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Abstract: We study the stochastic system of interacting neurons introduced in De Masi et al.
(2015) and in Fournier and Ldcherbach (2016) in a diffusive scaling. The system consists of
N neurons, each spiking randomly with rate depending on its membrane potential. At its
spiking time, the potential of the spiking neuron is reset to 0 and all other neurons receive
an additional amount of potential which is a centred random variable of order 1/+/N. Tn
between successive spikes, each neuron’s potential follows a deterministic flow. We prove the
convergence of the system, as N — o0, to a limit nonlinear jumping stochastic differential
equation driven by Poisson random measure and an additional Brownian motion W which
is created by the central limit theorem. This Brownian motion is underlying each particle’s
motion and induces a common noise factor for all neurons in the limit system. Conditionally
on W, the different neurons are independent in the limit system. This is the conditional
propagation of chaos property. We prove the well-posedness of the limit equation by adapting
the ideas of Graham (1992) to our frame. To prove the convergence in distribution of the
finite system to the limit system, we introduce a new martingale problem that is well suited
for our framework. The uniqueness of the limit is deduced from the exchangeability of the
underlying system.
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Introduction

This paper is devoted to the study of the Markov process X}V = (XtN’l7 .. ,XtN’N) taking values

in RY and having generator AN which is defined for any smooth test function ¢ : RV — R by

N N
i i i u
ANp(x) = —QE Opip(x)z’ + Z f(z )J v(du) | p(x —2x'e; + Z ﬁej) —o(z) ],
i=1 i=1 R J#i
where z = (z!,...,2"V) and where e; denotes the j—th unit vector in RY. In the above formula,
a > 0 is a fixed parameter and v is a centred probability measure on R having a second moment.

Informally, the process (X™7);<;<n solves

t t t
xNt = xM —af X;Vﬂds—f XNtz 4 —Zf U (s)dzN, (1)
0 0 VN =i Jo
where U’ (s) are i.i.d. centred random variables distributed according to v, and where for each
1 <j <N, ZNJ is a simple point process on R having stochastic intensity s + f (X?Qj) .
1
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The particle system (1) is a version of the model of interacting neurons considered in De Masi
et al. (2015), inspired by Galves and Locherbach (2013), and then further studied in Fournier and
Locherbach (2016) and Cormier, Tanré and Veltz (2019). The system consists of N interacting
neurons. In (1), Z;"" represents the number of spikes emitted by the neuron j in the interval [0, ¢]
and XtN J the membrane potential of the neuron j at time ¢. Spiking occurs randomly following a
point process of rate f(z) for any neuron of which the membrane potential equals z. Each time a
neuron emits a spike, the potentials of all other neurons receive an additional amount of potential.
In De Masi et al. (2015), Fournier and Locherbach (2016) and Cormier, Tanré and Veltz (2019)
this amount is of order N !, leading to classical mean field limits as N — oo. On the contrary to
this, in the present article we study a diffusive scaling where each neuron j receives the amount
U/\/]v at spike times t of neuron i,i # j, where U ~ v is a random variable. The variable U is
centred modeling the fact that the synaptic weights are balanced. Moreover, right after its spike, the
potential of the spiking neuron i is reset to 0, interpreted as resting potential. Finally, in between
successive spikes, each neuron has a loss of potential of rate a.

Equations similar to (1) appear also in the frame of multivariate Hawkes processes with mean
field interactions. Indeed, if (ZN’i)1<i<N is a multivariate Hawkes process where the stochastic

intensity of each Z"* is given by f (X{Y), with
N .

then X7 satisfies
xN=xV —aJ XNds + — ZJ U (s)dzN7,

which corresponds to equation (1) without the big jumps, i.e. without the reset to 0 after each
spike.

The above system of interacting Hawkes processes with intensity given by (2) has been studied
in our previous paper Erny, Locherbach and Loukianova (2019) There we have shown firstly that
XN converges in distribution in D(R,,R) to a limit process X solving

dXt = —O[Xtdt + g4/ f (Xt)th, (3)

and secondly that the sequence of multivariate counting processes (Z N Z)Z converges in distribution
in D(R4,R)™ to a limit sequence of counting processes (Z ?), - Every Z' is driven by its own Poisson
random measure and has the same intensity (f(X;~)),, where X is the strong solution of (3) with
respect to some Brownian motion W. Consequently, the processes Z* (i > 1) are conditionally
independent given the Brownian motion W.

In the present paper we add the reset term in (1) that forces the potential X™V* of neuron i
to go back to 0 at each jump time of Z™+?, This models the well-known biological fact that right
after its spike, the membrane potential of the spiking neuron is reset to a resting potential. From
a mathematical point of view, this reset to 0 induces a de-synchronization of the processes XN
(1 <i < N). In terms of Hawkes processes, it means that in (2), the process X;}¥ has been replaced
by

ZJ a(t—s Ug( )dZN’]-i- 7atXNz]1L1 o
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where L} = sup{0 < s < t: AZN? =1} is the last spiking time of neuron i before time ¢, with the
convention sup & := 0. Thus the integral over the past, starting from 0 in (2), is replaced by an
integral starting at the last jump time before the present time. Such processes are termed being of
variable length memory, in reminiscence of Rissanen (1983). They are the continuous-time analogues
of the model considered in Galves and Lécherbach (2013), and we are thus considering multivariate
Hawkes processes with mean field interactions and variable length memory. As a consequence, on
the contrary to the situation in Erny, Locherbach and Loukianova (2019), the point processes ZV+
(1 €4 < N) do not share the same stochastic intensity. The reset term in (1) is a jump term that
survives in the limit N — oo.

Before introducing the exact limit equation for the system (1), let us explain informally how the

limit particle system associated to (XN’i)1<i<N should a priori look like. Suppose for the moment

that we already know that there exists a process ()_(i, )_(Q,X'fﬁ ...) € D(R4,R)¥" such that for all
K > 0, weak convergence L(X™M1, ... XNVE) - £(XY ..., XE)in D(R,,R)X, as N — oo, holds.
In equation (1) the only term that depends on N is the martingale term which is approximately

given by
MN = LG N
i fo .

Then in the infinite neuron model, each process X* should solve the equation (1), where the term
M} is replaced by M; := A}im M} . Because of the scaling in N~1/2, the limit martingale M, will

—
be a stochastic integral with respect to some Brownian motion, and its variance the limit of

t 1 N )
EMN2=QJIE— XM\ d
[( t ) ] a 0 N ; f( s ) S,
where o2 is the variance of U’ (s). Therefore, the limit martingale (if it exists) must be of the form

_ = NJ _
Mt—ajo A}LmyNZf(X AW, = JJ [ lim i (f)dw,

where ¥ is the empirical measure of the system (X N ) 1<j<N and W is a one-dimensional standard

Brownian motion.

Since the law of the N—particle system (X1 ... XNM¥) is symmetric, the law of the limit
system X = (X', X2, X3 ...) must be exchangeable, that is, for all finite permutations o, we have
that £(X°M X7 ) = £(X). In particular, the theorem of Hewitt-Savage, see Hewitt and
Savage (1955), implies that the random limit

ts = lim iZéX;; (4)

exists. Supposing that u converges, it necessarily converges towards yi,. Therefore, X should solve
the limit system

t t t
X! zXé—aJ X;ds—f X! dz! +0f s (f)dWs, i € N, (5)
0 0 0
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where each Z' has intensity ¢ — f(X} ), and where p, is given by (4).

The above arguments are made rigorous in Sections 2.1 and 2.2 below.

Let us briefly discuss the form of the limit equation (5). Analogously to Erny, Locherbach and
Loukianova (2019), the scaling in N~/2 in (1) creates a Brownian motion W in the limit system (5).
We will show that the presence of this Brownian motion entails a conditional propagation of chaos,
that is the conditional independence of the particles given W. In particular, the limit measure p
will be random. This differs from the classical framework, where the scaling is in N=! (see e.g.
Delattre, Fournier and Hoffmann (2016), Ditlevsen and Locherbach (2017) in the framework of
Hawkes processes, and De Masi et al. (2015), Fournier and Locherbach (2016) and Cormier, Tanré
and Veltz (2019) in the framework of systems of interacting neurons), leading to a deterministic
limit measure ps and the true propagation of chaos property implying that the particles of the limit
system are independent.

This is not the first time that conditional propagation of chaos is studied in the literature; it has
already been considered e.g. in Carmona, Delarue and Lacker (2016), Coghi and Flandoli (2016) and
Dermoune (2003). But in these papers the common noise, represented by a common (maybe infinite
dimensional) Brownian motion, is already present at the level of the finite particle system, the mean
field interactions act on the drift of each particle, and the scaling is the classical one in N~!. On the
contrary to this, in our model, this common Brownian motion, leading to conditional propagation
of chaos, is only present in the limit, and it is created by the central limit theorem as a consequence
of the joint action of the small jumps of the finite size particle system. Moreover, in our model, the
interactions survive as a variance term in the limit system due to the diffusive scaling in N—/2.

Now let us discuss the form of pg, which is the limit of the empirical measures of the limit
system (X{),_,. The theorem of Hewitt-Savage, Hewitt and Savage (1955), implies that the law of
(X;)i>1 is a mixture directed by the law of us. As it has been remarked by Carmona, Delarue and
Lacker (2016) and Coghi and Flandoli (2016), this conditioning reflects the dependencies between
the particles.

We will show that the variables X? are conditionally independent given the Brownian motion W.
As a consequence, s will be shown to be the conditional law of the solution given the Brownian
motion, that is, P—almost surely,

ps() = P(X; € |(Wi)osess) = P(X; € |W), (6)

for any ¢ € N. Equation (5) together with (6) gives a precise definition of the limit system.

The nonlinear SDE (5) is not clearly well-posed, and our first main result, Theorem 1.2, gives
appropriate conditions on the system that guarantee pathwise uniqueness and the existence of a
strong solution to (5).

We then prove, in Sections 2.1 and 2.2, our main Theorem 1.7 stating the convergence in dis-
tribution of the sequence of empirical measures p’¥ = N~! Zf\il 5(szv,i)t ,» in P(D(R4,R)), to the
random limit 4 = P((X})i=0 € :|W). To do so, we first prove that under suitable conditions on
the parameters of the system, the sequence p” is tight (see Proposition 2.1 below). We then follow
a classical road and identify every possible limit as solution of a martingale problem. Since the
random limit measure p will only be the directing measure of the limit system (that is, the condi-
tional law of each coordinate, but not its law), this martingale problem is not a classical one. It is
in particular designed to reflect the correlation between the particles and to describe all possible
limits of couples of neurons.

Classical representation theorems imply that any coordinate of the limit process must satisfy an
equation of the type (5). The fact that our martingale problem describes correlations within couples

=
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of neurons allows to show that each coordinate is driven by its own Poisson random measure and
that all coordinates are driven by the same underlying Brownian motion W. But it is not yet clear
that ps is of the form (6). In other words, it has to be proven that the only common randomness
is the one present in the driving Brownian motion W. To prove this last point, we introduce an
auxiliary particle system which is a mean field particle version of the limit system, constructed with
the same underlying Brownian motion, and we provide an explicit control on the distance (with
respect to a particular L' —norm) between the two systems.

Let us finally mention that the random limit measure u satisfies the following nonlinear stochastic
PDE in weak form: for any test function ¢ € CZ(R), the set of C*-functions on R such that ¢, ¢’
and " are bounded, for any ¢ > 0,

t
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Organisation of the paper. In Section 1, we state the assumptions and formulate the main
results. Section 2 is devoted to the proof of the convergence of u¥ := Zjvzl 0xn~.,; (Theorem 1.7).
In particular, we introduce our new martingale problem in Section 2.2 and prove the uniqueness of
the limit law in Theorem 2.6. Finally, in Appendix, we prove some auxiliary results.

1. Notation, Model and main results
1.1. Notation

We use the following notation throughout the paper.
If F is a metric space, we note:

e P(E) the space of probability measures on E endowed with the topology of the weak conver-
gence,

e CJ'(E) the set of the functions g which are n times continuously differentiable such that g
is bounded for each 0 < k < n,

e C'(E) the set of functions g € C}'(E) that have a compact support.

In addition, in what follows D(R,,R) denotes the space of cadlag functions from Ry to R,
endowed with Skorohod metric, and C' and K denote arbitrary positive constants whose values
can change from line to line in an equation. We write Cy and Ky if the constants depend on some
parameter 6.

1.2. The finite system

We consider, for each N > 1, a family of i.i.d. Poisson measures (7(ds,dz,du));—1_n on Ry x
Ry x R having intensity measure dsdzv(du) where v is a probability measure on R, as well as an
i.i.d. family (Xév’i)izl,__.7N of R-valued random variables independent of the Poisson measures. The
object of this paper is to study the convergence of the Markov process XN = (XtN’l, ey XtN’N)



X. Erny et al./Conditional propagation of chaos 6

taking values in RY and solving, fori =1,..., N, for t > 0,

t
XtNa’l — Xév7l _ O[J Xé\/ids — J Xév_’lﬂ{z<f(XN,1‘,)}7Ti(d87 dZ, du)
0 [0,t]xR4 xR N o

1 )

+72 ul{zsf(xl.f)}ﬂj(ds,dz,du),
VN i=i J[0,t] xRy xR

. JF ’

Xév’l ~ 1.

(7)

The coefficients of this system are the exponential loss factor a > 0, the jump rate function f :
R — R, and the probability measures v and vy.

In order to guarantee existence and uniqueness of a strong solution of (7), we introduce the
following hypothesis.

Assumption 1. The function f is Lipschitz continuous.

In addition, we also need the following condition to obtain a priori bounds on some moments of

the process (XN’i)1<i<N.

Assumption 2. We assume that §, xdv(z) = 0, §p 2*dv(z) < +o0, and {3 22dv(z) < +o0.

Under Assumptions 1 and 2, existence and uniqueness of strong solutions of (7) follow from
Theorem IV.9.1 of Ikeda and Watanabe (1989), exactly in the same way as in Proposition 6.6 of
Erny, Locherbach and Loukianova (2019).

We now define precisely the limit system and discuss its properties before proving the convergence
of the finite to the limit system.

1.3. The limit system

The limit system (X'i)i>1 is given by

t
X = X!- de—f X;_]l{zgf()?i )}ﬂi(ds,dz,du)
[0,t] xRy xR o

+O’f £/ E Xl |W dWs, (®)

In the above equation, (W;):> is a standard one-dimensional Brownian motion which is independent
of the Poisson random measures, and W = o{W;,t > 0}. Moreover, the initial positions X§,i > 1,
are i.i.d., independent of W and of the Poisson random measures, distributed according to vy which
is the same probability measure as in (7). The common jumps of the particles in the finite system,
due to their scaling in 1/+/N and the fact that they are centred, by the Central Limit Theorem,
create this single Brownian motion W; which is underlying each particle’s motion and which induces
the common noise factor for all particles in the limit.

The limit equation (8) is not clearly well-posed and requires more conditions on the rate func-
tion f. Let us briefly comment on the type of difficulties that one encounters when proving trajec-
torial uniqueness of (8). Roughly speaking, the jump terms demand to work in an L!'—framework,
while the diffusive terms demand to work in an L?—framework. Graham (1992) proposes a unified
approach to deal both with jump and with diffusion terms in a non-linear framework, and we shall

Vi
X5 ~
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rely on his ideas in the sequel. The presence of the random volatility term which involves conditional
expectation causes however additional technical difficulties. Finally, another difficulty comes from
the fact that the jumps induce non-Lipschitz terms of the form X! f(X?). For this reason a classical
Wasserstein-1—coupling is not appropriate for the jump terms. Therefore we propose a different
distance which is inspired by the one already used in Fournier and Locherbach (2016). To do so, we
need to work under the following additional assumption.

Assumption 3. 1. We suppose that inf f > 0.
2. There exists a function a € C?(R,R,), strictly increasing and bounded, such that, for a suitable
constant C, for all x,y € R,

|a"(z) — a"(y)| + |a'(z) — &' (y)| + [zd'(z) — ya'(y)| + |f(z) — f(y)] < Cla(z) — aly)].
Note that Assumption 3 implies Assumption 1 as well as the boundedness of the rate function f.

Proposition 1.1. Suppose that f(x) = c + darctan(z), where ¢ > d%, d > 0. Then Assumption 3
holds with a = f.

Proof. We quickly check that |za’(z) —ya'(y)| < Cla(x) —a(y)|. We have that a'(z) = L5, whence

1+x2°
_ .2
20/ (@) = ya'(y) = d(157 — i) We use that | & (22 )| = | 7557
that x < y. As a consequence,

< 152 Suppose w.lo.g.

|za’ () — yd'(y)| = d

vo1—t? vl
L (1+t2)2dt‘ < dL mdt = |arctan(y) — arctan(z)| = dla(z) — a(y)|.

The other points of Assumption 3 follow immediately. O

Under these additional assumptions we obtain the well-posedness of each coordinate of the limit
system (8), that is, of the (F;);— adapted process (X;); having cadlag trajectories which is solution
of the SDE

dXt = —O[Xtdt — Xt, lf ]]'{z<f(Xt )}W(dt dZ d'LL + 04/ ‘Ll,t th, (9)
R+

%o ~ v () =ELF X)W = B[ (X)W
Here, F; = o{m([0,s] x A),s <t,Ae BRL xR)} v Wy, Wy = o{W,,s <t} and W = o{Ws, s = 0}.

Theorem 1.2. Grant Assumption 3.

1. Pathwise uniqueness holds for the nonlinear SDE (9).

2. If additionally, SR 22dvg(r) < 400, then there exists a unique strong solution (X;);=o of the
nonlinear SDE (9), which is (Fi):— adapted with cadlag trajectories, satisfying for every t > 0,

]E[ sup Xf] < +o0. (10)
0<s<t

Remark 1.3. Notice that the stochastic integral Sé A/ s (f)dWs is well-defined since s — +/ps(f)
is an (Wy)—progressively measurable process.

In what follows we just give the proof of Item 1. of the above theorem since its arguments are
important for the sequel. We postpone the rather classical proof of Item 2. to Appendix.
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Proof of Item 1. of Theorem 1.2. Consider two solutions (Xt)t>0 and (Xt)t>0, (Fi):—adapted, de-
fined on the same probability space and driven by the same Poisson random measure m and
the same Brownlan motion W, and w1th Xo = Xo We consider Z; := a(Xt) — a(Xt) Denote

,us(f) - [ ( 5)|W5] and /-Ls(f) _E[ ( 5)|Wé]

Using Ito’s formula, we can write

. t

Z, = —a j t (R.0(X) - X (X)) ds+§ f (" (R)iis(f) — a"(X,)is(f))ods

_ f[o . [a(Xem) = aX )20 p (s dz, du)

+J a(0) —a(Xs )1, , % <+ w(ds,dz,du
o O T U oy )

~

+J, [a(Xs-) —a(0)]1 (R y<o<f (Ko w(ds,dz,du) =: Ay + My + Ay,
[0,t] xR4 xR

where A; denotes the bounded variation part of the evolution, M, the martingale part and A, the
sum of the three jump terms. Notice that

M, = L(a'o?s) As(f) = d (X)VEs(F)odWs

is a square integrable martingale since f and a’ are bounded.
We wish to obtain a control on | Z*| := sup,, | Zs|. We first take care of the jumps of | Z;|. Notice
first that, since f and a are bounded,

Az, y) := (f(2) A f(Y)|alz) —a(y)] + |f(z) = f)] |la(0) = a(y)] + [a(0) — a(z)]
< Cla(z) — a(y)],

implying that )
Esup|AS|<c1EJ|a(f( o(X.)|ds < CtE|Z}|.
s<t 0

Moreover, for a constant C' depending on o2, |||, ||a], [|a’|«, [|a”]» and «,

~

Esup|A | < C’J Ela' (X)X, — (X)X, |ds

c|[ a(R,) — (X )lds + | ) - (s

We know that |a/ (X)X, — a/(X,) X, + |0 (X,) — a”(X,)| < Cla(X,) — a(X,)| = C|Z,|. Therefore,

s<t

Esup|A,| < OEU 1z |ds+j|us —ﬁs(f)ldS]-
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Moreover,

7:(F) = s ()] = [E (F(R) = FEIW) | <E(I£(X) = FE)IW) <E(ZIW),
and thus, .
B[ ) - Rl < [ 1Zukas < 12

Putting all these upper bounds together we conclude that for a constant C' not depending on ¢,

Esup |4s| < CtE|Zf|.
s<t

Finally, we treat the martingale part using the Burkholder-Davis-Gundy inequality, and we obtain

¢ _ 1/2
Esup|M5|<cEl(f0<a'<Xs> )~ (X)) ]

s<t

(@ (RIVA) = @ (XIVE()? < O[((@(Re) = (X)) + (Vi) = V(D]
< CIZHP + C(in(F) = VEs(F)?

where we have used that |a’(z) — a'(y)| < Cla(x) — a(y)| and that f and o’ are bounded.
Finally, since inf f > 0,

= o 2
IV is(f) =/ fis(f |2 Clias(f) — fis (f)|2 < C(E(1Z3[s))" -
We use that |Z¥| < |Zf|, implying that E(|Z*||W) < E(|Z}||WV). Therefore we obtain the upper

bound
IWis(f) = VEs(FI? < C(E(ZF|IW))?

for all s < ¢, which implies the control of

Esup |M,| < CVIE|Z}|.
s<t

The above upper bounds imply that, for a constant C not depending on ¢ nor on the initial condition,
E|Z¥| < C(t + Vt)E|Z]|,

and therefore, for ¢, sufficiently small, E|Z | = 0. We can repeat this argument on intervals [t1, 2¢,],

with initial condition th, and iterate it up to any finite T because t; does only depend on the
coefficients of the system but not on the initial condition. This implies the assertion. O

Remark 1.4. Theorem 1.2 states the well-posedness of the SDE (9). Under the same hypotheses,
with almost the same reasoning, one can prove the well-posedness of the system (8).

In the sequel, we shall also use an important property of the limit system (8), which is the
conditional independence of the processes X* (i > 1) given the Brownian motion W.
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Proposition 1.5. If Assumption 3 holds and SR 22dvg(r) < +o0, then

(i) for all N € N* there exists a strong solution (Xi)KiéN of (8), and pathwise uniqueness
holds,
(ii) X', ..., X" are independent conditionally to W,
(iii) for allt =0, almost surely, the weak limit of vazl (5)-(‘¢[07t] is given by limy .. + vazl 0%
P(X[j,q € W) = P(X{jg g € -IWV).

10,1

Let us finally mention that the random limit measure yu satisfies a nonlinear stochastic PDE in
weak form. More precisely,

Corollary 1.6. Grant Assumption 3 and suppose that SR 22dvg(x) < +00. Then the measure p =
P((X¢)i=0 € |W) satisfies the following nonlinear stochastic PDE in weak form: for any ¢ € CZ(R),
for any t >0,

[ etamtan = [ etamtao + [ t ([ #@ptan) Viutnoan.

0
+ Lt fR ([90(0) — p(x)]f(2) — ag'(z)x + 302@”($),u5(f))’us(dx)d8.

The proofs of Proposition 1.5 and of Corollary 1.6 are postponed to Appendix.

1.4. Convergence to the limit system

We are now able to state our main result.

Theorem 1.7. Grant Assumptions 1, 2 and 3. Then the empirical measure p~ = % vazl dxn.i of
the N—particle system (X™N'")1<i<n converges in distribution in P(D(Ry,R)) to p := L(X'|W),
where (X%);>1 is solution of (8).

Corollary 1.8. Under the assumptions of Theorem 1.7, (X™7)1<;<n converges in distribution to
(X7);21 in D(Ry, R)N".

Proof. Together with the statement of Theorem 1.7, the proof is an immediate consequence of
Proposition 7.20 of Aldous (1983). O

We will prove Theorem 1.7 in a two step procedure. Firstly we prove the tightness of the sequence
of empirical measures, and then in a second step we identify all possible limits as solutions of a
martingale problem.

2. Proof of Theorem 1.7

This section is dedicated to prove that the sequence (u’¥)xn of the empirical measures pu” :=

Z;.V:l 5(Xg)t,>0 converges in distribution to pu := L(X'|W), where (X7);>1 is solution of (8).

In a first time, we prove that the sequence (u”)y is tight on P(D(R,,R)). The main step to
prove the convergence of (V) is then to show that each converging subsequence converges to the
same limit in distribution. For this purpose, we introduce a new martingale problem, and we show
that every possible limit of 4V is a solution of this martingale problem. Finally, we will show how
the uniqueness of the limit law follows from the exchangeability of the system.
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2.1. Tightness of (u™N)N

Proposition 2.1. Grant Assumptions 1 and 2. For each N > 1, consider the unique solution
(XN)i=0 to (7) starting from some i.i.d. vy-distributed initial conditions Xév’z

(i) The sequence of processes (XN )= is tight in D(R+,R)

(ii) The sequence of empirical measures p = N—1 Zl 10 s 18 tight in P(DR4,R)).
Proof. First, it is well-known that point (ii) follows from point (1) and the exchangeability of the
system, see (Sznitman 1989, Proposition 2.2-(ii)). We thus only prove (i). To show that the family

((XtN’l)tzo)Nzl is tight in D(R.,R), we use the criterion of Aldous, see Theorem 4.5 of Jacod and
Shiryaev (2003). It is sufficient to prove that

(a) for all T > 0, all € > 0, lims )0 limsupy_,, SUP (g s1)e a5+ P(IX5" = X > ¢) = 0, where
As 7 is the set of all pairs of stopping times (5,5’) such that 0 < S <S5 < 5+0 < T as.,
(b) for all T'> 0, limx1o supy P(supsepo, XN > K)=o.

To check (a), consider (S,S’) € Asr and write

s’ s s’
N1 N1 N1 ,
Xg —Xg7 =— J’S JRJ,O X, ]l{zsf(Xij)}ﬂl(dS’ du,dz) — ozfs XN1ds

1 N SI ve) .
+ — J J J ul N7 (ds, du, dz),
\W; s JzJo {=<f(X 7))

implying that

IXot - x5 < |f J,[ xN1 Ly, pxenvyym (ds, du, dz)|

+ da sup |XN1|+|\FZJ JJ U]l{z<fXN])}7T '(ds, du, dz)|

0<s<T

=: [Is,s'| + 6 sup | XN+ |Jss]-
o<

\S\
We first note that |Ig.s/| > 0 implies that I g := Sgl . S[f 1{Z<f(X{\Ql)}7Ti(dS, du,dz) > 1, whence

S+0

P(Is,| > 0) < PUs,s > 1) < E[fs,s] <E[ f
S

FXNDds| < N1fl0,

since f is bounded. We proceed similarly to check that

1 ) o2 X S+6 N o2
P(lJs,s'1 2 €) < ZEBl(Js.s)’] < 722]E”S F(X] ’J)ds] < G110
The term supy<,<r |X"!| can be handled using Lemma 3.1.(ii).
Finally (b) is a straightforward consequence of Lemma 3.1.(ii) and Markov’s inequality.
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2.2. Martingale problem

We now introduce a new martingale problem, whose solutions are the limits of any converging
subsequence of pV = % Zjvzl dxn,i. In this martingale problem, we are interested in couples of
trajectories to be able to put hands on the correlations between the particles. In particular, this
will allow us to show that, in the limit system (8), the processes X’ (i > 1) share the same Brownian
motion, but are driven by Poisson measures 7* (i > 1) which are independent. The reason why we
only need to study the correlation between two particles is the exchangeability of the infinite system.

Let @Q be a distribution on P(D(R;,R)). Define a probability measure P on P(D(R;,R)) x
D(R,,R)? by

P(A x B) := La(m)m @m(B)Q(dm). (12)

L’W(MR))
We write any atomic event w €  := P(D(R4,R))xD(R;,R)?asw = (u, Y), with Y = (Y1, Y?2).
Thus, the law of the canonical variable u is @, and that of (Y;)¢>0 is

Py = f Q(dm)m @ m(-).
P(D(R4,R))
Moreover we have P— almost surely

p=LY ) = LV?|n) and LY |p) = p® p-

Writing p; = SD(R+ R) p(dv)d., for the projection onto the t—th time coordinate, we introduce the

filtration
gt = 0'(}/378 < t) Vv O'(H’S(f)vs < t)

Definition 2.2. We say that Q € P(P(D(R4,R))) is a solution to the martingale problem (M) if
the following holds.

(i) Q—almost surely, po = vy.
(ii) For all g € CZ(R?), M} := g(V2) — g(Yo) — Sé Lyg(us,Ys)ds is a (P, (G)t)—martingale, where

Lg(p, x) = — az' 0 g(x) — ax®d,2g(x) + *u Z 0% pi9(x
1,7=1

+ f(2")(9(0,2%) — g(2)) + f(2*)(g(z", 0) — g(2)).

Remark 2.3. It is not clear if the martingale problem is well-posed, but we are not interested in
PTOVING UNIqUENess for it. However, we will have uniqueness within the class of all possible limits
in distribution of u. More precisely, we shall prove that, if ju is a limit in distribution of u” such
that L(u) is solution to (M), then u = L(X|W), with X the strong solution of (9). Equivalently,
defining the problem (M) for all finite-dimensional distributions, and not only for two coordinates,
where Y (i > 1) are defined as a mizture directed by u, would lead to uniqueness.

Let (X?);>1 be the solution of the limit system (8) and p = L£(X!|W). Then we already know
that £(u) is a solution of (M). Let us now characterise any possible solution of (M).
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Lemma 2.4. Grant Assumption 3. Let Q@ € P(P(D(Ry,R))) be a solution of (M). Let (1,Y)
be the canonical variable defined above, and write Y = (Y1,Y?2). Then there erists a standard
(G¢)¢—Brownian motion W and on an extension (Q,(G)e, P) of (U, (Ge)s, P) there exist (Gi)i—
Poisson random measures w*, w2 on Ry x R, having Lebesgue intensity such that W, ! and w2 are
independent and

dY’tl = — ay;ldt + o/ ,UJt(f)th — Yrtl_ f ﬂ{zgf(yl )}ﬂ-l(dt7 dZ),
Ry -

dY—tz = — a)ffdt + a4/ /Lt(f)th —_ Y—tz, J ]]'{Zﬁf(YQ )}’]‘(‘2(dt7 dZ)
Ry =

Proof. Ttem (ii) of of (M) together with Theorem I1.2.42 of Jacod and Shiryaev (2003) imply that
Y is a semimartingale with characteristics (B, C,v) given by

t t
B! = —aJ’ Yids —f Yif(YHds, 1<i<2,
0 0
t

Cti’j = J ws(fds, 1<i,5 <2,
0
v(dt, dy) = dt(f (V)0 o (dy) + FV2 )80y ) (dy)).

Then we can use the canonical representation of Y (see Theorem I1.2.34 of Jacod and Shiryaev
(2003)) with the truncation function h(y) = y for every y: Y; — Yy — By = Mf + Mg, where M¢ is
a continuous local martingale and M 4 a purely discontinuous local martingale. By definition of the
characteristics, (M¢¢ M%7y, = C;”’. In particular, (M%), = S(t) ws(f)ds (i = 1,2). Consequently,
applying Theorem II1.7.1 of Tkeda and Watanabe (1989) to both coordinates, we know that there
exist Brownian motions W1, W? such that

M = f A ps(f)dWy, i=1,2.
0

We now prove that W' = W?2. Let p be the correlation between W' and W?2. Classical computations
give (WY W2y = pt, implying that (M!, M2y, = pgé ws(f)ds. In addition (Mt M2y, =
Ct1’2 = Sé ws(f)ds, and this implies that p = 1 and W' = W2, since Sé ws(f)ds > 0 because f is
lower-bounded.

We now prove the existence of the independent Poisson measures 7!, 7. We know that M? =
h# (u¥ —v), where p¥ = D 1(Ay,#0}0(s,v,) is the jump measure of ¥ and v is its compensator.
We rely on Theorem I1.7.4 of Tkeda and Watanabe (1989). Using the notation therein, we introduce
Z =R, m Lebesgue measure on Z and

e 1 2
0t,2) == (=Y, 0L,y )y + (0 =Y )Lty 1y ot rove )}

According to Theorem 11.7.4 of Tkeda and Watanabe (1989), there exists a Poisson measure m on
R, x R, having intensity dt - dz such that, for all E € B(R?),

t o0
WY ([0,4] % B) = J J Lioge.myemym(ds, d2). (13)
0 Jo
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Now let us consider two independent Poisson measures 7', 7% (independent of everything else)
on [||f]|,o0[ having Lebesgue intensity. We then define 7! in the following way: for any A €
B(R. x [0,[|fll]), 7t(A) = w(A), and for A € B[R4 x]||f|l-c,©[), 7 (A) = 7(A). We define
72 in a similar way: For A € B(R; x [0,]|f||«]), 72(4) = 7({(t,||fll« + 2) : (t,2) € A}), and
for A € BRy x]||fl|0,0[), 72(A) = 72(A). By definition of Poisson measures, 7! and 72 are
independent Poisson measures on Ri having Lebesgue intensity, and together with (13), we have

/N

M;“=—f VA (g7 (ds,d2) + f Yif(Yi)ds, 1<i<2.
[0,t] xRy TN e 0

Moreover we have the following

Theorem 2.5. Assume that Assumptions 1, 2 and 3 hold. Then the distribution of any limit u of
the sequence pv := <; Zjvzl Oxn.i is solution of item (i) of (M).

Proof. Step 1. We first check that for any ¢ > 0, a.s., u({y : Avy(t) # 0}) = 0. We assume by
contradiction that there exists ¢ > 0 such that u({y : Ay(¢t) # 0}) > 0 with positive probability.
Hence there are a,b > 0 such that the event E := {u({y : |Ay(t)] > a}) > b} has a positive
probability. For every ¢ > 0, we have £/ < {u(B;) > b}, where B] := {7 : sup,e(s_- 14) [AY(s)| > a},
which is an open subset of D(R,R). Thus P} , := {u € P(D(R+,R)) : u(B;) > b} is an open subset
of P(D(R4,R)). The Portmanteau theorem implies then that for any ¢ > 0,

1ij6nian(uN eP:,) = P(ueP:,) = P(E)>0. (14)
—0 ’ ’

Firstly, we can write

JNEE = sup |AX§V’Z| =Gy v Sy,

t—e<s<t+e
where G5’ := max e, | X% is the maximal height of the big jumps of XN+ with DY = {t—e <
N ) i .
s<t4e:m({s}x [0, F(XXH] xRy) # 0}. Moreover, S% := max{|U?(s)|/v/N : s € Ui<jen D3}
is the maximal height of the small jumps of X, where U’ (s) is defined for s € Df\’,j, almost surely,

as the only real number that satisfies 77 ({s} x [0, fF(X2)] x {U7(s)}) = 1.
We have that

1 N
{MN(BZ) > b} = {N Z ]l{JN,s,j>a} > b}

Jj=1

Consequently, by exchangeability and Markov’s inequality,
1 1 1
P (N (B5) > b) < E[Lgmenng] = 7P (IV5 > a) < 4 (P (GF' > a) + P (S5 > 0) . (19)

The number of big jumps of X™! in |t — ¢,t + ¢[ is smaller than a random variable ¢ having
Poisson distribution with parameter 2¢||f||,,. Hence

P(Gyy>a) <PE=1)=1-e*lll= <2 f]]. (16)
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The small jumps that occur in |t — ,¢ + ¢[ are included in {U;//N,...,Ux/~/N} where K
is a N—valued random variable having Poisson distribution with parameter 2eN||f||.,, which is
independent of the variables U; (i = 1) that are i.i.d. with distribution v. Hence,

|U;| |U;|
€
P(SN>G)<P(1r<nla<>§(\/7 a) <E|P 1I<nzi}§(\ﬁ>a

where (k) = P (maxi<;<i |Us| > avV/N) < kP (|U1| > av/N) < ka 2N 'E [UZ] . Hence

E[U?
jéa;]ﬁ (K] < 20 f1I.E[UF]

Inserting the bounds (16) and (17) in (15), we have

&) | = e

P(Sy >a) <

ISR

€. (17)

P (uN(B; > b)) < Ce,

where C' does not depend on N nor €. This last inequality is in contradiction with (14) since P(E)
does not depend on .

Step 2. In the following, we note d%p := Z” 10% ;. Forany 0 < sy <...<s, <s <t any
Olyee s Phy 1, .., Y € Cp(R), any ¢ € C3(R?), we introduce

F(p) := ¢1(ps, (f)) - - wk(MSk(f))J p® p(dy)e1(vs,) - - - Pr(Vsy,)

D(Ry ,R)?

[m) () +a f VN0, + aL V26,00 )dr — f i (F)PPp (e )

J FO(e(0,97) = @(v,))dr — f FO2) (7, 0) = sa(’yr))dr] .

To show that £(u) is solution of item (ii) of the martingale problem (M), by a classical density
argument, it is sufficient to prove that E[F(u)] = 0. We have

F(uN) = (ul () - v (pdl (f

s1 Sk 0

N
Z (XN XN (XN, XN

\\Mz

[Lp(XtN”’, XY = (XN XNI) + f X0 p(XN, XV )dr
+aJ XNI0 (XN, XN dr — fJ N ()02 p(X N, X N9 dr
[ 0,5 = 0 X [ FE AR 0) = X XN
But recalling (7) and using Ito’s formula, for any i # j, we have

N,i +N,j
o(X, X))

t t
= (XN XNy — ozj XN 1 o(XN XN dr — ozf XNI0 (XN XN dr
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N,j U N,i , i
+ J;s xRy xR ]l{ZSf(XrALl)} |:<)0 <OaXr_j + \/N) (XT_ 7)( ]):| e (d?"7 dZ, du)

i, u c oo
" J]5 t]xRy xR ]l{zgf(xi"_vf)} [SO (Xiv, - W7 0) (Xi\i ’XNJ)] m (dr,dz, du)

N
% u N U
c S ey [ (e e )
g::l Jet]xiy g ZSTG0) i "
ke {i.g}

—p(X N XN’])] 7 (dr, dz, du).

r—

We use the notation 7/ (dr, dz, du) = 7/ (dr, dz, du) — drdzv(du) and set
MY ;=f 1 N [<p (O,XTN’j + “) XN XN ]fri dr, dz, du),
! 1s,t] xR4 xR {ng(XT_ )} \/N ( ) ( )
M2 :=f 1 J [ (X;Vf + “,0) XN x N ]ﬁj dr, dz, du),
! ]s,t] xRy xR {zsf(Xi\i )} 14 \/ﬁ ( ) ( )

N
WN,i7j: f 1 Nk |:g0 <X7]-\Ql+u,XT{\Q]+u>
! 1;::1 Js,t]xRy xR {z<r(x2H} JN i
J#{i,g}

rT— 7

(XN XNJ)] 7 (dr, dz, du),
AN ._ff f(XN,i)[ (0 XN 4 Y >_ (0 XN’J’)]d (u)d
s,t T < Jr s 2 s <A ﬁN Y, r viu)ar,
’ N,j [ < N,i U >_ N,i ]
|| [ ey e (x5 + 22.0) = o, 0)| dotupar

N t
Lo = JJ D e [ (Xiv”#u XN L )— XN, XN
Jt kz_:l . ]Rf( )| e \/N \/N o( )

N,i,5,2 |
A3,1& .

ke {i,j}
u
(XN, XN = (XN, XN*J)] () dr
N w
ff (XN XN~ Z FXNEYdy(u)dr,
k${m}
Nig .0 [ Ni| XN Ny J Noky
Rs,t :=? 0 QO(XT ’ 7X'r‘ ’ 2 f _X Z X dr.
) N
k¢{7'a.7}

Finally, for i = j, we have
N,i N i i
P(X X = p(X 0 XN

t t
- af X105 (X, XN dr — af XNi0,20(XN, XN dr
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+£ ) |2(0,0) = (XY X | 7 (dr. 2, du)
s,t] xRy x

N
u

k#i
The associated martingales and error terms are given by

N, Ny yvNiy] ~i

My ::J~ ]l{zgf(XN,i)} [<p (0,0) — (X, 2", X, )] 7' (dr, dz, du),
1s,t] xRy xR "
; J ; U ; U

I/VgN’Z = J 1 N,k |:g0 (X?El-F,Xi\Ql-‘r)

ot k;l ]S,t]XR+ xR {ng(X,,., )} \/N \/N

k#i

(XN X]\Qi)] 7 (dr, dz, du),

AN = f f FEXN) [0(0,0) — (0, X¥) — (XN, 0) + (XN, XN4)] ds(u)r,
s JR

Yy :=Zf f FXNFY [so (x;m“ XN )—so(XiVﬂ,XM
k=1Ys JR

VN VN
ki
(XN XN - 0, XN”,XN’Z]dl/udr
T (XX = (XX | o
brou? 1 Y
- [ G X L Y Y v uyar,
s Jr 2 Nk:l
k#i
1 02 t . . 1 N 1 N
R =T [ Pl x| 3 00 = Y e |ar
2 ], N N
k=1 k=1
ki
Then we obtain, since {, udv(u) = 0, that
1 N . 4 . 4
F(MN)=¢1(#ivl(f))~-«¢k(ﬂii(f))]v2 D1 e (XN XN e (X XN
i,j=1,i#j

[Mjf’,;i’j’l + MY L NT p ANEIL L ANGG2 PN +R§,7£i’j]

1 X _ . . _

1 (i (1) - o (il (F) 5z 20 or (XIS XTI o (X X
i=1

[MSNj + W+ AN AT+ Rﬁfgi] .

N,i N,i u _ N,i N, k
' 1;1 J]s xR xR]l{ng(Xﬁk)} [(p (XT i \/N7XT7 " W) ol&r, X )] ™ {dr, dz, du).

17

Using exchangeability and the boundedness of the ¢;,%; (1 < j < k) and the fact that

MN&HL W are martingales, this implies

N,i N,i N,i
|As,tl| + |Fs,tl| + |‘Rs,tZ

E[F()]| < CE X

N,i,j,1 N,i,5,2 N,i,j N,i,j
|As,t1j | + |As,t1J | + |Fs,tl]| + |Rs,tlj| +
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Since f is bounded and ¢ € C3(R?), Taylor-Lagrange’s inequality implies then that
C
VN
Finally, using that F is bounded and almost surely continuous at p (see Step 1), we have

E[F(p)] = lim E[F(u™)] =0,

N—>x0

IE[F(u™)]] <

concluding our proof. O
Now we have all elements to give the proof of the following main result.

Theorem 2.6. Grant Assumptions 1, 2 and 3. Each converging subsequence of u~ := % Z;V:1 OxN.,j
converges to the same limit u = L(X|W), where X is the unique strong solution of (9).

Proof. Let us consider the limit (in distribution) x of a subsequence of . By Proposition (7.20) of
Aldous (1983), pu is the directing measure of some exchangeable system (Y*);>1, and it holds that,
for the chosen subsequence, (X V%), <;<n converges in law to (Y?);>1. Moreover, we also know that

p= LY \p)and p@p = LY, Y7)|n),
almost surely, for all ¢ # j. In particular, for all i # j,
L(u, (YY) =P,

where P is given by (12), with Q = L(u).

Thanks to Lemma 2.4, together with Theorem 2.5, we know that there exist Brownian motions
W3) (4,5 > 1) and Poisson random measures 7* (i > 1) such that for all pairs (7,7),7 # j, ©° is
independent of 7/ and such that

AV} = — aYidt + on/p (f)aw ) — v JR Ly, prp y (dt, d2),
+
Y} = —aY{dt + o/ (f)dw? - ¥ f (P D)
Ry At

The exchangeability of the system (Y?);~; implies the independence of the (7%);>; and that for all
ijk=1,0#j 0%k Wi =Wk =W,

The last point to prove is that s, (f) := E[ f(V")|u] = E [ f(¥}')| W] a.s.. This would be a con-
sequence of the fact that, conditionally on W, the processes (Y7),>1 are i.i.d. (see Lemma (2.12).(a)
of Aldous (1983)). But this last assertion is not trivial because we do not know yet that W is the
only noise term common to each process Y7 (j > 1). That is why we will introduce an auxiliary
particle system which is a mean field version of the limit system and which converges to (Y7);>.

To begin with, Lemma (2.15) of Aldous (1983) implies that p;(f) is the almost sure limit of
N1 Z;’V:I f(¥7). Now, let us prove that this sequence converges to E [ £(Y;")| W] . For this purpose,
we introduce the system ()N(N*i)KKN, driven by the same Brownian motion W and the same Poisson
random measures 7, with Y§ = X2 (i > 1), replacing the term p;(f) by the empirical measure:

1 & vy - ; N _ o
N Z f(XtNJ)th —Xt]\i’ JR Il{zgf(fﬁ"i)}ﬂ (dt,dz), X(])v’ = YO'
+

j=1
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Consider finally the system (X');»1 defined in (8), driven by the same Brownian motion W and
the same Poisson random measures 7' as (Y?);>;, with X} = Y for all i > 1. In this way,
(X)iz1, (Y);»1 and (XN); ;< n are all defined on the same probability space.

It is now sufficient to prove that both for (Y?);>; and for (X?%);>1,

E [Ja(v) - a(XN)

| +E[|exh) = a2

| < (18)

Indeed, suppose we have already proven the above control (18). Then
E l

Then, (18) and Assumption 3 imply that the first term and the second one of the sum above are

smaller than C,N~'/2 for some C; > 0. In addition, by item (ii) of Proposition 1.5, the variables

(X7)1<j<n areii.d., conditionally on W. Consequently, the third term is also smaller than C; N /2.
This implies that

w(f) =E[FY))|n] =E[F(X)|W] =E[f(X)|W] as..

As a consequence, (Y?);>; is solution of the infinite system

dY} = —aYidt + o /E[ f(X])| W]dW, —Yt"_f L p—- )}wi(dt,dz),
R4 t=

while (X?);>1 in (8) is solution of

dX} = —aXidt+o E[f(X§)|W]th—Xf_J Ticpx; )}Wi(dt,dz),
Ry =

with X§ = Y{, for all i > 1.

Let us prove that X = Y almost surely. For that sake, consider 75y = inf{t > 0 : | X}| A |Y}| >
M} for M > 0. We prove that E[| X/, —Y{ . |] =0 forall M > 0, which implies, by Fatou’s
lemma, that E [|X] — Y{/|] = 0, recalling (10), and the fact that we can prove a similar control for
Y& Let un(t) := E[|X],,,, — Y., |]- To see that up(t) = 0, it is sufficient to apply Grénwall’s
lemma to the following inequality

Ly V) —E[f(X} <1NE v N
N 20D BV | <5 3 [17077) = £R)]

N
+ }VZE (17X — px9)] + B [

1Y _
N AT —E[f(XE)IW]H -

t

up(t) < ozf

up(s)ds + E J XA cpgio n =Yl oo n|m(ds,dz
0 M( ) [ [O,tAT]\/j]XR+‘ { Sf(‘Xb'*)} { Sf(yb’*)}‘ ( )1

implying that

t

upm(t) < aJ

up(s)ds + E lj 1z€[0,f()_(§7)/\f(}7;7)] |X;7 — }7Si7|ﬂ'i(d$7 dz)]
0 [O,t/\TM]XR+
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+E U Lep(xi yar (Vi p (X i1 Xeo| v Y |n'(ds, d2) |
[0 t/\TIW]X]R+

whence .

un(t) < C(1 + M)f war (5)ds.
0
Hence (Y*);>1 is solution of the infinite system (8) and p = L(Y''|W), its directing measure, is
uniquely determined. As a consequence, u” converges in distribution to £L(Y!|W) in P(D(R4,R)).
Let us now show (18). We only prove it for Y, the proof for X* is similar. We decompose the
evolution of a(Y;!) in the following way.

al(Ysl)Yslds + J‘[O . (a(O) — a(Ysl_)) ]l{zgf(ffsl_)}ﬂl (ds, dz) (19)
xRy

0-2 ¢ "
+ 5 . (
where
BN =
and
MY = O’f
Since

<MY >,<o

recalling that the variables Y7 (1 < j < N) are i.i.d. conditionally to y, taking conditional expec-
tation E(-|x) implies that

E[<MN >]<CN'and E[BY] <C.N™'
Then, applying Ito’s formula on XN’l, we obtain the same equation as (19), but without the terms

BY and M} . Introducing

we can prove with the same reasoning as in the proof of Theorem 1.2 that

u(t) ;= sup ]EH (V1) — a(XN)

0<s<t

Cy
u(t) < C(1+t)u(t) + TN

where C and Cj are independent of N. Finally, using the arguments of the proof of Theorem 1.2,
this implies (18). O



X. Erny et al./Conditional propagation of chaos 21

Let us end this section with the

Proof of Theorem 1.7. According to Proposition 2.1, the sequence (u™)y is tight. Besides, thanks
to Theorem 2.6, every converging subsequence of (V) N converges to the same limit u = L(X1|W),
where (X7);>1 is solution of (8). This implies the result. O

3. Appendix
3.1. Well-posedness of the limit equation (9)

Proof of Item 2. of Theorem 1.2. The proof is done using a classical Picard-iteration. For that sake
we introduce the sequence of processes )_(t[o] = X,, and

t t
XY = X - | Xlds— I gt ds, da,do) +o | /(D
0 [0,t] xR4 xR ° 0

where -
il = P(XIM € W),

Let us first prove a control on the moments of X ™ uniformly in n. Applying Ito’s formula we have

E [(Xt["“])z] <E[X2] - 20 f E [(Xg"+11)2] ds + o> LtE [ (f)] ds

0
<E[Xf] +0* | BRI s

Using that f is bounded,
a1\ 2 _
B[ (xF)"] <831+ ol

implying
N2
sup sup E [(XS["]) ] < 4o00. (20)

neN 0<s<t

Now, we prove the convergence of )_(t[n]. The same strategy as the one of the proof of Item 1. of
Theorem 1.2 allows to show that

61 == Esup |a(XM) — o(X[P~1)| satisfies 67 < C(t + /1)1,

s<t

for all n > 1, for a constant C' only depending on the parameters of the model, but not on n, neither
on t. Choose t; such that

C(t1 +t) <

N | —

Since sup,<;, |a(XS[O])| = a(Xy) < |a|+, we deduce from this that

5 < 27"l
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This implies the almost sure convergence of a (Xt[n]) to some random variable Z; for all ¢t € [0, ¢4].

As a is an increasing function, the almost sure convergence of Xt[n] to some (possibly infinite)
random variable X, follows from this. The almost sure finiteness of X, is then guaranteed by
Fatou’s lemma and (20).

Now let us prove that X is solution of the limit equation (9) which follows by standard arguments
(note that the jump term does not cause troubles because it is of finite activity). The most important
point is to notice that

ui(f) = E(F(XIHW) - E(F(X) W)

almost surely, which follows from the almost sure convergence of f (X't["]) — f(X}), using dominated
convergence.

Once the convergence is proven on the time interval [0,¢;], we can proceed iteratively over
successive intervals [kt1, (k + 1)t1] to conclude that X is solution of (9) on R,.

It remains to prove (10). Firstly, by Fatou’s lemma and (20), we know that, for all ¢ > 0,

sup E [X?] < 0. (21)
0<s<t
Besides, Ito’s formula gives
— — t — —
X2 =X2- QaJ X2ds — f X? 1 cpx. ym(ds, dz, du)
0 [0,t] xR4 xR

e L ia(f)ds +20 L Vi ()XW,

t
< X2+ 02| fllot + 20 f ()XW,

Inequality (10) is then a straightforward consequence of Burkholder-Davis-Gundy inequality, (21)
and the above computation. O

We now give the

Proof of Proposition 1.5. (i) Given a Brownian motion W and i.i.d. Poisson measures 7, the same
proof as the one of Theorem 1.2 implies the existence and the uniqueness of the system given in (8)
for 1 <i< N.

(#4) The construction of the proof of Item 2. of Theorem 1.2, together with the proof of Theo-
rem 1.1 of Chapter IV.1 and of Theorem 9.1 in Chapter IV.9 of Ikeda and Watanabe (1989), imply
the existence of a measurable function ® that does not depend on k = 1,..., N, and that satisfies,
foreach 1 < k < N,

XP = o(Xg, 7", W)
and for all t > 0, ) )
Xﬁovt] = (I)t(X(l;" 7-‘-|k[0,t]><]R_'_ xR (Ws)sgt); (22)

in other words, our process is non-anticipative and does only depend on the underlying noise up to
time t.
Then we can write, for all continuous bounded functions g, h,

E [g(XYR(XD)| W] = E | g(@(X, 7', W)A(@(XE, 7/, )| W] = w(w),
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where 9 (w) = IE[g(@(X'S,7ri7w))h(<I>(X'é,7rj,w))] - ]E[g(@(Xé,wi,w))]E[h(@(Xg,wj,w))] .

¥i(w)h;(w). With the same reasoning, we show that E [ g(X")| W] = ¢;(W) and E [ h(X7)| W] =
1;(W). The same arguments prove the mutual independence of X' ... X" conditionally to W.
(791) Using the representation X‘[0 0= O, (XE, 7% W), we can write for any continuous and

bounded function g : D([0,t],R) — R,

N N
1 _ . 1 .
-1 o= _
JRgd(N i=§16XﬁO’ﬂ) =N E 9 Xf1o,) = N;:1go<1>t(X5,7r’, W).

=2

Using the law of large numbers on the account of the sequence of i.i.d. PRM’s and working condi-
tionally on W, we obtain that

Jim | 12 si0) = Elg0 (X3, 7, MIW] = E | g(X o)V ] = E [9(Xo. )| (We)se |
where we have used (22). O

3.2. Proof of Corollary 1.6

Applying Ito’s formula, we have

o060 = o) + [ (= (X, + () ) s j XV (W,

0

+f ]l{z<f(Xs } ( )W(ds,dz,du). (23)
[0,t]xR4+ xR

Since ¢', " and f are bounded, it follows from (10) and Fubini’s theorem that

E (J;) (_ OZ(,D’(XS)XS + ;(P//(Xs)us(f))d5|w> = J;) E <_05§0,(X3)XS + ;@/'(Xs)ﬂs(fﬂw) .
t ! L,
- L J]R (—a(p (z)x + 3% (x)us(f)> ps(dz)ds.
Moreover, by independence of Xo and W, E(p(Xo)|W) = {; ¢(z)vo(da).

To deal with the martingale part in (23), we use an Euler scheme to approximate the stochastic
integral I; := Sg ¢’ (Xs)4/1s(f)dWs. For that sake, let 7 := k27,0 < k < 2", n > 1, and define

2™ -1 B tZ+1
IP= 2L ¢ XAl Af = | Vi (P,
k=0 k

then E(|I; — I}'|?) — 0 as n — o0, and therefore E(I7*|W) — E(I;|W) in L?(P), as n — oo. But

2" -1

BUFIN) = 3 B (KW f (X)W,
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in L?(P), since the sequence of processes Y* := iigl1]t27tz+1](s)E(@’(Xt}gNW),O < s <t

converges in L2(Q x [0,t]) to E(¢'(X,)|W).

We finally deal with the jump part in (23). Since f is bounded, and by independence of W and ,
we can rewrite this part in terms of an underlying Poisson process Ny, independent of W and having
rate | f|x, and in terms of i.i.d. variables (V,,),>1 uniformly distributed on [0, 1], independent of
W and of N as follows.

N,
f Lcpzay (9(0) = o(Xoo) m(ds, dz, du) = 3 Lypy, vies(Xr, 3 (9(0) — o(X1, ).
[0,t] xR4+ XR n=1

Taking conditional expectation E(:|W), we obtain

N,
E (Z LV < (X, )3 (9(0) — @(XTH—))|W> =
n=1

where we have used the independence properties of (V},),,, Ny and W and the fact that conditionally
on {N; = n}, the jump times (T1,...,T;,) are distributed as the order statistics of n i.i.d. times
which are uniformly distributed on [0, ¢]. This concludes our proof.

3.3. A priori estimates

In this subsection, we prove useful a priori upper bounds on some moments of the solutions of the
SDEs (7).

Lemma 3.1. Assume that 2 holds and that f is bounded:

(i) for all t >0, sup sup E [(XsN’l)Q] < 400,

NeN*0<s<t

(ii) for allt >0, sup E [ sup |X§Vl|] < 400,

NeN* O<ss<t

Proof. Step 1: Let us prove (7).

N2 (N1 t N2 g N2 ;
(Xt ) —(Xo ) 2afo (Xs )dS J[O)t]><]R+XR()(S ) ]l{zgf(Xiv;l)}dW (s,z7u)
N

2 ) |
' Z J[O,t]x]lh_xR l(XS]'\M * W) N (Xévil) ] ]l{zsf(xi\’_vj)}dﬂ"] (s,2,u)

Jj=2

9 N w \2 9 ‘
< (xM1) + f (XNJJF) —(x¥Y) |1 andml (s, z,u).
() + X o | 7 T UN () | 1 eap ey s 20

Jj=2
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As f is bounded,

E [(XtN’l)Q] <E [(ng’l)z] + Ojjg fE[f (XN9)]ds <E [(XéV’I)Q] + 02| f| ot

0

Step 2: Now we prove (ii).

1
N
1 pctyy i (5,200 + M

t
XN’l‘g‘XN’l‘—kaJ, XN1 ds+f
‘ ! 0 0| ° | [0,t]xR4 xR V

where M}N is the martingale M}¥ = Z;V:Q S[o t]XR+XRU]l{zgf(XN,j)}d’]Tj(S, z,u). Then

t
N, : N
sup [XM!| < ‘XO 1‘ +af |XNYds +J ‘Xk ‘]l{zgf(xév_,l)}dﬂl(s,z,u)
[0,6]xR4+ xR

0<sxt 0

1
+ —— sup |MSN|

VNoss<t
To conclude the proof, it is now sufficient to notice that
1 1 1/2
InE [Osgr;thévl] <E [N[MN]t]
is uniformly bounded in N, since f is bounded, and to use the point (i) of the lemma. O
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