ : Int | ν | Φ, 0 ≤ θ ≤ n

〉〈
c | A2 | ν2 | Φ2

〉〈
true | A2 | ν2[x 7→ c] | Φ2, θ = 0 ↔

∧
1≤i≤n

¬en⟨cS , i, ci ⟩,
∧

1≤i≤n
(θ , i ∨ en⟨cS , i, ci ⟩)

〉 (Asgn)

We omit the rules for the assignments f ′ D subset S and f ′ D [S → T ] for brevity.

Substitution. A variable x can be replaced with the cell given by a valuation ν :〈
x | A | ν | Φ

〉
x ∈ Vars〈

ν (x) | A | ν | Φ
〉 (Sub)

Existential Quantifiers. Quantified expressions are a fundamental building block of TLA+, as
well as KerA+. Since we consider only finite sets, an existential quantifer can be replaced with
disjunction. If the body of the quantified expression contains variable assignments, we translate
∃x ∈ cS : p as the non-deterministic disjunction p[c1/x] ⊕ . . . ⊕ p[cn/x], where cS is pointing to
c1, . . . , cn . 〈

∃x ∈ cS : p | A | ν | Φ
〉

cS →A c1, . . . , cn〈
p[c1/x] ⊕ . . . ⊕ p[cn/x] | A | ν | Φ

〉 (Exists)

Replacing an existential quantifier with a disjunction may seem to be suboptimal. However, we
cannot avoid it, as existential quantification may be used to express universal quantification, e.g.,
¬∃x ∈ cS . In this case, we have to explore all possible valuations for x . In the implementation,
we introduce the following optimization for existential quantifiers. We transform the formula
such as Next into its negated normal form and check whether ∃x ∈ cS : p is located under a
universal quantifier. If this is not the case, we introduce a Skolem constant c ∈ cS and produce the
expression p[c/x] instead of the disjunction. As expected, this optimization significantly reduces
the number of SMT constraints.

Operator choose. By definition, choosex ∈ S : p returns an element of S that satisfies the
expression p (see [Lamport 2002, p. 294]). If there is no such an element, the result is undefined.
Importantly, choose is deterministic: Two expressions choosex ∈ S : p and choosey ∈ T : q have
equal values, if the filtered sets are equal, that is, {x ∈ S : p} = {y ∈ T : q}.

The rule Choose implements this semantics as follows. First, it rewrites the set {x ∈ S : p} into
a cell cF of some type τ . Suppose that cF points to the element cells c1, . . . , cn . Second, the rule
applies from c1, . . . , cn byθ to pick a cell cr es using an oracle θ . The cell cr es is the result of rewriting
the expression choosex ∈ S : p. To guarantee determinism of choose, for each type τ , we introduce
an uninterpreted function chooseτ of sort Set[τ ] → τ , and require chooseτ (cF ) = cr es . Finally,
the rewriting system instantiates lazy equality between the pairs cells c1F and c

2
F , as well as the

pairs chooseτ (c1F ) and chooseτ (c
2
F ), which are produced by rewriting of {x ∈ S : p} and {y ∈ T : q}
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in the rule Choose. Congruence of uninterpreted functions gives us the required determinism.〈
choosex ∈ S : p | A | ν | Φ

〉 〈
{x ∈ S : p} | A | ν | Φ

〉〈
cF : τ | A2 | ν2 | Φ2

〉 cF →A2 c1, . . . , cn〈
from c1, . . . , cn byθ | A2, θ : Int | ν2 | Φ2, 0 ≤ θ ≤ n

〉〈
cr es | A3 | ν3 | Φ3

〉〈
cr es | A3 | ν3 | Φ3, chooseτ (cF ) = cr es

〉 (Choose)

Non-deterministic Disjunction. This operator combines symbolic transitionsT1, . . . ,Tk . In contrast
to the disjunction ∨, the operands of ⊕ produce independent variable valuations. For the sake of
presentation, we introduce the rule for the binary case A ⊕ B and one variable x ′. It is easy, though
tedious, to extend this rule to multiple variables and n-ary disjunctions.〈

e1 ⊕ e2 | A0 | ν0 | Φ0
〉 〈

ei | Ai−1 | ν0 | Φi−1
〉〈

ci | Ai | νi | Φi
〉 i = 1, 2〈

fromν1(x
′),ν2(x

′) byθ | A2, θ : Int | ν0 | Φ2, θ ∈ {1, 2}
〉〈

cx | A3 | ν0 | Φ3
〉〈

cr | A3, cr : Bool | ν0 ◦ [x ′ 7→ cx ] | Φ, cr ↔ c1 ∨ c2, θ = 1 → c1, θ = 2 → c2
〉 (Ndc)

11 SOUNDNESS OF THE REDUCTION TO SMT

In this section, we define KerA+ models and restrict them to finite structures. The restriction to
finite structures implies that every set expression in KerA+ is mapped to a finite set. Further, we
present two important properties of the reduction system: termination and soundness. We introduce
the invariants that are used to show soundness of the reduction. The final result guarantees that
the constraints produced by the reduction system belong to the SMT theories.

Models. Every satisfiable KerA+ formula has a model. A model is a pairM = ⟨D,I⟩:
(1) D is a domain. It is a disjoint union of sets D1, . . . ,Dn , each Di contains values of type τi .
(2) I is an interpretation. It assigns values from the domain to the constants and KerA+ operators.
We assume that the interpretationI is standard, that is, it follows the standard semantics of TLA+,

e.g., as given by [Merz 2012]. As usual, we use the notation JeKM to denote the value of a KerA+

expression in a model M .
In our work, the specification parameters are fixed. Thus, every KerA+ expression “intuitively”

defines only finite values. We formalize this intuition by introducing finite structures and showing
that every KerA+ expression e defines a finite structure, as soon as the constants in e are interpreted
as finite structures (see Proposition 11.1).

For a model M = ⟨D,I⟩, a value v ∈ D is called a finite structure, if one of the following holds:
• Value v has type Int, Bool, or Name,
• Value v is a finite set, whose elements are finite structures,
• Value v is a function f : S → T such that S and T are finite structures, or
• Value v is a record, a tuple, or a finite sequence, and v’s elements are finite structures.

Proposition 11.1. Let e be a KerA+
expression, andM = ⟨D,I⟩ be a model. If I interprets all

constants and free variables in e as finite structures, then the interpretation of e is a finite structure.

As expected, we call a model M = ⟨D,I⟩ finite, if if every value v ∈ D is a finite structure.
Finally, given a state

〈
e | A | ν | Φ

〉
of the reduction system, a modelM = ⟨D,I⟩ is suitable for

the state, if the expression e and the constraint Φ can be interpreted with M.
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Soundness and Termination. First, we show that our reduction system always terminates:

Theorem 11.2. Every sequence of ARS reductions s0⇝s1⇝ . . . is finite. In other words, the reduction
process terminates.

To prove Theorem 11.2, we define a partial order on KerA+ expressions and show that every
reduction rule produces smaller expressions.

Theorem 11.3 formally states the soundness of our reduction system:

Theorem 11.3. Let s0⇝ . . .⇝sm be a sequence of states produced by an abstract reduction system,

and si =
〈
ei | Ai | νi | Φi

〉
for 1 ≤ i ≤ m. Assume that e0 is a formula, that is, it has type Bool. The

formula e0 is satisfiable if and only if the constraint em ∧ Φm is satisfiable.

Note that if the reduction system terminates without an error, then the terminal expression em
in Theorem 11.3 is a constant. Moreover, the reductions produce constraints that are compatible
with SMT solvers [Barrett et al. 2017]:

Proposition 11.4. Let s0⇝ . . .⇝sm be a sequence of states produced by an abstract reduction

system, and si =
〈
ei | Ai | νi | Φi

〉
for 1 ≤ i ≤ m. Then, every formula Φi is a quantifier-free

first-order logic formula over uninterpreted functions and integer arithmetic.

In the following, we give the idea of our proof of Theorem 11.3. Detailed proofs are omitted.
We prove the theorem by showing that the abstract reduction system satisfies six invariants on
the reachable states and transitions of the system. As usual, a state sm of the reduction system is
reachable, if there is a finite sequence of rewriting transitions s0⇝ . . .⇝sm from an initial state s0
leading to sm . Similarly, a transition is reachable, if it originates from a reachable state.
We observe that every reduction rule transforms a KerA+ expression ebefore in an expression

eafter in a special way. In particular, a model Mafter of eafter differs from a model Mbefore of ebefore in
that Mafter has additional constants. Hence, we call Mafter an extended model of Mbefore .

Invariants of the Reduction System. In order to prove soundness of the translation to SMT, we
formulate six invariants on the reachable states and transitions of the abstract reduction system.
Proposition 11.5 ensures that all invariants 1-6 are preserved by every sequence of transitions.

Invariant 1 states that our reduction system produces only well-typed expressions:

Invariant 1. In every reachable state

〈
e | A | ν | Φ

〉
of the ARS, the expression e is well-typed.

Invariant 2 gives us a relation between the arenas and the Boolean constants that are introduced
for the arena edges in the constraint Φ:

Invariant 2. In every reachable state

〈
e | A | ν | Φ

〉
of the ARS, the following holds:

(1) Every cell c appears in either the expression e or the formula Φ if and only if it appears in A.

(2) Arena A has an edge (cset , i, celem) iff the formula Φ contains the constant en⟨cset , i, celem⟩.

Invariant 3 ensures that the reduction rules produce suitable models:

Invariant 3. Let sbefore⇝safter be a reachable transition in the ARS, andMbefore a suitable model

for sbefore . An extended structure Mafter from Mbefore is also suitable for safter .

Invariant 4 states the arena is preserving an overapproximation of every set cell:

Invariant 4. Let
〈
e | A | ν | Φ

〉
be a reachable state of the ARS, and M be its extended model.

Assume that cset is a set cell in the arena A. Then, the following holds:

(1) Assume that cset −→A c1, . . . , cn , for some n ≥ 0, and cset is introduced by a rule different

from (FromSet). Then, the following holds: Jcset KM ⊆
{
Jc1KM , . . . , JcnKM

}
.
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(2) Assume that cset is a reduction of the expression from c1, . . . , cn byθ with 1 ≤ JθKM ≤ n and

cset −→A c1pick , . . . , c
m
pick . Then, the following holds Jcset KM ⊆

{
Jc1pick K

M , . . . , Jcnpick K
M
}
.

Invariant 5 states that a function cell is always pointing to the associated relation cell:

Invariant 5. Let
〈
e | A | ν | Φ

〉
be a reachable state of the ARS. Assume that cf is a function cell

of type τ1 → τ2 in the arena A. Then, there is a cell crel of type Set[τ1 ∗ τ2] such that the function cell

is pointing to it: cf →A crel .

Finally, Invariant 6 is about the equality between a function cell cf in the arena and its set
representation constructed based on the corresponding cell cfr el .

Invariant 6. Let
〈
e | A | ν | Φ

〉
be a reachable state of the ARS, and M be its extended model.

Assume that cf is a function cell, and cf →A crel . Then, it follows that the set JcrelKMafter
is equal to

the set J{⟨x, f (x)⟩ : x ∈ domain f }KMafter
.

The following proposition states that the above introduced invariants hold true:

Proposition 11.5. Let s0⇝ . . .⇝sm be a sequence of states produced by an abstract reduction

system. Then, Invariant 3 is preserved by every transition si⇝si+1 for every 0 ≤ s < m. Moreover,

Invariants 1–2, and 4–6 are preserved by every state sj for every 0 ≤ j ≤ m.

12 IMPLEMENTATION

We have implemented the symbolic model checker for TLA+ in Scala. It implements the stages
shown in Figure 1, including the reduction rules introduced in Sections 5–10. The model checker
uses the abstract syntax tree that is built by TLA+ Tools— the library that contains the TLA+

parser Sany and the model checker TLC. Our tool integrates with the SMT solver Z3 by [De Moura
and Bjørner 2008] via the Java API. We have implemented two techniques: (1) verifying inductive
invariants and (2) verifying safety with bounded model checking.

Checking Inductive Invariants. In TLA+, an inductive invariant is a state formula Inv that satisfies
two conditions: (1) Init ⇒ Inv, and (2) Inv ∧ Next ⇒ Inv

′. Formula Inv ′ is a copy of Inv, where
every variable x is replaced with its primed version x ′. The invariant formula Inv usually contains
a constraint on the possible values of the variables such as x ∈ 1..10.
Recall that the formula Next is decomposed into a non-deterministic disjunction of symbolic

transitions T1 ⊕ . . . ⊕ Tm in the preprocessing phase (see Section 3). Our model checker tests
Condition (2) for each transition Ti , that is, it applies the reduction system to the initial state〈
Inv ∧Ti ∧ ¬Inv ′ | A0 | ν0 | Φ0

〉
and obtains the final state

〈
c
i
final

| Ak | νk | Φk
〉
. The tool asks

the solver, whether Φk ∧ c
final

i is satisfiable. If this is the case, the tool reports a counterexample
to induction, which is obtained from the SMT model. If this is not the case for all 1 ≤ i ≤ m, the
inductive invariant holds true.
Finding inductive invariants for TLA+ specifications is hard. Usually, protocol specifications

come with safety properties, which are much simpler to write than inductive invariants. Hence, we
have implemented a technique for bounded model checking of such safety properties.

Bounded Model Checking. Given a safety property P and a number k ≥ 0, this technique verifies,
whether there is a computation of length up to k that violates the property P in one of the
computation states. Equations (3)–(4) show a series of reductions that are used to encode an
computation of lengthk . The values of the variables ®x ′ computed at step i are used as the values of the
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Table 2. The list of TLA
+
benchmarks

Name LOC Description

Bakery-n 113 Bakery algorithm for mutual exclusion of n processes by Lamport
bcastByz-n 99 Reliable broadcast of n processes, f Byzantine faults by Srikanth & Toueg
bcastFolk-n 85 Folklore broadcast of n processes with f crash faults by Chandra et al.
EWD840-n 71 Termination detection in a ring of n processes by Dijkstra
Paxos-n 126 Paxos consensus (Synod) for n acceptors with crash faults by Lamport
Prisoners-n 75 Puzzle of n prisoners
Raft-n 363 Raft consensus for n processes and crash faults by Ongaro
SimpAlloc-c-r 68 Simple resource allocator with c clients and r resources by Merz
Traffic 32 Traffic example by [Wayne 2018]
TwoPhase-n 129 Two-phase commit with n resource managers by Gray & Lamport

variables ®x at step i + 1. This is done by changing the variable substitution νi to νi [®x 7→ ®x ′, ®x ′ 7→ ⊥].〈
Init

′ | A0 | ν0 | Φ0
〉
⇝∗

〈
c1 | A1 | ν1 | Φ1

〉
(3)〈

Next | Ai | νi [®x 7→ ®x ′, ®x ′ 7→ ⊥] | Φi
〉
⇝∗

〈
ci+1 | Ai+1 | νi+1 | Φi+1

〉
for 1 ≤ i ≤ k (4)

To check, whether the property P can be violated after the transition i − 1, the tool rewrites ¬P
as in Equation (5). Then, the SMT formula Φ¬P

i ∧ c
¬P
i ∧

∧
1≤j≤i cj states that the property P is

violated after the transition i − 1. Satisfiability of this formula gives us a counterexample.〈
¬P | Ai | νi | Φi

〉
⇝∗

〈
c
¬P
i | A¬P

i | ν¬Pi | Φ¬P
i

〉
for 1 ≤ i ≤ k (5)

13 EXPERIMENTS

In the following, we introduce our experiments withAPALACHE and TLC that were run in Grid5000
— a testbed for distributed computing. The experiments were run in parallel using one cluster node
of the cluster grvingt (2 CPUs Intel Xeon Gold 6130, 16 cores/CPU, 192GB); each experiment was
assigned one core. For simplicity of the setup, we measured wall times. Since many benchmarks
run for minutes or hours, we do not consider this imprecision in time measurement to be an issue.

13.1 Benchmarks

For most of our examples, we used the benchmarks from the TLA+ repository of examples [TLAPlus
2019]. The traffic example is given by [Wayne 2018]. Table 2 shows the benchmarks that we use
in the experiments. They range from logical puzzles to concurrent algorithms and fault-tolerant
distributed algorithms. The table also lists the values of the parameters, called constants in TLA+,
which are used in the experiments. For each benchmark, we give the smallest reasonable value and
a larger value.
These benchmarks were previously tried with TLC, some of them contain proofs of safety

in TLAPS. Importantly, our modifications to the specifications are minimal. They contain type
annotations and, in rare cases, equivalent expressions instead of original complex expressions that
would not be handled by our tool otherwise. We neither introduced simplifications nor abstractions
in the TLA+ code, in order to run the model checker.
Although the repository contains 64 examples, their complexity varies. Some benchmarks are

combinatorial puzzles (e.g. N-Queens, tower-of-hanoi) which are tuned to TLC, while our tool is
struggling e.g. with sets of sequences, power sets, and cardinalities. We did not include about 10
trivial teaching examples (e.g. DieHard), because they are no challenge for virtually any model
checker. There is a number of Paxos-like algorithms. These are rather complex TLA+ specifications
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Table 3. The experiments on checking inductive invariants with TLC and APALACHE.

APALACHE TLC

# Name time memory #tr #cells #clauses time memory #states

1 Bakery-5 1m33s 1.10G 16 25K 131K - - -
2 EWD840-10 5s 687M 4 5.2K 36K 2s 171M 2.0K
3 bcastByz-4 3s 407M 5 1.7K 10K 2s 401M 8
4 TwoPhase-7 4s 608M 7 4.8K 23K 2h44m 2.28G 1.14M

Table 4. Checking candidates for inductive invariants with TLC and APALACHE that are violated.

APALACHE TLC

# Name time memory #tr #cells #clauses time memory #states

1 Bakery-5 51s 873M 16 15K 85K - - -
2 EWD840-9 5s 453M 4 2.4K 19K 39s 3.35G 4.47M
3 EWD840-11 5s 482M 4 2.4K 19K 11m32s 4.41G 92M
4 EWD840-13 5s 449M 4 2.4K 19K 16h52m 5.55G 1.17B
5 bcastByz-4 4s 271M 5 463 1.1K 1s 134M 65
6 bcastByz-10 3s 298M 5 1.2K 5.4K 18m21s 3.40G 16M
7 TwoPhase-7 6s 483M 7 3.3K 16K 2h47m 2.28G 2.28M
8 TwoPhase-9 6s 642M 7 4.6K 28K TO 2.28G -
9 TwoPhase-11 7s 737M 7 6.0K 43K TO 2.27G -

of real distributed algorithms. Both TLC and our tool get stuck after 10-15 steps. We only included
the famous Paxos and Raft. Some benchmarks contain recursive operators and rarely-used modules,
e.g. Bags. Finally, several benchmarks are only available in the pdf format; we did not try them.

13.2 Experiments with Inductive Invariants

As explained in Section 12, APALACHE checks inductive invariants by reduction to SMT. TLC
can also check inductive invariants by state enumeration. We have run both model checkers on a
few benchmarks that contained inductive invariants. For each invariant, we have also introduced
an invalid invariant candidate: By removing constraints, by introducing arithmetic errors, or by
changing constants. This was done to check how quickly the solvers would be able to detect
invariant violation as opposed to verifying the absence thereof.

Table 3 summarizes the results of the experiments with the original invariants, whereas Table 4
summarizes the results obtained when using the invalid invariant candidates. The columns “time”
and “memory” show resource usage statistics. The column “#states” shows the number of distinct
states explored by TLC. Finally, the columns “#tr”, “#cells”, and “#clauses” display the number
of symbolic transitions, the number of cells in the final arena, and the number of SMT clauses
introduced by APALACHE. The abbreviation ‘TO‘ means timeout of 23 hours.
As one sees from the few examples, our model checker is fast at proving inductive invariants,

while the performance of TLC degrades with larger state spaces. Our model checker is also fast at
detecting invariant violation, in the examples with invalid invariant candidates.

It was easy to check the benchmark “bcastByz” for TLC, as the inductive invariant was written for
the case when no broadcast occurs in the algorithm, so the number of reachable states is just eight.
Notably, TLC cannot check “Bakery” in principle, as it requires one to reason about unbounded
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Table 5. The experiments on breadth-first search with TLC and bounded model checking with APALACHE.

In this case, the checked safety properties are satisfied.

APALACHE TLC

# Name time memory #tr #cells #clauses depth time memory #states depth

1 Traffic 6s 221M 4 525 1.0K 4 2s 112M 4 4
2 Prisoners-4 3m19s 355M 4 2.5K 6.6K 15 1s 133M 214 14
3 Bakery-5 18ms 774M 16 14K 48K 8 - - - -
4 EWD840-4 56s 1.13G 4 36K 257K 12 1s 170M 1.5K 12
5 EWD840-10 13m 1.17G 4 89K 635K 30 21m 3.40G 15M 30
6 SimpAlloc-2-2 34s 371M 3 2.9K 9.7K 7 1s 136M 64 5
7 SimpAlloc-5-3 2h56m 722M 3 5.5K 30K 7 1m49s 2.30G 1.14M 9
8 bcastFolk-4 20s 712M 4 11K 33K 10 41s 2.28G 501K 9
9 bcastFolk-20 1m09s 1.11G 4 37K 141K 10 TO 3.34G 1.14M 2
10 bcastByz-4 9m14s 1.13G 5 54K 216K 10 2s 346M 1.8K 7
11 bcastByz-6 3h00m 1.18G 5 106K 543K 11 3h42m 4.47G 15M 11
12 TwoPhase-3 1m13s 475M 7 3.0K 10K 11 1s 144M 288 11
13 TwoPhase-7 44m 516M 7 4.0K 15K 10 13s 1.13G 296K 23
14 Paxos-3 1h37m 825M 4 22K 50K 13 1m21s 2.29G 185K 25
15 Paxos-5 7h09m 1015M 4 34K 79K 14 TO 4.49G 86M 22
16 Raft-5 2h47m 1.18G 23 116K 445K 8 - - - -

Table 6. The experiments on breadth-first search with TLC and bounded model checking with APALACHE.

In this case, the checked safety properties are violated.

APALACHE TLC

# Name time memory #tr #cells #clauses depth time memory #states depth

1 SimpAlloc-5-3 5s 323M 3 1.7K 6.8K 4 2s 236M 6.7K 5
2 SimpAlloc-3-5 3s 315M 3 1.5K 6.2K 4 3s 679M 72K 5
3 bcastByz-4 2s 254M 5 461 989 1 1s 134M 5 2
4 bcastByz-12 49s 949M 5 20K 120K 5 3m00s 3.37G 8.89M 6
5 bcastFolklore-20 2s 301M 4 1.5K 4.9K 1 12s 2.22G 2 2
6 Paxos-3 4s 437M 4 4.7K 10K 6 2s 293M 1.0K 7
7 Prisoners-8 4s 416M 4 2.8K 9.2K 13 1s 187M 7.2K 14
8 Prisoners-10 7s 525M 4 4.2K 14K 17 3s 617M 66K 18
9 TwoPhase-5 6s 402M 7 2.2K 7.3K 9 1s 148M 436 10
10 EWD840-10 18s 753M 4 14K 55K 9 15m44s 4.41G 12M 10
11 EWD840-12 30s 824M 4 17K 68K 11 9h11m 5.53G 241M 12

integers. Although APALACHE does not support infinite sets, it supports integer constants, so we
added a few additional rewriting rules to handle the benchmarks like “Bakery”.

13.3 Experiments with Bounded Model Checking

Table 5 summarizes the results of the experiments with boundedmodel checking of safety properties.
Table 6 summarizes the results of the experiments with the modified specifications that contain
buggy behavior. The column “depth” shows the maximum execution length used by our tool as
well as the maximum depth reached by TLC while running breadth-first search. The meaning of
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the other columns is the same as in Table 3, see Section 13.2. For the small benchmarks we used
the diameter bound that was reported by TLC, which does exhaustive state exploration. For the
complex benchmarks we used a large enough bound on the length that allowed each experiment to
finish within 24 hours. When the depth of APALACHE is smaller than the depth reported by TLC,
APALACHE explores a smaller portion of the state space than TLC. For the Raft benchmark, we
only report on the experiments with our tool, as TLC has produced an enormous file to store the
state exploration queue and exceeded the disk quota of 100 GB in the cluster environment.
In these experiments we check safety properties, e.g., mutual exclusion in case of Bakery and

consistency in case of two-phase commit. Specifications of these properties are much smaller than
the inductive invariants that would be required for a complete proof with TLAPS.

TLC quickly finishes on the benchmarks with small state spaces, while our tool produces a large
set of SMT constraints, independently of the actual number of reachable states. When we supply
larger parameter values, the slowdown of our tool is less dramatic than that of TLC. However, as
expected, our tool slows down when unrolling longer computations. Usually, it quickly unrolls the
computations of length up to 10-15, and then the SMT solver Z3 dramatically slows down when
proving unsatisfiability of invariant violation. This is especially noticeable on the specifications
of fault-tolerant distributed algorithms such as Paxos and Raft. In these algorithms, after several
steps all but few symbolic transitions become enabled. As a result, proving safety is much harder
for Z3, as it has to show unsatisfiability of a formula for all possible schedules of the symbolic
transitions. In almost deterministic distributed algorithms such as EWD840, one or two transitions
are enabled at the same time, and thus the solver propagates constraints much faster. If we change
the safety property to TRUE, that is, APALACHE has to find only whether a symbolic transition is
enabled at ith step, Z3 answers the queries in seconds or minutes. We will investigate why such
non-determinism and safety properties pose hard problems for Z3 in the future.

13.4 Discussion on Performance

Our experiments show a clear advantage of APALACHE over TLC when checking inductive
invariants, both in the satisfiable and unsatisfiable case. However, the advantages of our model
checker are less pronounced when analyzing safety by bounded model checking. Over 20 years
TLC has collected clever heuristics for TLA+. We hope that with the growing number of users,
specifications will get tuned to our model checker, as it is now happening with TLC. So far we have
found two sources of slowdown in APALACHE:
(1) Our benchmarks have non-deterministic control that is hard for SAT/SMT, and
(2) The SMT encoding needs solver-specific tuning.
Concerning (1), we considered common patterns in TLA+ specifications. The following code

presents a simple benchmark that has non-determinism that is common for TLA+ specifications:

Init ∆
= x = 0

Next ∆
= x ′ = 1 − x ∨ x ′ = x

Bounded executions of length k of this specification pose a challenge for SMT solvers, as they
often enumerate 2k possible paths without learning. We plan to combine the presented framework
with Lipton’s reduction which efficiently eliminates control non-determinism, similar to the work
by [Konnov et al. 2017a].
Concerning (2), there is room for improvement. Unfortunately, SMT solvers are quite sensitive

to their input. We believe that the presented framework is solid, though it requires careful tuning
of reduction rules for specific SMT solvers. Ideally, we would use a portfolio of SMT solvers and
SMT encodings – quantified as well as quantifier-free.
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14 RELATEDWORK

14.1 General-Purpose Specification Languages

Several general-purpose specification languages are used to specify and verify concurrent and
distributed algorithms. In addition to TLA+, an algorithm designer can choose from: Alloy [Jackson
2012], B [Abrial 2005], IOA [Garland and Lynch 1998], VDM [Jones 1990], or Z [Spivey and
Abrial 1992]. Since these languages are widely used in both academia and industry, the conference
ABZ [ABZ 2018] is held to compare and cross-fertilize these approaches. We briefly compare TLA+

tools with Alloy and B. More detailed comparisons can be found in [Abbassi et al. 2018; Macedo
and Cunha 2016; Newcombe 2014]. Table 7 summarizes the comparison between these languages.
Alloy [Jackson 2012] is a specification language combining relational algebra, first-order logic,

transitive closures, integer arithmetic, and polymorphic types [Jackson 2012]. Alloy Analyzer uses
the bounded SAT-based constraint solver Kodkod [Torlak and Jackson 2007] as its back-end. Alloy
and Alloy Analyzer have been used for finding bugs in distributed algorithms, e.g., in the Chord
ring membership protocol [Zave 2012].

Alloy is expressive enough to specify our benchmarks. To reduce human efforts in the encoding,
we could develop a translator from TLA+ to Alloy. Such work would require a set of translation
rules, like the ones in our abstract reduction system. However, the translation is not straightforward
because of considerable differences in two languages. For instance, Alloy does not support tem-
poral operators, and therefore, it requires the user to use particular idioms to describe behavioral
properties of systems. The analysis tools also differ. Alloy Analyzer requires the user to give precise
bounds on the domain. In particular, integers have fixed bit-width, which may result in missing a
counterexample. Our model checker mitigates this limitation by using SMT solvers, which reason
about unbounded integers (similar to Alloy, we bound the sets). There have been a few attempts to
support Alloy with SMT solvers [El Ghazi and Taghdiri 2011; Meng et al. 2017] and the tools for
other languages [Krings et al. 2018; Macedo et al. 2016].
B [Abrial 2005] is a state-based specification language rooted in predicate logic, ZF set theory,

types, and arithmetic. The B method has been also used in many industrial projects, e.g. rail-
way systems [Behm et al. 1999]. Its automated analysis toolset called ProB [Leuschel and Butler
2008] supports both explicit-state model checking and constraint solving by using SICStus Pro-
log [Carlsson et al. 1988]. Several tools translate fragments of B to other specification languages,
e.g. to TLA+ [Hansen and Leuschel 2012; Plagge and Leuschel 2012] and Alloy [Krings et al. 2018].
While TLA+ supports arbitrary sets, B requires that every member in a set has the same type. Our
work is close to the translation by [Hansen and Leuschel 2012] from TLA+ to B. This translation
allows one to apply the model checker ProB, which uses constraint solving. As B and TLA+ are
much closer than SMT and TLA+, their translation is conceptually simpler, though the authors
had to deal with a few language incompatibilities. [Hansen and Leuschel 2012] report on the
experiments with SimpAlloc, as well as with simpler benchmarks, where ProB was shown to
be more efficient than TLC. We are not aware of applying this tool to fault-tolerant distributed
algorithms such as Paxos, reliable broadcast “bcastByz”, or two phase commit “TwoPhase”.

14.2 Interactive Theorem Provers and SMT

[Merz and Vanzetto 2018] introduced two encodings to translate TLA+ to SMT formulas: an untyped
one and a multi-sorted one. Their work is designed towards proving unsatisfiablity of obligations
inside the TLA Proof System [Chaudhuri et al. 2010]. These obligations are typically small in
comparison to a complete TLA+ specification, and their techniques utilize quantified formulas
which are supported by SMT fairly well for the unsatisfiable case. If SMT solvers cannot decide
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Table 7. General-purpose specification languages and automatic analysis tools

TLA
+

Alloy B

Theories Untyped FOL, Typed FOL, Typed FOL,
ZFC set theory relational algebra ZF set theory

Automatic analysis tools TLC, APALACHE Kodkod ProB
Back-end solvers SMT SAT SICStus Prolog

on satisfiability, the user has to prove the obligation manually. In contrast, our tool supports
automatic verification. We first tried to use the untyped encoding for bounded model checking,
but the search space of Z3 was significantly larger even for small examples than in the case of
a multi-sorted encoding. While our type system is similar to one in [Merz and Vanzetto 2018],
our abstract reduction system applies a quantifier-free encoding, and unrolls a complete TLA+

specification up to k steps. This allows us to check satisfiability (when finding enabled transitions
or counterexamples) as well as unsatisfiability (when proving that a transition is disabled and an
invariant holds true).

Sledgehammer is a tool to combine the interactive theorem prover Isabelle [Nipkow et al. 2002]
with a variety of automatic theorem provers (ATPs) and SMT solvers [Blanchette et al. 2013; Paulson
and Susanto 2007]. Since Isabelle is designed for polymorphic high-order logic, the translation
meets challenges in high-order features and type information. Moreover, Sledgehammer’s success
rate depends on lemmas extracted from Isabelle’s libraries by a relevance filter, and on heuristics to
instantiate quantifiers, e.g. weights and triggers.

SMTCoq [Ekici et al. 2017] is a plug-in for integrating SMT and SAT solvers into the interactive
theorem prover Coq [Bertot and Castéran 2013]. The primary use case for SMTCoq aims at
increasing the level of automation in Coq. SMTCoq provides tactics to translate a Coq goal into SMT
expressions that use uninterpreted functions, linear integer arithmetic, bit vectors, and functional
arrays. When the SMT solver produces a proof certificate, SMTCoq validates the certificate and
generates a Coq proof for the original goal.
Several projects on proving correctness of distributed algorithms with interactive theorem

provers were conducted by [Hawblitzel et al. 2017], [Wilcox et al. 2015], [Rahli et al. 2017], [Sergey
et al. 2018], [Azmy et al. 2018], and [von Gleissenthall et al. 2019]. Although, guarantees provided
by such proofs are much stronger, they demand a different level of verification efforts.

14.3 Semi-Automated Provers using Decision Procedures

[Padon et al. 2017] checked safety of several variants of Paxos in the effectively-propositional
fragment of uninterpreted first-order logic (EPR). In their approach, the user specifies the transition
system in first-order logic by means of uninterpreted relations and constants. The tool aids the user
in interactive discovery of inductive invariants. Further, in order to fit the verification problem in
EPR, the user has to come up with so-called derived relations. This is a powerful method that can
be used for parameterized verification. However, the user has to invest more efforts in expressing
the algorithms in uninterpreted first-order logic and interacting with the tool.

[Barnett et al. 2005; Leino 2008] developed the intermediate verification language Boogie, which
serves as a layer on which to build program verifiers for other languages, e.g. VCC [Cohen et al.
2009], Dafny [Leino 2010], and Spec# [Barnett et al. 2004]. Boogie expressions are translated to the
input languages of automatic theorem provers, primarily to the SMT solver Z3, by applying Hoare
logic [Hoare 1969]. This approach brings a higher degree of automation, but does not eliminate the
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human proof effort required since Boogie uses undecidable theories of SMT. The main application
of Dafny is verification of sequential programs, whereas TLA+ is built around non-determinism.
[Swamy et al. 2016] designed the general-purpose functional programming language F* with

effects aimed at program verification. Like Boogie, this language utilizes SMT solvers as back-
end provers, and supports interactive proofs. This language targets to fill in the gap between
implementation and verification.

14.4 Model Checkers for Specialized Languages

Promela is the input language of the model checker Spin [Holzmann 2003]. Promela supports
Boolean and integer variables, arrays, processes, message channels, arithmetic, and temporal
operators. Spin is an explicit-state model checker that was applied to several industrial problems.
Moreover, [Delzanno et al. 2014] checked a version of Paxos and [Zave 2015] checked Chord. While
we could encode the benchmarks in Promela, this work requires serious efforts, as specifications in
Promela are low-level in comparison to TLA+. NuSMV [Cimatti et al. 2002] and nuXMV [Cavada
et al. 2014] stem from the symbolic model checker SMV [McMillan 1993]. They are designed for
modeling finite-state hardware protocols. The SMV language is much more restrictive than TLA+.

Several techniques and tools for parameterized verification of fault-tolerant distributed algorithms
were introduced by [Drăgoi et al. 2014; Drăgoi et al. 2016], [Farzan et al. 2016], [von Gleissenthall
et al. 2016], [Konnov et al. 2017b], and [Maric et al. 2017]. The efficiency of these techniques
comes from the restriction to special domains, whereas our approach applies to virtually any TLA+

specification over finite structures.
Finally, symbolic model checking has been applied in many different application domains. For

example, TAMARIN [Meier et al. 2013] focuses on security protocols, and Kind 2 [Champion et al.
2016] is designed for the dataflow language Lustre.

15 CONCLUSIONS

We have presented the symbolic model checker for TLA+ that, similar to the explicit model
checker TLC, accepts a range of specifications, which stem from various application domains.
As expected, this permissiveness makes our tool much less efficient in contrast to the model
checkers whose input languages and techniques are tailored to specific computational models.
Hence, we expect our model checker to be used as the first tool that allows the user to debug their
algorithm design before switching to specialized and more efficient tools, or developing a proof
with an interactive theorem prover. The example of TLC shows that this happens often in practice.
However, TLC does not scale beyond very small parameter values. Hence, we need a symbolic
approach to deal with larger parameter spaces.
Our work is the first step towards developing an efficient symbolic model checker for TLA+.

Indeed, many reduction rules can be optimized for fragments of TLA+. For instance, we could
write more efficient rules for functions with linearly ordered domains such as integers, or rules for
comparing set cardinalities to integers [Berkovits et al. 2019; Kuncak et al. 2005]. More importantly,
our framework opens the door for applying more advanced techniques such as abstraction [Ball et al.
2001; Clarke et al. 2003] and reduction [Cohen and Lamport 1998; Lipton 1975]. Reductions were
shown to be efficient for special classes of fault-tolerant distributed algorithms by [Damian et al.
2019; Konnov et al. 2017b; von Gleissenthall et al. 2019]. We are going to explore similar techniques,
in order to check complex TLA+ specifications of Raft by [Ongaro 2014], Disk Paxos [Gafni and
Lamport 2003], and Egalitarian Paxos by [Moraru et al. 2013].
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