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Abstract: We study the stochastic system of interacting neurons introduced in De Masi et al.
(2015) and in Fournier and Löcherbach (2016) in a di�usive scaling. The system consists of
N neurons, each spiking randomly with rate depending on its membrane potential. At its
spiking time, the potential of the spiking neuron is reset to 0 and all other neurons receive
an additional amount of potential which is a centred random variable of order 1{?N. In
between successive spikes, each neuron's potential follows a deterministic �ow. We prove the
convergence of the system, as N Ñ 8, to a limit nonlinear jumping stochastic di�erential
equation driven by Poisson random measure and an additional Brownian motion W which
is created by the central limit theorem. This Brownian motion is underlying each particle's
motion and induces a common noise factor for all neurons in the limit system. Conditionally
on W, the di�erent neurons are independent in the limit system. This is the conditional
propagation of chaos property. We prove the well-posedness of the limit equation by adapting
the ideas of Graham (1992) to our frame. To prove the convergence in distribution of the
�nite system to the limit system, we introduce a new martingale problem that is well suited
for our framework. The uniqueness of the limit is deduced from the exchangeability of the
underlying system.

MSC 2010 subject classi�cations: 60J75, 60K35, 60G55, 60G09.
Keywords and phrases:Multivariate nonlinear Hawkes processes with variable length mem-
ory, Mean �eld interaction, Piecewise deterministic Markov processes, Interacting particle
systems, Propagation of chaos, Exchangeability, Hewitt Savage theorem.

Introduction

This paper is devoted to the study of the Markov process XN
t � pXN,1

t , . . . , XN,N
t q taking values

in RN and having generator AN which is de�ned for any smooth test function ϕ : RN Ñ R by

ANϕpxq � �α
Ņ

i�1

Bxiϕpxqxi �
Ņ

i�1

fpxiq
»
R
νpduq

�
ϕpx� xiei �

¸
j�i

u?
N
ejq � ϕpxq

�
,

where x � px1, . . . , xN q and where ej denotes the j�th unit vector in RN . In the above formula,
α ¡ 0 is a �xed parameter and ν is a centred probability measure on R having a second moment.

Informally, the process pXN,jq1¤j¤N solves

XN,i
t � XN,i

0 � α

» t
0

XN,i
s ds�

» t
0

XN,i
s� dZN,is � 1?

N

¸
j�i

» t
0

U jpsqdZN,js , (1)

where U jpsq are i.i.d. centred random variables distributed according to ν, and where for each

1 ¤ j ¤ N, ZN,j is a simple point process on R� having stochastic intensity s ÞÑ f
�
XN,j
s�

	
.
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The particle system (1) is a version of the model of interacting neurons considered in De Masi
et al. (2015), inspired by Galves and Löcherbach (2013), and then further studied in Fournier and
Löcherbach (2016) and Cormier, Tanré and Veltz (2019). The system consists of N interacting

neurons. In (1), ZN,jt represents the number of spikes emitted by the neuron j in the interval r0, ts
and XN,j

t the membrane potential of the neuron j at time t. Spiking occurs randomly following a
point process of rate fpxq for any neuron of which the membrane potential equals x. Each time a
neuron emits a spike, the potentials of all other neurons receive an additional amount of potential.
In De Masi et al. (2015), Fournier and Löcherbach (2016) and Cormier, Tanré and Veltz (2019)
this amount is of order N�1, leading to classical mean �eld limits as N Ñ 8. On the contrary to
this, in the present article we study a di�usive scaling where each neuron j receives the amount
U{?N at spike times t of neuron i, i � j, where U � ν is a random variable. The variable U is
centred modeling the fact that the synaptic weights are balanced. Moreover, right after its spike, the
potential of the spiking neuron i is reset to 0, interpreted as resting potential. Finally, in between
successive spikes, each neuron has a loss of potential of rate α.

Equations similar to (1) appear also in the frame of multivariate Hawkes processes with mean
�eld interactions. Indeed, if

�
ZN,i

�
1¤i¤N

is a multivariate Hawkes process where the stochastic

intensity of each ZN,i is given by f
�
XN
t�

�
t
with

XN
t � e�αtXN

0 � 1?
N

Ņ

j�1

» t
0

e�αpt�sqU jpsqdZN,js , (2)

then XN satis�es

XN
t � XN

0 � α

» t
0

XN
s ds�

1?
N

Ņ

j�1

» t
0

U jpsqdZN,js ,

which corresponds to equation (1) without the big jumps, i.e. without the reset to 0 after each
spike.

The above system of interacting Hawkes processes with intensity given by (2) has been studied
in our previous paper Erny, Löcherbach and Loukianova (2019). There we have shown �rstly that
XN converges in distribution in DpR�,Rq to a limit process X̄ solving

dX̄t � �αX̄tdt� σ
b
f
�
X̄t

�
dWt, (3)

and secondly that the sequence of multivariate counting processes
�
ZN,i

�
i
converges in distribution

inDpR�,RqN� to a limit sequence of counting processes
�
Z̄i

�
i
. Every Z̄i is driven by its own Poisson

random measure and has the same intensity
�
fpX̄t�q

�
t
, where X̄ is the strong solution of (3) with

respect to some Brownian motion W . Consequently, the processes Z̄i pi ¥ 1q are conditionally
independent given the Brownian motion W.

In the present paper we add the reset term in (1) that forces the potential XN,i of neuron i
to go back to 0 at each jump time of ZN,i. This models the well-known biological fact that right
after its spike, the membrane potential of the spiking neuron is reset to a resting potential. From
a mathematical point of view, this reset to 0 induces a de-synchronization of the processes XN,i

(1 ¤ i ¤ N). In terms of Hawkes processes, it means that in (2), the process XN
t has been replaced

by

XN,i
t � 1?

N

Ņ

j�1

» t
Lit

e�αpt�sqU jpsqdZN,js � e�αtXN,i
0 1Lit�0,
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where Lit � supt0 ¤ s ¤ t : ∆ZN,is � 1u is the last spiking time of neuron i before time t, with the
convention supH :� 0. Thus the integral over the past, starting from 0 in (2), is replaced by an
integral starting at the last jump time before the present time. Such processes are termed being of
variable length memory, in reminiscence of Rissanen (1983). They are the continuous-time analogues
of the model considered in Galves and Löcherbach (2013), and we are thus considering multivariate
Hawkes processes with mean �eld interactions and variable length memory. As a consequence, on
the contrary to the situation in Erny, Löcherbach and Loukianova (2019), the point processes ZN,i

(1 ¤ i ¤ N) do not share the same stochastic intensity. The reset term in (1) is a jump term that
survives in the limit N Ñ8.

Before introducing the exact limit equation for the system (1), let us explain informally how the
limit particle system associated to

�
XN,i

�
1¤i¤N

should a priori look like. Suppose for the moment

that we already know that there exists a process pX̄1, X̄2, X̄3, . . .q P DpR�,RqN� such that for all
K ¡ 0, weak convergence LpXN,1,, . . . , XN,Kq Ñ LpX̄1, . . . , X̄Kq in DpR�,RqK , as N Ñ8, holds.
In equation (1) the only term that depends on N is the martingale term which is approximately
given by

MN
t � 1?

N

Ņ

j�1

» t
0

U jpsqdZN,js .

Then in the in�nite neuron model, each process X̄i should solve the equation (1), where the term
MN
t is replaced by Mt :� lim

NÑ8
MN
t . Because of the scaling in N�1{2, the limit martingale Mt will

be a stochastic integral with respect to some Brownian motion, and its variance the limit of

E
�pMN

t q2
� � σ2

» t
0

E

�
1

N

Ņ

j�1

fpXN,j
s q

�
ds,

where σ2 is the variance of U jpsq. Therefore, the limit martingale (if it exists) must be of the form

Mt � σ

» t
0

gffe lim
NÑ8

1

N

Ņ

j�1

f
�
XN,j
s

	
dWs � σ

» t
0

b
lim
NÑ8

µNs pfqdWs,

where µNs is the empirical measure of the system
�
XN,j
s

�
1¤j¤N

andW is a one-dimensional standard

Brownian motion.
Since the law of the N�particle system pXN,1, . . . , XN,N q is symmetric, the law of the limit

system X̄ � pX̄1, X̄2, X̄3, . . .q must be exchangeable, that is, for all �nite permutations σ, we have
that LpX̄σp1q, X̄σp2q, . . .q � LpX̄q. In particular, the theorem of Hewitt-Savage, see Hewitt and
Savage (1955), implies that the random limit

µs :� lim
NÑ8

1

N

Ņ

i�1

δX̄is (4)

exists. Supposing that µNs converges, it necessarily converges towards µs. Therefore, X̄ should solve
the limit system

X̄i
t � X̄i

0 � α

» t
0

X̄i
sds�

» t
0

X̄i
s�dZ̄

i
s � σ

» t
0

a
µspfqdWs, i P N, (5)
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where each Z̄i has intensity t ÞÑ fpX̄i
t�q, and where µs is given by (4).

The above arguments are made rigorous in Sections 2.1 and 2.2 below.
Let us brie�y discuss the form of the limit equation (5). Analogously to Erny, Löcherbach and

Loukianova (2019), the scaling in N�1{2 in (1) creates a Brownian motionW in the limit system (5).
We will show that the presence of this Brownian motion entails a conditional propagation of chaos,
that is the conditional independence of the particles given W . In particular, the limit measure µs
will be random. This di�ers from the classical framework, where the scaling is in N�1 (see e.g.
Delattre, Fournier and Ho�mann (2016), Ditlevsen and Löcherbach (2017) in the framework of
Hawkes processes, and De Masi et al. (2015), Fournier and Löcherbach (2016) and Cormier, Tanré
and Veltz (2019) in the framework of systems of interacting neurons), leading to a deterministic
limit measure µs and the true propagation of chaos property implying that the particles of the limit
system are independent.

This is not the �rst time that conditional propagation of chaos is studied in the literature; it has
already been considered e.g. in Carmona, Delarue and Lacker (2016), Coghi and Flandoli (2016) and
Dermoune (2003). But in these papers the common noise, represented by a common (maybe in�nite
dimensional) Brownian motion, is already present at the level of the �nite particle system, the mean
�eld interactions act on the drift of each particle, and the scaling is the classical one in N�1. On the
contrary to this, in our model, this common Brownian motion, leading to conditional propagation
of chaos, is only present in the limit, and it is created by the central limit theorem as a consequence
of the joint action of the small jumps of the �nite size particle system. Moreover, in our model, the
interactions survive as a variance term in the limit system due to the di�usive scaling in N�1{2.

Now let us discuss the form of µs, which is the limit of the empirical measures of the limit
system

�
X̄i
s

�
i¥1

. The theorem of Hewitt-Savage, Hewitt and Savage (1955), implies that the law of�
X̄i
s

�
i¥1

is a mixture directed by the law of µs. As it has been remarked by Carmona, Delarue and

Lacker (2016) and Coghi and Flandoli (2016), this conditioning re�ects the dependencies between
the particles.

We will show that the variables X̄i are conditionally independent given the Brownian motion W.
As a consequence, µs will be shown to be the conditional law of the solution given the Brownian
motion, that is, P�almost surely,

µsp�q � P pX̄i
s P �|pWtq0¤t¤sq � P pX̄i

s P �|W q, (6)

for any i P N. Equation (5) together with (6) gives a precise de�nition of the limit system.
The nonlinear SDE (5) is not clearly well-posed, and our �rst main result, Theorem 1.2, gives

appropriate conditions on the system that guarantee pathwise uniqueness and the existence of a
strong solution to (5).

We then prove, in Sections 2.1 and 2.2, our main Theorem 1.7 stating the convergence in dis-
tribution of the sequence of empirical measures µN � N�1

°N
i�1 δpXN,it qt¥0

, in PpDpR�,Rqq, to the

random limit µ � P ppX̄tqt¥0 P �|W q. To do so, we �rst prove that under suitable conditions on
the parameters of the system, the sequence µN is tight (see Proposition 2.1 below). We then follow
a classical road and identify every possible limit as solution of a martingale problem. Since the
random limit measure µ will only be the directing measure of the limit system (that is, the condi-
tional law of each coordinate, but not its law), this martingale problem is not a classical one. It is
in particular designed to re�ect the correlation between the particles and to describe all possible
limits of couples of neurons.

Classical representation theorems imply that any coordinate of the limit process must satisfy an
equation of the type (5). The fact that our martingale problem describes correlations within couples
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of neurons allows to show that each coordinate is driven by its own Poisson random measure and
that all coordinates are driven by the same underlying Brownian motion W. But it is not yet clear
that µs is of the form (6). In other words, it has to be proven that the only common randomness
is the one present in the driving Brownian motion W. To prove this last point, we introduce an
auxiliary particle system which is a mean �eld particle version of the limit system, constructed with
the same underlying Brownian motion, and we provide an explicit control on the distance (with
respect to a particular L1�norm) between the two systems.

Let us �nally mention that the random limit measure µ satis�es the following nonlinear stochastic
PDE in weak form: for any test function ϕ P C2

b pRq, the set of C2-functions on R such that ϕ, ϕ1

and ϕ2 are bounded, for any t ¥ 0,»
R
ϕpxqµtpdxq �

»
R
ϕpxqµ0pdxq �

» t
0

�»
R
ϕ1pxqµspdxq


 a
µspfqdWs

�
» t

0

»
R

�
rϕp0q � ϕpxqsfpxq � αϕ1pxqx� 1

2
ϕ2pxqµspfq

	
µspdxqds.

Organisation of the paper. In Section 1, we state the assumptions and formulate the main
results. Section 2 is devoted to the proof of the convergence of µN :� °N

j�1 δXN,j (Theorem 1.7).
In particular, we introduce our new martingale problem in Section 2.2 and prove the uniqueness of
the limit law in Theorem 2.6. Finally, in Appendix, we prove some auxiliary results.

1. Notation, Model and main results

1.1. Notation

We use the following notation throughout the paper.
If E is a metric space, we note:

• PpEq the space of probability measures on E endowed with the topology of the weak conver-
gence,
• Cnb pEq the set of the functions g which are n times continuously di�erentiable such that gpkq

is bounded for each 0 ¤ k ¤ n,
• Cnc pEq the set of functions g P Cnb pEq that have a compact support.

In addition, in what follows DpR�,Rq denotes the space of càdlàg functions from R� to R,
endowed with Skorohod metric, and C and K denote arbitrary positive constants whose values
can change from line to line in an equation. We write Cθ and Kθ if the constants depend on some
parameter θ.

1.2. The �nite system

We consider, for each N ¥ 1, a family of i.i.d. Poisson measures pπipds, dz, duqqi�1,...,N on R� �
R� � R having intensity measure dsdzνpduq where ν is a probability measure on R, as well as an
i.i.d. family pXN,i

0 qi�1,...,N of R-valued random variables independent of the Poisson measures. The

object of this paper is to study the convergence of the Markov process XN
t � pXN,1

t , . . . , XN,N
t q
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taking values in RN and solving, for i � 1, . . . , N , for t ¥ 0,$'''''&'''''%
XN,i
t � XN,i

0 � α

» t
0

XN,i
s ds�

»
r0,ts�R��R

XN,i
s� 1tz¤fpXN,is� quπ

ipds, dz, duq

� 1?
N

¸
j�i

»
r0,ts�R��R

u1tz¤fpXN,js� quπ
jpds, dz, duq,

XN,i
0 � ν0.

(7)

The coe�cients of this system are the exponential loss factor α ¡ 0, the jump rate function f :
R ÞÑ R� and the probability measures ν and ν0.

In order to guarantee existence and uniqueness of a strong solution of (7), we introduce the
following hypothesis.

Assumption 1. The function f is Lipschitz continuous.

In addition, we also need the following condition to obtain a priori bounds on some moments of
the process

�
XN,i

�
1¤i¤N

.

Assumption 2. We assume that
³
R xdνpxq � 0,

³
R x

2dνpxq   �8, and ³
R x

2dν0pxq   �8.
Under Assumptions 1 and 2, existence and uniqueness of strong solutions of (7) follow from

Theorem IV.9.1 of Ikeda and Watanabe (1989), exactly in the same way as in Proposition 6.6 of
Erny, Löcherbach and Loukianova (2019).

We now de�ne precisely the limit system and discuss its properties before proving the convergence
of the �nite to the limit system.

1.3. The limit system

The limit system
�
X̄i

�
i¥1

is given by$''''&''''%
X̄i
t � X̄i

0 � α

» t
0

X̄i
sds�

»
r0,ts�R��R

X̄i
s�1tz¤fpX̄is�qu

πipds, dz, duq

�σ
» t

0

b
E
�
f
�
X̄i
s

���W�
dWs,

X̄i
0 � ν0.

(8)

In the above equation, pWtqt¥0 is a standard one-dimensional Brownian motion which is independent
of the Poisson random measures, and W � σtWt, t ¥ 0u. Moreover, the initial positions X̄i

0, i ¥ 1,
are i.i.d., independent of W and of the Poisson random measures, distributed according to ν0 which
is the same probability measure as in (7). The common jumps of the particles in the �nite system,
due to their scaling in 1{?N and the fact that they are centred, by the Central Limit Theorem,
create this single Brownian motionWt which is underlying each particle's motion and which induces
the common noise factor for all particles in the limit.

The limit equation (8) is not clearly well-posed and requires more conditions on the rate func-
tion f . Let us brie�y comment on the type of di�culties that one encounters when proving trajec-
torial uniqueness of (8). Roughly speaking, the jump terms demand to work in an L1�framework,
while the di�usive terms demand to work in an L2�framework. Graham (1992) proposes a uni�ed
approach to deal both with jump and with di�usion terms in a non-linear framework, and we shall
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rely on his ideas in the sequel. The presence of the random volatility term which involves conditional
expectation causes however additional technical di�culties. Finally, another di�culty comes from
the fact that the jumps induce non-Lipschitz terms of the form X̄i

sfpX̄i
sq. For this reason a classical

Wasserstein-1�coupling is not appropriate for the jump terms. Therefore we propose a di�erent
distance which is inspired by the one already used in Fournier and Löcherbach (2016). To do so, we
need to work under the following additional assumption.

Assumption 3. 1. We suppose that inf f ¡ 0.
2. There exists a function a P C2pR,R�q, strictly increasing and bounded, such that, for a suitable
constant C, for all x, y P R,

|a2pxq � a2pyq| � |a1pxq � a1pyq| � |xa1pxq � ya1pyq| � |fpxq � fpyq| ¤ C|apxq � apyq|.

Note that Assumption 3 implies Assumption 1 as well as the boundedness of the rate function f.

Proposition 1.1. Suppose that fpxq � c� d arctanpxq, where c ¡ dπ2 , d ¡ 0. Then Assumption 3
holds with a � f.

Proof. We quickly check that |xa1pxq�ya1pyq| ¤ C|apxq�apyq|.We have that a1pxq � d
1�x2 , whence

xa1pxq � ya1pyq � dp x
1�x2 � y

1�y2 q. We use that
��� ddx � x

1�x2

	��� � ��� 1�x2

p1�x2q2

��� ¤ 1
1�x2 . Suppose w.l.o.g.

that x ¤ y. As a consequence,

|xa1pxq � ya1pyq| � d

����» y
x

1� t2

p1� t2q2 dt
���� ¤ d

» y
x

1

1� t2
dt � | arctanpyq � arctanpxq| � d|apxq � apyq|.

The other points of Assumption 3 follow immediately.

Under these additional assumptions we obtain the well-posedness of each coordinate of the limit
system (8), that is, of the pFtqt� adapted process pX̄tqt having càdlàg trajectories which is solution
of the SDE$&% dX̄t � �αX̄tdt� X̄t�

»
R��R

1tz¤fpX̄t�quπpdt, dz, duq � σ
a
µtpfqdWt,

X̄0 � ν0, µtpfq � E
�
f
�
X̄t

���W� � E
�
f
�
X̄t

���Wt

�
.

(9)

Here, Ft � σtπpr0, ss�Aq, s ¤ t, A P BpR��Rqu_Wt, Wt � σtWs, s ¤ tu and W � σtWs, s ¥ 0u.
Theorem 1.2. Grant Assumption 3.
1. Pathwise uniqueness holds for the nonlinear SDE (9).
2. If additionally,

³
R x

2dν0pxq   �8, then there exists a unique strong solution pX̄tqt¥0 of the
nonlinear SDE (9), which is pFtqt� adapted with càdlàg trajectories, satisfying for every t ¡ 0,

E
�

sup
0¤s¤t

X̄2
s

�
  �8. (10)

Remark 1.3. Notice that the stochastic integral
³t
0

a
µspfqdWs is well-de�ned since s ÞÑ a

µspfq
is an pWtqt�progressively measurable process.

In what follows we just give the proof of Item 1. of the above theorem since its arguments are
important for the sequel. We postpone the rather classical proof of Item 2. to Appendix.
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Proof of Item 1. of Theorem 1.2. Consider two solutions p pXtqt¥0 and p qXtqt¥0, pFtqt�adapted, de-
�ned on the same probability space and driven by the same Poisson random measure π and
the same Brownian motion W, and with pX0 � qX0. We consider Zt :� ap pXtq � ap qXtq. Denotepµspfq � Erfp pXsq|Wss and qµspfq � Erfp qXsq|Wss.
Using Ito's formula, we can write

Zt � �α
» t

0

� pXsa
1p pXsq � qXsa

1p qXsq
	
ds� 1

2

» t
0

pa2p pXsqpµspfq � a2p qXsqqµspfqqσ2ds

�
» t

0

pa1p pXsq
apµspfq � a1p qXsq

aqµspfqqσdWs

�
»
r0,ts�R��R

rap pXs�q � ap qXs�qs1tz¤fpxXs�q^fp|Xs�quπpds, dz, duq

�
»
r0,ts�R��R

rap0q � ap pXs�qs1tfp|Xs�q z¤fpxXs�quπpds, dz, duq

�
»
r0,ts�R��R

rap qXs�q � ap0qs1
tfpxXs�q z¤fp|Xs�qu

πpds, dz, duq �: At �Mt �∆t,

where At denotes the bounded variation part of the evolution, Mt the martingale part and ∆t the
sum of the three jump terms. Notice that

Mt �
» t

0

pa1p pXsq
apµspfq � a1p qXsq

aqµspfqqσdWs

is a square integrable martingale since f and a1 are bounded.
We wish to obtain a control on |Z�t | :� sups¤t |Zs|.We �rst take care of the jumps of |Zt|. Notice

�rst that, since f and a are bounded,

∆px, yq :� pfpxq ^ fpyqq|apxq � apyq| � |fpxq � fpyq|
���|ap0q � apyq| � |ap0q � apxq|

���
¤ C|apxq � apyq|,

implying that

E sup
s¤t

|∆s| ¤ CE
» t

0

|ap pXsq � ap qXsq|ds ¤ CtE|Z�t |.

Moreover, for a constant C depending on σ2, }f}8, }a}8, }a1}8, }a2}8 and α,

E sup
s¤t

|As| ¤ C

» t
0

E|a1p pXsq pXs � a1p qXsq qXs|ds

� C

�» t
0

|a2p pXsq � a2p qXsq|ds�
» t

0

|pµspfq � qµspfq|ds� .
We know that |a1p pXsq pXs � a1p qXsq qXs| � |a2p pXsq � a2p qXsq| ¤ C|ap pXsq � ap qXsq| � C|Zs|. Therefore,

E sup
s¤t

|As| ¤ CE
�» t

0

|Zs|ds�
» t

0

|pµspfq � qµspfq|ds� .
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Moreover,

|pµspfq � qµspfq| � ���E�
fp pXsq � fp qXsq|W

	 ��� ¤ E
�
|fp pXsq � fp qXsq||W

	
¤ Ep|Zs||Wq,

and thus,

E
» t

0

|pµspfq � qµspfq|ds ¤ E
» t

0

|Zs|ds ¤ tE|Z�t |.

Putting all these upper bounds together we conclude that for a constant C not depending on t,

E sup
s¤t

|As| ¤ CtE|Z�t |.

Finally, we treat the martingale part using the Burkholder-Davis-Gundy inequality, and we obtain

E sup
s¤t

|Ms| ¤ CE

��» t
0

pa1p pXsq
apµspfq � a1p qXsq

aqµspfqq2ds
1{2
�
.

But

pa1p pXsq
apµspfq � a1p qXsq

aqµspfqq2 ¤ C
�
ppa1p pXsq � a1p qXsqq2 � p

apµspfq �aqµspfqq2�
¤ C|Z�t |2 � Cp

apµspfq �aqµspfqq2, (11)

where we have used that |a1pxq � a1pyq| ¤ C|apxq � apyq| and that f and a1 are bounded.
Finally, since inf f ¡ 0,

|
apµspfq �aqµspfq|2 ¤ C|pµspfq � qµspfq|2 ¤ C pEp|Z�s ||Wsqq2 .

We use that |Z�s | ¤ |Z�t |, implying that Ep|Z�s ||Wq ¤ Ep|Z�t ||Wq. Therefore we obtain the upper
bound

|
apµspfq �aqµspfq|2 ¤ C pEp|Z�t ||Wqq2

for all s ¤ t, which implies the control of

E sup
s¤t

|Ms| ¤ C
?
tE|Z�t |.

The above upper bounds imply that, for a constant C not depending on t nor on the initial condition,

E|Z�t | ¤ Cpt�
?
tqE|Z�t |,

and therefore, for t1 su�ciently small, E|Z�t1 | � 0.We can repeat this argument on intervals rt1, 2t1s,
with initial condition X̂t1 , and iterate it up to any �nite T because t1 does only depend on the
coe�cients of the system but not on the initial condition. This implies the assertion.

Remark 1.4. Theorem 1.2 states the well-posedness of the SDE (9). Under the same hypotheses,
with almost the same reasoning, one can prove the well-posedness of the system (8).

In the sequel, we shall also use an important property of the limit system (8), which is the
conditional independence of the processes X̄i (i ¥ 1) given the Brownian motion W .
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Proposition 1.5. If Assumption 3 holds and
³
R x

2dν0pxq   �8, then
(i) for all N P N� there exists a strong solution

�
X̄i

�
1¤i¤N

of (8), and pathwise uniqueness
holds,

(ii) X̄1, . . . , X̄N are independent conditionally to W,

(iii) for all t ¥ 0, almost surely, the weak limit of 1
N

°N
i�1 δX̄i|r0,ts is given by limNÑ8

1
N

°N
i�1 δX̄i|r0,ts �

P pX̄i
|r0,ts P �|Wtq � P pX̄i

|r0,ts P �|Wq.
Let us �nally mention that the random limit measure µ satis�es a nonlinear stochastic PDE in

weak form. More precisely,

Corollary 1.6. Grant Assumption 3 and suppose that
³
R x

2dν0pxq   �8. Then the measure µ �
P ppX̄tqt¥0 P �|W q satis�es the following nonlinear stochastic PDE in weak form: for any ϕ P C2

b pRq,
for any t ¥ 0,»

R
ϕpxqµtpdxq �

»
R
ϕpxqν0pdxq �

» t
0

�»
R
ϕ1pxqµspdxq


 a
µspfqσdWs

�
» t

0

»
R

�
rϕp0q � ϕpxqsfpxq � αϕ1pxqx� 1

2
σ2ϕ2pxqµspfq

	
µspdxqds.

The proofs of Proposition 1.5 and of Corollary 1.6 are postponed to Appendix.

1.4. Convergence to the limit system

We are now able to state our main result.

Theorem 1.7. Grant Assumptions 1, 2 and 3. Then the empirical measure µN � 1
N

°N
i�1 δXN,i of

the N�particle system pXN,iq1¤i¤N converges in distribution in PpDpR�,Rqq to µ :� LpX̄1|Wq,
where pX̄iqi¥1 is solution of (8).

Corollary 1.8. Under the assumptions of Theorem 1.7, pXN,jq1¤j¤N converges in distribution to

pX̄jqj¥1 in DpR�,RqN� .
Proof. Together with the statement of Theorem 1.7, the proof is an immediate consequence of
Proposition 7.20 of Aldous (1983).

We will prove Theorem 1.7 in a two step procedure. Firstly we prove the tightness of the sequence
of empirical measures, and then in a second step we identify all possible limits as solutions of a
martingale problem.

2. Proof of Theorem 1.7

This section is dedicated to prove that the sequence pµN qN of the empirical measures µN :�°N
j�1 δpXjt qt¥0

converges in distribution to µ :� LpX̄1|Wq, where pX̄jqj¥1 is solution of (8).

In a �rst time, we prove that the sequence pµN qN is tight on PpDpR�,Rqq. The main step to
prove the convergence of pµN qN is then to show that each converging subsequence converges to the
same limit in distribution. For this purpose, we introduce a new martingale problem, and we show
that every possible limit of µN is a solution of this martingale problem. Finally, we will show how
the uniqueness of the limit law follows from the exchangeability of the system.
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2.1. Tightness of pµN qN

Proposition 2.1. Grant Assumptions 1 and 2. For each N ¥ 1, consider the unique solution
pXN

t qt¥0 to (7) starting from some i.i.d. ν0-distributed initial conditions XN,i
0 .

(i) The sequence of processes pXN,1
t qt¥0 is tight in DpR�,Rq.

(ii) The sequence of empirical measures µN � N�1
°N
i�1 δpXN,it qt¥0

is tight in PpDpR�,Rqq.
Proof. First, it is well-known that point (ii) follows from point (i) and the exchangeability of the
system, see (Sznitman 1989, Proposition 2.2-(ii)). We thus only prove (i). To show that the family

ppXN,1
t qt¥0qN¥1 is tight in DpR�,Rq, we use the criterion of Aldous, see Theorem 4.5 of Jacod and

Shiryaev (2003). It is su�cient to prove that

(a) for all T ¡ 0, all ε ¡ 0, limδÓ0 lim supNÑ8 suppS,S1qPAδ,T P p|XN,1
S1 � XN,1

S | ¡ εq � 0, where

Aδ,T is the set of all pairs of stopping times pS, S1q such that 0 ¤ S ¤ S1 ¤ S � δ ¤ T a.s.,

(b) for all T ¡ 0, limKÒ8 supN P psuptPr0,T s |XN,1
t | ¥ Kq � 0.

To check (a), consider pS, S1q P Aδ,T and write

XN,1
S1 �XN,1

S � �
» S1
S

»
R

» 8

0

XN,1
s� 1tz¤fpXN,1s� quπ

1pds, du, dzq � α

» S1
S

XN,1
s ds

� 1?
N

Ņ

j�2

» S1
S

»
R

» 8

0

u1tz¤fpXN,js� quπ
jpds, du, dzq,

implying that

|XN,1
S1 �XN,1

S | ¤ |
» S1
S

»
R

» 8

0

XN,1
s� 1tz¤fpXN,1s� quπ

1pds, du, dzq|

� δα sup
0¤s¤T

��XN,1
s

��� | 1?
N

Ņ

j�2

» S1
S

»
R

» 8

0

u1tz¤fpXN,js� quπ
jpds, du, dzq|

�: |IS,S1 | � δα sup
0¤s¤T

��XN,1
s

��� |JS,S1 |.

We �rst note that |IS,S1 | ¡ 0 implies that ĨS,S1 :� ³S1
S

³
R
³8
0
1tz¤fpXN,1s� quπ

ipds, du, dzq ¥ 1, whence

P p|IS,S1 | ¡ 0q ¤ P pĨS,S1 ¥ 1q ¤ ErĨS,S1s ¤ E
� » S�δ

S

fpXN,1
s qds

�
¤ ||f ||8δ,

since f is bounded. We proceed similarly to check that

P p|JS,S1 | ¥ εq ¤ 1

ε2
ErpJS,S1q2s ¤ σ2

Nε2

Ņ

j�2

E
� » S�δ

S

fpXN,j
s qds

�
¤ σ2

ε2
}f}8δ.

The term sup0¤s¤T |XN,1
s | can be handled using Lemma 3.1.(ii).

Finally (b) is a straightforward consequence of Lemma 3.1.(ii) and Markov's inequality.
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2.2. Martingale problem

We now introduce a new martingale problem, whose solutions are the limits of any converging
subsequence of µN � 1

N

°N
j�1 δXN,j . In this martingale problem, we are interested in couples of

trajectories to be able to put hands on the correlations between the particles. In particular, this
will allow us to show that, in the limit system (8), the processes X̄i (i ¥ 1) share the same Brownian
motion, but are driven by Poisson measures πi (i ¥ 1) which are independent. The reason why we
only need to study the correlation between two particles is the exchangeability of the in�nite system.

Let Q be a distribution on PpDpR�,Rqq. De�ne a probability measure P on PpDpR�,Rqq �
DpR�,Rq2 by

P pA�Bq :�
»
PpDpR�,Rqq

1ApmqmbmpBqQpdmq. (12)

We write any atomic event ω P Ω :� PpDpR�,Rqq�DpR�,Rq2 as ω � pµ, Y q, with Y � pY 1, Y 2q.
Thus, the law of the canonical variable µ is Q, and that of pYtqt¥0 is

PY �
»
PpDpR�,Rqq

Qpdmqmbmp�q.

Moreover we have P� almost surely

µ � LpY 1|µq � LpY 2|µq and LpY |µq � µb µ.

Writing µt :� ³
DpR�,Rq µpdγqδγt for the projection onto the t�th time coordinate, we introduce the

�ltration
Gt � σpYs, s ¤ tq _ σpµspfq, s ¤ tq.

De�nition 2.2. We say that Q P PpPpDpR�,Rqqq is a solution to the martingale problem pMq if
the following holds.

(i) Q�almost surely, µ0 � ν0.

(ii) For all g P C2
b pR2q, Mg

t :� gpYtq � gpY0q �
³t
0
Lgpµs, Ysqds is a pP, pGtqtq�martingale, where

Lgpµ, xq � � αx1Bx1gpxq � αx2Bx2gpxq � σ2

2
µpfq

2̧

i,j�1

B2
xixjgpxq

� fpx1qpgp0, x2q � gpxqq � fpx2qpgpx1, 0q � gpxqq.

Remark 2.3. It is not clear if the martingale problem is well-posed, but we are not interested in
proving uniqueness for it. However, we will have uniqueness within the class of all possible limits
in distribution of µN . More precisely, we shall prove that, if µ is a limit in distribution of µN such
that Lpµq is solution to pMq, then µ � LpX̄|Wq, with X̄ the strong solution of (9). Equivalently,
de�ning the problem pMq for all �nite-dimensional distributions, and not only for two coordinates,
where Y i (i ¥ 1) are de�ned as a mixture directed by µ, would lead to uniqueness.

Let pX̄iqi¥1 be the solution of the limit system (8) and µ � LpX̄1|Wq. Then we already know
that Lpµq is a solution of pMq. Let us now characterise any possible solution of pMq.
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Lemma 2.4. Grant Assumption 3. Let Q P PpPpDpR�,Rqqq be a solution of pMq. Let pµ, Y q
be the canonical variable de�ned above, and write Y � pY 1, Y 2q. Then there exists a standard
pGtqt�Brownian motion W and on an extension pΩ̃, pG̃tqt, P̃ q of pΩ, pGtqt, P q there exist pG̃tqt�
Poisson random measures π1, π2 on R��R� having Lebesgue intensity such that W,π1 and π2 are
independent and

dY 1
t �� αY 1

t dt� σ
a
µtpfqdWt � Y 1

t�

»
R�

1tz¤fpY 1
t�quπ

1pdt, dzq,

dY 2
t �� αY 2

t dt� σ
a
µtpfqdWt � Y 2

t�

»
R�

1tz¤fpY 2
t�quπ

2pdt, dzq.

Proof. Item (ii) of of pMq together with Theorem II.2.42 of Jacod and Shiryaev (2003) imply that
Y is a semimartingale with characteristics pB,C, νq given by

Bit � �α
» t

0

Y is ds�
» t

0

Y is fpY is qds, 1 ¤ i ¤ 2,

Ci,jt �
» t

0

µspfqds, 1 ¤ i, j ¤ 2,

νpdt, dyq � dtpfpY 1
t�qδp�Y 1

t�,0q
pdyq � fpY 2

t�qδp0,�Y 2
t�q
pdyqq.

Then we can use the canonical representation of Y (see Theorem II.2.34 of Jacod and Shiryaev
(2003)) with the truncation function hpyq � y for every y: Yt � Y0 � Bt � M c

t �Md
t , where M

c is
a continuous local martingale and Md a purely discontinuous local martingale. By de�nition of the
characteristics, xM c,i,M c,jyt � Ci,jt . In particular, xM c,iyt �

³t
0
µspfqds (i � 1, 2). Consequently,

applying Theorem II.7.1 of Ikeda and Watanabe (1989) to both coordinates, we know that there
exist Brownian motions W 1,W 2 such that

M c,i
t �

» t
0

a
µspfqdW i

s , i � 1, 2.

We now prove thatW 1 �W 2. Let ρ be the correlation betweenW 1 andW 2. Classical computations
give xW 1,W 2yt � ρt, implying that xM c,1,M c,2yt � ρ

³t
0
µspfqds. In addition xM c,1,M c,2yt �

C1,2
t � ³t

0
µspfqds, and this implies that ρ � 1 and W 1 � W 2, since

³t
0
µspfqds ¡ 0 because f is

lower-bounded.
We now prove the existence of the independent Poisson measures π1, π2. We know that Md �

h � pµY � νq, where µY � °
s 1t∆Ys�0uδps,Ysq is the jump measure of Y and ν is its compensator.

We rely on Theorem II.7.4 of Ikeda and Watanabe (1989). Using the notation therein, we introduce
Z � R�, m Lebesgue measure on Z and

θpt, zq :� p�Y 1
t�, 0q1tz¤fpY 1

t�qu � p0,�Y 2
t�q1t||f ||8 z¤||f ||8�fpY 2

t�qu.

According to Theorem II.7.4 of Ikeda and Watanabe (1989), there exists a Poisson measure π on
R� � R� having intensity dt � dz such that, for all E P BpR2q,

µY pr0, ts � Eq �
» t

0

» 8

0

1tθps,zqPEuπpds, dzq. (13)
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Now let us consider two independent Poisson measures π̃1, π̃2 (independent of everything else)
on r||f ||8,8r having Lebesgue intensity. We then de�ne π1 in the following way: for any A P
BpR� � r0, ||f ||8sq, π1pAq � πpAq, and for A P BpR��s||f ||8,8rq, π1pAq � π̃1pAq. We de�ne
π2 in a similar way: For A P BpR� � r0, ||f ||8sq, π2pAq � πptpt, ||f ||8 � zq : pt, zq P Auq, and
for A P BpR��s||f ||8,8rq, π2pAq � π̃2pAq. By de�nition of Poisson measures, π1 and π2 are
independent Poisson measures on R2

� having Lebesgue intensity, and together with (13), we have

Md,i
t � �

»
r0,ts�R�

Y is�1tz¤fpY is�quπ
ipds, dzq �

» t
0

Y is fpY is qds, 1 ¤ i ¤ 2.

Moreover we have the following

Theorem 2.5. Assume that Assumptions 1, 2 and 3 hold. Then the distribution of any limit µ of
the sequence µN :� 1

N

°N
j�1 δXN,j is solution of item (ii) of pMq.

Proof. Step 1. We �rst check that for any t ¥ 0, a.s., µptγ : ∆γptq � 0uq � 0. We assume by
contradiction that there exists t ¡ 0 such that µptγ : ∆γptq � 0uq ¡ 0 with positive probability.
Hence there are a, b ¡ 0 such that the event E :� tµptγ : |∆γptq| ¡ auq ¡ bu has a positive
probability. For every ε ¡ 0, we have E � tµpBεaq ¡ bu, where Bεa :� tγ : supsPpt�ε,t�εq |∆γpsq| ¡ au,
which is an open subset of DpR�,Rq. Thus Pεa,b :� tµ P PpDpR�,Rqq : µpBεaq ¡ bu is an open subset
of PpDpR�,Rqq. The Portmanteau theorem implies then that for any ε ¡ 0,

lim inf
NÑ8

P pµN P Pεa,bq ¥ P pµ P Pεa,bq ¥ P pEq ¡ 0. (14)

Firstly, we can write
JN,ε,i :� sup

t�ε s t�ε

��∆XN,i
s

�� � Gε,iN _ SεN ,

where Gε,iN :� maxsPDε,iN
|XN,i

s� | is the maximal height of the big jumps of XN,i, with Dε,i
N :� tt�ε ¤

s ¤ t� ε : πiptsu� r0, fpXN,i
s� qs �R�q � 0u. Moreover, SεN :� maxt|U jpsq|{?N : s P �1¤j¤N D

ε,j
N u

is the maximal height of the small jumps of XN,i, where U jpsq is de�ned for s P Dε,j
N , almost surely,

as the only real number that satis�es πjptsu � r0, fpXN,j
s� qs � tU jpsquq � 1.

We have that  
µN pBεaq ¡ b

( � #
1

N

Ņ

j�1

1tJN,ε,j¡au ¡ b

+
.

Consequently, by exchangeability and Markov's inequality,

P
�
µN pBεaq ¡ b

� ¤ 1

b
E
�
1tJN,ε,1¡au

� � 1

b
P
�
JN,ε,1 ¡ a

� ¤ 1

b

�
P
�
Gε,1N ¡ a

	
� P pSεN ¡ aq

	
. (15)

The number of big jumps of XN,1 in st � ε, t � εr is smaller than a random variable ξ having
Poisson distribution with parameter 2ε||f ||8. Hence

P
�
GεN,1 ¡ a

� ¤ P pξ ¥ 1q � 1� e2ε||f ||8 ¤ 2ε||f ||8. (16)
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The small jumps that occur in st � ε, t � εr are included in tU1{
?
N, ..., UK{

?
Nu where K

is a N�valued random variable having Poisson distribution with parameter 2εN ||f ||8, which is
independent of the variables Ui (i ¥ 1) that are i.i.d. with distribution ν. Hence,

P pSεN ¡ aq ¤ P

�
max

1¤i¤K

|Ui|?
N

¡ a



¤ E

�
P
�

max
1¤i¤K

|Ui|?
N

¡ a

����K
�
� E rψpKqs ,

where ψpkq � P
�
max1¤i¤k |Ui| ¡ a

?
N
� ¤ kP

�|U1| ¡ a
?
N
� ¤ ka�2N�1E

�
U2

1

�
. Hence

P pSεN ¡ aq ¤ E
�
U2

1

�
Na2

E rKs ¤ 2||f ||8E
�
U2

1

� 1

a
ε. (17)

Inserting the bounds (16) and (17) in (15), we have

P
�
µN pBεa ¡ bq� ¤ Cε,

where C does not depend on N nor ε. This last inequality is in contradiction with (14) since P pEq
does not depend on ε.
Step 2. In the following, we note B2ϕ :� °2

i,j�1 B2
xixjϕ. For any 0 ¤ s1   . . .   sk   s   t, any

ϕ1, . . . , ϕk, ψ1, . . . , ψk P CbpRq, any ϕ P C3
b pR2q, we introduce

F pµq :� ψ1pµs1pfqq . . . ψkpµskpfqq
»
DpR�,Rq2

µb µpdγqϕ1pγs1q . . . ϕkpγskq�
ϕpγtq � ϕpγsq � α

» t
s

γ1
rBx1ϕpγrqdr � α

» t
s

γ2
rBx2ϕpγrqdr � σ2

2

» t
s

µrpfqB2ϕpγrqdr

�
» t
s

fpγ1
r qpϕp0, γ2

r q � ϕpγrqqdr �
» t
s

fpγ2
r qpϕpγ1

r , 0q � ϕpγrqqdr
�
.

To show that Lpµq is solution of item (ii) of the martingale problem pMq, by a classical density
argument, it is su�cient to prove that E rF pµqs � 0. We have

F pµN q � ψ1pµNs1pfqq . . . ψkpµNskpfqq
1

N2

Ņ

i�1

Ņ

j�1

ϕ1pXN,i
s1 , XN,j

s1 q . . . ϕkpXN,i
sk

, XN,j
sk

q�
�
ϕpXN,i

t , XN,j
t q � ϕpXN,i

s , XN,j
s q � α

» t
s

XN,i
r Bx1ϕpXN,i

r , XN,j
r qdr

� α

» t
s

XN,j
r Bx2ϕpXN,i

r , XN,j
r qdr � σ2

2

» t
s

µNr pfqB2ϕpXN,i
r , XN,j

r qdr

�
» t
s

fpXN,i
r qpϕp0, XN,j

r q � ϕpXN,i
r , XN,j

r qqdr �
» t
s

fpXN,j
r qpϕpXN,i

r , 0q � ϕpXN,i
r , XN,j

r qqdr
�
.

But recalling (7) and using Ito's formula, for any i � j, we have

ϕpXN,i
t , XN,j

t q

� ϕpXN,i
s , XN,j

s q � α

» t
s

XN,i
r Bx1ϕpXN,i

r , XN,j
r qdr � α

» t
s

XN,j
r Bx2ϕpXN,i

r , XN,j
r qdr
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�
»
ss,ts�R��R

1tz¤fpXN,ir� qu
�
ϕ

�
0, XN,j

r� � u?
N



� ϕpXN,i

r� , X
N,j
r� q

�
πipdr, dz, duq

�
»
ss,ts�R��R

1tz¤fpXN,jr� qu
�
ϕ

�
XN,i
r� � u?

N
, 0



� ϕpXN,i

r� , X
N,j
r� q

�
πjpdr, dz, duq

�
Ņ

k�1
kRti,ju

»
ss,ts�R��R

1tz¤fpXN,kr� qu
�
ϕ

�
XN,i
r� � u?

N
,XN,j

r� � u?
N




�ϕpXN,i
r� , X

N,j
r� q

�
πkpdr, dz, duq.

We use the notation π̃jpdr, dz, duq � πjpdr, dz, duq � drdzνpduq and set

MN,i,j,1
s,t :�

»
ss,ts�R��R

1tz¤fpXN,ir� qu
�
ϕ

�
0, XN,j

r� � u?
N



� ϕpXN,i

r� , X
N,j
r� q

�
π̃ipdr, dz, duq,

MN,i,j,2
s,t :�

»
ss,ts�R��R

1tz¤fpXN,jr� qu
�
ϕ

�
XN,i
r� � u?

N
, 0



� ϕpXN,i

r� , X
N,j
r� q

�
π̃jpdr, dz, duq,

WN,i,j
s,t :�

Ņ

k�1
jRti,ju

»
ss,ts�R��R

1tz¤fpXN,kr� qu
�
ϕ

�
XN,i
r� � u?

N
,XN,j

r� � u?
N




�ϕpXN,i
r� , X

N,j
r� q

�
π̃kpdr, dz, duq,

∆N,i,j,1
s,t :�

» t
s

»
R
fpXN,i

r q
�
ϕ

�
0, XN,j

r � u?
N



� ϕp0, XN,j

r q
�
dνpuqdr,

∆N,i,j,2
s,t :�

» t
s

»
R
fpXN,j

r q
�
ϕ

�
XN,i
r � u?

N
, 0



� ϕpXN,i

r , 0q
�
dνpuqdr,

ΓN,i,js,t :�
Ņ

k�1
kRti,ju

» t
s

»
R
fpXN,k

r q
�
ϕ

�
XN,i
r � u?

N
,XN,j

r � u?
N



� ϕpXN,i

r , XN,j
r q

� u?
N
Bx1ϕpXN,i

r , XN,j
r q � u?

N
Bx2ϕpXN,i

r , XN,j
r q

�
dνpuqdr

�
» t
s

»
R

u2

2
B2ϕpXN,i

r , XN,j
r q 1

N

Ņ

k�1
kRti,ju

fpXN,k
r qdνpuqdr,

RN,i,js,t :�σ
2

2

» t
s

B2ϕpXN,i
r , XN,j

r q

��� 1

N

Ņ

k�1
kRti,ju

fpXN,k
r q � 1

N

Ņ

k�1

fpXN,k
r q

��dr.
Finally, for i � j, we have

ϕpXN,i
t , XN,i

t q � ϕpXN,i
s , XN,i

s q

� α

» t
s

XN,i
r Bx1ϕpXN,i

r , XN,i
r qdr � α

» t
s

XN,i
r Bx2ϕpXN,i

r , XN,i
r qdr
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�
»
ss,ts�R��R

1tz¤fpXN,ir� qu
�
ϕ p0, 0q � ϕpXN,i

r� , X
N,i
r� q

�
πipdr, dz, duq

�
Ņ

k�1
k�i

»
ss,ts�R��R

1tz¤fpXN,kr� qu
�
ϕ

�
XN,i
r� � u?

N
,XN,i

r� � u?
N



� ϕpXN,i

r� , X
N,i
r� q

�
πkpdr, dz, duq.

The associated martingales and error terms are given by

MN,i
s,t :�

»
ss,ts�R��R

1tz¤fpXN,ir� qu
�
ϕ p0, 0q � ϕpXN,i

r� , X
N,i
r� q

�
π̃ipdr, dz, duq,

WN,i
s,t :�

Ņ

k�1
k�i

»
ss,ts�R��R

1tz¤fpXN,kr� qu
�
ϕ

�
XN,i
r� � u?

N
,XN,i

r� � u?
N




�ϕpXN,i
r� , X

N,i
r� q

�
π̃kpdr, dz, duq,

∆N,i
s,t :�

» t
s

»
R
fpXN,i

r q �ϕ p0, 0q � ϕp0, XN,i
r q � ϕpXN,i

r , 0q � ϕpXN,i
r , XN,i

r q� dνpuqdr,
ΓN,is,t :�

Ņ

k�1
k�i

» t
s

»
R
fpXN,k

r q
�
ϕ

�
XN,i
r � u?

N
,XN,i

r � u?
N



� ϕpXN,i

r , XN,i
r q

� u?
N
Bx1ϕpXN,i

r , XN,i
r q � u?

N
Bx2ϕpXN,i

r , XN,i
r q

�
dνpuqdr

�
» t
s

»
R

u2

2
B2ϕpXN,i

r , XN,i
r q 1

N

Ņ

k�1
k�i

fpXN,k
r qdνpuqdr,

RN,is,t :�σ
2

2

» t
s

B2ϕpXN,i
r , XN,i

r q

��� 1

N

Ņ

k�1
k�i

fpXN,k
r q � 1

N

Ņ

k�1

fpXN,k
r q

��dr.
Then we obtain, since

³
R udνpuq � 0, that

F pµN q � ψ1pµNs1pfqq . . . ψkpµNskpfqq
1

N2

Ņ

i,j�1,i�j

ϕ1pXN,i
s1 , XN,j

s1 q . . . ϕkpXN,i
sk

, XN,j
sk

q�
MN,i,j,1
s,t �MN,i,j,2

s,t �WN,i,j
s,t �∆N,i,j,1

s,t �∆N,i,j,2
s,t � ΓN,i,js,t �RN,i,js,t

�
� ψ1pµNs1pfqq . . . ψkpµNskpfqq

1

N2

Ņ

i�1

ϕ1pXN,i
s1 , XN,i

s1 q . . . ϕkpXN,i
sk

, XN,i
sk

q�
MN,i
s,t �WN,i

s,t �∆N,i
s,t � ΓN,is,t �RN,is,t

�
.

Using exchangeability and the boundedness of the ϕj , ψj (1 ¤ j ¤ k) and the fact that
MN,i,j,1, . . . , WN,i are martingales, this implies

|E �
F pµN q� | ¤ CE

�
|∆N,i,j,1

s,t | � |∆N,i,j,2
s,t | � |ΓN,i,js,t | � |RN,i,js,t | � |∆N,i

s,t | � |ΓN,is,t | � |RN,is,t |
N

�
.
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Since f is bounded and ϕ P C3
b pR2q, Taylor-Lagrange's inequality implies then that

|E �
F pµN q� | ¤ C?

N
.

Finally, using that F is bounded and almost surely continuous at µ (see Step 1), we have

E rF pµqs � lim
NÑ8

E
�
F pµN q� � 0,

concluding our proof.

Now we have all elements to give the proof of the following main result.

Theorem 2.6. Grant Assumptions 1, 2 and 3. Each converging subsequence of µN :� 1
N

°N
j�1 δXN,j

converges to the same limit µ � LpX̄|Wq, where X̄ is the unique strong solution of (9).

Proof. Let us consider the limit (in distribution) µ of a subsequence of µN . By Proposition (7.20) of
Aldous (1983), µ is the directing measure of some exchangeable system pȲ iqi¥1, and it holds that,
for the chosen subsequence, pXN,iq1¤i¤N converges in law to pȲ iqi¥1. Moreover, we also know that

µ � LpȲ i|µq and µb µ � LppȲ i, Ȳ jq|µq,
almost surely, for all i � j. In particular, for all i � j,

Lpµ, pȲ i, Ȳ jqq � P,

where P is given by (12), with Q � Lpµq.
Thanks to Lemma 2.4, together with Theorem 2.5, we know that there exist Brownian motions

W pi,jq (i, j ¥ 1) and Poisson random measures πi (i ¥ 1) such that for all pairs pi, jq, i � j, πi is
independent of πj and such that

dȲ it �� αȲ it dt� σ
a
µtpfqdW pi,jq

t � Ȳ it�

»
R�

1tz¤fpȲ it�quπ
ipdt, dzq,

dȲ jt �� αȲ jt dt� σ
a
µtpfqdW pi,jq

t � Ȳ jt�

»
R�

1tz¤fpȲ jt�quπ
jpdt, dzq.

The exchangeability of the system pȲ iqi¥1 implies the independence of the pπiqi¥1 and that for all
i, j, k ¥ 1, i � j, i � k, W pi,jq �W pi,kq �W.

The last point to prove is that µtpfq :� E
�
fpȲ 1

t q
��µ� � E

�
fpȲ 1

t q
��W�

a.s.. This would be a con-
sequence of the fact that, conditionally onW, the processes pȲ jqj¥1 are i.i.d. (see Lemma (2.12).(a)
of Aldous (1983)). But this last assertion is not trivial because we do not know yet that W is the
only noise term common to each process Ȳ j (j ¥ 1). That is why we will introduce an auxiliary
particle system which is a mean �eld version of the limit system and which converges to pȲ jqj¥1.

To begin with, Lemma (2.15) of Aldous (1983) implies that µtpfq is the almost sure limit of

N�1
°N
j�1 fpȲ jt q. Now, let us prove that this sequence converges to E

�
fpȲ 1

t q
��W�

. For this purpose,

we introduce the system p rXN,iq1¤i¤N , driven by the same Brownian motionW and the same Poisson

random measures πi, with Ȳ i0 � X̃N,i
0 (i ¥ 1), replacing the term µtpfq by the empirical measure:

d rXN,i
t � �α rXN,i

t dt�
gffe 1

N

Ņ

j�1

fp rXN,j
t qdWt � rXN,i

t�

»
R�

1tz¤fp�XN,it� quπipdt, dzq, rXN,i
0 � Ȳ i0 .
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Consider �nally the system pX̄iqi¥1 de�ned in (8), driven by the same Brownian motion W and
the same Poisson random measures πi as pȲ iqi¥1, with X̄i

0 � Ȳ i0 for all i ¥ 1. In this way,
pX̄iqi¥1, pȲ iqi¥1 and pX̃N,iq1¤i¤N are all de�ned on the same probability space.

It is now su�cient to prove that both for pȲ iqi¥1 and for pX̄iqi¥1,

E
����apȲ it q � ap rXN,i

t q
����� E

����apX̄i
tq � ap rXN,i

t q
���� ¤ CtN

�1{2. (18)

Indeed, suppose we have already proven the above control (18). Then

E

������ 1

N

Ņ

j�1

fpȲ jt q � E
�
fpX̄1

t q
��W������

�
¤ 1

N

Ņ

j�1

E
�
|fpȲ jt q � fp rXN,j

t q|
�

� 1

N

Ņ

j�1

E
�
|fp rXN,j

t q � fpX̄j
t q|

�
� E

������ 1

N

Ņ

j�1

fpX̄j
t q � E

�
fpX̄1

t q
��W������

�
.

Then, (18) and Assumption 3 imply that the �rst term and the second one of the sum above are
smaller than CtN

�1{2 for some Ct ¡ 0. In addition, by item (ii) of Proposition 1.5, the variables
pX̄jq1¤j¤N are i.i.d., conditionally onW. Consequently, the third term is also smaller than CtN

�1{2.
This implies that

µtpfq � E
�
fpȲ 1

t q
��µ� � E

�
fpX̄1

t q
��W� � E

�
fpX̄i

tq
��W�

a.s..

As a consequence, pȲ iqi¥1 is solution of the in�nite system

dȲ it � �αȲ it dt� σ
b
E
�
fpX̄i

tq
��W�

dWt � Ȳ it�

»
R�

1tz¤fpȲ it�quπ
ipdt, dzq,

while pX̄iqi¥1 in (8) is solution of

dX̄i
t � �αX̄i

tdt� σ
b
E
�
fpX̄i

tq
��W�

dWt � X̄i
t�

»
R�

1tz¤fpX̄it�quπ
ipdt, dzq,

with X̄i
0 � Ȳ i0 , for all i ¥ 1.

Let us prove that X̄i � Ȳ i almost surely. For that sake, consider τM � inftt ¡ 0 : |X̄i
t | ^ |Ȳ it | ¡

Mu for M ¡ 0. We prove that E
�|X̄i

t^τM � Ȳ it^τM |
� � 0 for all M ¡ 0, which implies, by Fatou's

lemma, that E
�|X̄i

t � Ȳ it |
� � 0, recalling (10), and the fact that we can prove a similar control for

Ȳ i. Let uM ptq :� E
�|X̄i

t^τM � Ȳ it^τM |
�
. To see that uM ptq � 0, it is su�cient to apply Grönwall's

lemma to the following inequality

uM ptq ¤ α

» t
0

uM psqds� E

�»
r0,t^τM s�R�

���X̄i
s�1tz¤fpX̄is�qu � Ȳ is�1tz¤fpȲ is�qu

���πipds, dzq�

implying that

uM ptq ¤ α

» t
0

uM psqds� E

�»
r0,t^τM s�R�

1zPr0,fpX̄is�q^fpȲ
i
s�qs

��X̄i
s� � Ȳ is�

��πipds, dzq�
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� E

�»
r0,t^τM s�R�

1zPsfpX̄is�q^fpȲ
i
s�q,fpX̄

i
s�q_fpȲ

i
s�qs

|X̄i
s�| _ |Ȳ is�|πipds, dzq

�
,

whence

uM ptq ¤ Cp1�Mq
» t

0

uM psqds.

Hence pȲ iqi¥1 is solution of the in�nite system (8) and µ � LpȲ 1|Wq, its directing measure, is
uniquely determined. As a consequence, µN converges in distribution to LpȲ 1|Wq in PpDpR�,Rqq.

Let us now show (18). We only prove it for Ȳ i, the proof for X̄i is similar. We decompose the
evolution of apȲ 1

t q in the following way.

apȲ 1
t q � apȲ 1

0 q � α

» t
0

a1pȲ 1
s qȲ 1

s ds�
»
r0,ts�R�

�
ap0q � apȲ 1

s�q
�
1tz¤fpȲ 1

s�qu
π1pds, dzq (19)

� σ2

2

» t
0

a2pȲ 1
s q

1

N

Ņ

j�1

fpȲ js qds�BNt � σ

» t
0

a1pȲ 1
s q

gffe 1

N

Ņ

j�1

fpȲ js qdWs �MN
t ,

where

BNt � σ2

2

» t
0

a2pȲ 1
s q

�
1

N

Ņ

j�1

fpȲ js q � E
�
fpȲ 1

s q
��µ�� ds

and

MN
t � σ

» t
0

a1pȲ 1
s q

��gffe 1

N

Ņ

j�1

fpȲ js q �
b
E
�
fpȲ 1

s q|µ
��dWs.

Since

 MN ¡t¤ σ2

�
sup
xPR

|a1pxq2|

» t

0

��gffe 1

N

Ņ

j�1

fpȲ js q �
b
E
�
fpȲ 1

s q|µ
��2

ds,

recalling that the variables Ȳ js (1 ¤ j ¤ N) are i.i.d. conditionally to µ, taking conditional expec-
tation Ep�|µq implies that

E
� MN ¡t

� ¤ CtN
�1 and E

�
BNt

� ¤ CtN
�1.

Then, applying Ito's formula on X̃N,1, we obtain the same equation as (19), but without the terms
BNt and MN

t . Introducing

uptq :� sup
0¤s¤t

E
����apȲ 1

s q � apX̃N,1
s q

���� ,
we can prove with the same reasoning as in the proof of Theorem 1.2 that

uptq ¤ Cp1� tquptq � Ct?
N
,

where C and Ct are independent of N . Finally, using the arguments of the proof of Theorem 1.2,
this implies (18).
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Let us end this section with the

Proof of Theorem 1.7. According to Proposition 2.1, the sequence pµN qN is tight. Besides, thanks
to Theorem 2.6, every converging subsequence of pµN qN converges to the same limit µ � LpX̄1|Wq,
where pX̄jqj¥1 is solution of (8). This implies the result.

3. Appendix

3.1. Well-posedness of the limit equation (9)

Proof of Item 2. of Theorem 1.2. The proof is done using a classical Picard-iteration. For that sake

we introduce the sequence of processes X̄
r0s
t � X̄0, and

X̄
rn�1s
t :� X̄0 � α

» t
0

X̄rns
s ds�

»
r0,ts�R��R

X̄
rn�1s
s� 1

tz¤fpX̄
rns
s� qu

πpds, dz, duq � σ

» t
0

a
µns pfqdWs,

where
µns � P pX̄rns

s P �|Wq.
Let us �rst prove a control on the moments of X̄rns uniformly in n. Applying Ito's formula we have

E
��
X̄
rn�1s
t

	2
�
¤ E

�
X̄2

0

�� 2α

» t
0

E
��
X̄rn�1s
s

	2
�
ds� σ2

» t
0

E rµns pfqs ds

¤ E
�
X̄2

0

�� σ2

» t
0

E rµns pfqs ds.

Using that f is bounded,

E
��
X̄
rn�1s
t

	2
�
¤ E

�
X̄2

0

�� σ2||f ||8t,

implying

sup
nPN

sup
0¤s¤t

E
��
X̄rns
s

	2
�
  �8. (20)

Now, we prove the convergence of X̄
rns
t . The same strategy as the one of the proof of Item 1. of

Theorem 1.2 allows to show that

δnt :� E sup
s¤t

|apX̄rns
s q � apX̄rn�1s

s q| satis�es δnt ¤ Cpt�
?
tqδn�1

t ,

for all n ¥ 1, for a constant C only depending on the parameters of the model, but not on n, neither
on t. Choose t1 such that

Cpt1 �
?
t1q ¤ 1

2
.

Since sups¤t1 |apX̄
r0s
s q| � apX̄0q ¤ }a}8, we deduce from this that

δnt1 ¤ 2�n}a}8.
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This implies the almost sure convergence of a
�
X̄
rns
t

	
n
to some random variable Zt for all t P r0, t1s.

As a is an increasing function, the almost sure convergence of X̄
rns
t to some (possibly in�nite)

random variable X̄t follows from this. The almost sure �niteness of X̄t is then guaranteed by
Fatou's lemma and (20).

Now let us prove that X̄ is solution of the limit equation (9) which follows by standard arguments
(note that the jump term does not cause troubles because it is of �nite activity). The most important
point is to notice that

µnt pfq � EpfpX̄rns
t q|Wq Ñ EpfpX̄tq|Wq

almost surely, which follows from the almost sure convergence of fpX̄rns
t q Ñ fpX̄tq, using dominated

convergence.
Once the convergence is proven on the time interval r0, t1s, we can proceed iteratively over

successive intervals rkt1, pk � 1qt1s to conclude that X̄ is solution of (9) on R�.
It remains to prove (10). Firstly, by Fatou's lemma and (20), we know that, for all t ¡ 0,

sup
0¤s¤t

E
�
X̄2
s

�   8. (21)

Besides, Ito's formula gives

X̄2
t � X̄2

0 � 2α

» t
0

X̄2
sds�

»
r0,ts�R��R

X̄2
s�1tz¤fpX̄s�quπpds, dz, duq

� σ2

» t
0

µspfqds� 2σ

» t
0

a
µspfqX̄sdWs

¤ X̄2
0 � σ2||f ||8t� 2σ

» t
0

a
µspfqX̄sdWs.

Inequality (10) is then a straightforward consequence of Burkholder-Davis-Gundy inequality, (21)
and the above computation.

We now give the

Proof of Proposition 1.5. piq Given a Brownian motion W and i.i.d. Poisson measures πi, the same
proof as the one of Theorem 1.2 implies the existence and the uniqueness of the system given in (8)
for 1 ¤ i ¤ N.
piiq The construction of the proof of Item 2. of Theorem 1.2, together with the proof of Theo-

rem 1.1 of Chapter IV.1 and of Theorem 9.1 in Chapter IV.9 of Ikeda and Watanabe (1989), imply
the existence of a measurable function Φ that does not depend on k � 1, . . . , N , and that satis�es,
for each 1 ¤ k ¤ N,

X̄k � ΦpX̄k
0 , π

k,W q
and for all t ¥ 0,

X̄k
|r0,ts � ΦtpX̄k

0 , π
k
|r0,ts�R��R, pWsqs¤tq; (22)

in other words, our process is non-anticipative and does only depend on the underlying noise up to
time t.

Then we can write, for all continuous bounded functions g, h,

E
�
gpX̄iqhpX̄jq��W� � E

�
gpΦpX̄i

0, π
i,W qqhpΦpX̄j

0 , π
j ,W qq

���W�
� ψpW q,
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where ψpwq :� E
�
gpΦpX̄i

0, π
i, wqqhpΦpX̄j

0 , π
j , wqq

�
� E

�
gpΦpX̄i

0, π
i, wqq�E �

hpΦpX̄j
0 , π

j , wqq
�
�:

ψipwqψjpwq. With the same reasoning, we show that E
�
gpX̄iq��W� � ψipW q and E

�
hpX̄jq��W� �

ψjpW q. The same arguments prove the mutual independence of X̄1, . . . X̄N conditionally to W.
piiiq Using the representation X̄k

|r0,ts � ΦtpX̄k
0 , π

k,W q, we can write for any continuous and

bounded function g : Dpr0, ts,Rq Ñ R,»
R
gdpN�1

Ņ

i�1

δX̄i
||0,ts

q � 1

N

Ņ

i�1

gpX̄i
|r0,tsq �

1

N

Ņ

i�1

g � ΦtpX̄i
0, π

i,W q.

Using the law of large numbers on the account of the sequence of i.i.d. PRM's and working condi-
tionally on W, we obtain that

lim
NÑ8

»
R
gdpN�1

Ņ

i�1

δX̄i
|r0,ts

q � E
�
g � ΦtpX̄1

0 , π
1,W q|W� � E

�
gpX̄1

|r0,tsq|W
�
� E

�
gpX̄1

|r0,tsq|pWsqs¤t
�
,

where we have used (22).

3.2. Proof of Corollary 1.6

Applying Ito's formula, we have

ϕpX̄tq � ϕpX̄0q �
» t

0

�
�αϕ1pX̄sqX̄s � 1

2
ϕ2pX̄sqµspfq



ds�

» t
0

ϕ1pX̄sq
a
µspfqdWs

�
»
r0,ts�R��R

1tz¤fpX̄s�u
�
ϕp0q � ϕpX̄s�

�
πpds, dz, duq. (23)

Since ϕ1, ϕ2 and f are bounded, it follows from (10) and Fubini's theorem that

E
�» t

0

�� αϕ1pX̄sqX̄s � 1

2
ϕ2pX̄sqµspfq

�
ds|W



�

» t
0

E

�
�αϕ1pX̄sqX̄s � 1

2
ϕ2pX̄sqµspfq|W



ds

�
» t

0

»
R

�
�αϕ1pxqx� 1

2
ϕ2pxqµspfq



µspdxqds.

Moreover, by independence of X̄0 and W, EpϕpX̄0q|W q � ³
R ϕpxqν0pdxq.

To deal with the martingale part in (23), we use an Euler scheme to approximate the stochastic

integral It :� ³t
0
ϕ1pX̄sq

a
µspfqdWs. For that sake, let t

n
k :� k2�nt, 0 ¤ k ¤ 2n, n ¥ 1, and de�ne

Int :�
2n�1¸
k�0

ϕ1pX̄tnk
q∆n

k , ∆n
k �

» tnk�1

tnk

a
µspfqdWs,

then Ep|It � Int |2q Ñ 0 as nÑ8, and therefore EpInt |Wq Ñ EpIt|Wq in L2pP q, as nÑ8. But

EpInt |Wq �
2n�1¸
k�0

Epϕ1pX̄tnk
q|Wq∆n

k Ñ
» t

0

Epϕ1pX̄sq|Wq
a
µspfqdWs
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in L2pP q, since the sequence of processes Y ns :� °2n�1
k�0 1stnk ,t

n
k�1s

psqEpϕ1pX̄tnk
q|Wq, 0 ¤ s ¤ t,

converges in L2pΩ� r0, tsq to Epϕ1pX̄sq|Wq.
We �nally deal with the jump part in (23). Since f is bounded, and by independence ofW and π,

we can rewrite this part in terms of an underlying Poisson process Nt, independent ofW and having
rate }f}8, and in terms of i.i.d. variables pVnqn¥1 uniformly distributed on r0, 1s, independent of
W and of N as follows.»

r0,ts�R��R
1tz¤fpX̄s�u

�
ϕp0q � ϕpX̄s�

�
πpds, dz, duq �

Nţ

n�1

1t}f}8Vn¤fpX̄Tn�qupϕp0q � ϕpX̄Tn�qq.

Taking conditional expectation Ep�|Wq, we obtain

E

�
Nţ

n�1

1t}f}8Vn¤fpX̄Tn�qupϕp0q � ϕpX̄Tn�qq|W
�
�

E

�
Nţ

n�1

fpX̄Tn�q
}f}8 pϕp0q � ϕpX̄Tn�qq|W

�

�
» t

0

E
�
fpX̄sqpϕp0q � ϕpX̄sqq|W

�
ds,

where we have used the independence properties of pVnqn, Nt andW and the fact that conditionally
on tNt � nu, the jump times pT1, . . . , Tnq are distributed as the order statistics of n i.i.d. times
which are uniformly distributed on r0, ts. This concludes our proof.

3.3. A priori estimates

In this subsection, we prove useful a priori upper bounds on some moments of the solutions of the
SDEs (7).

Lemma 3.1. Assume that 2 holds and that f is bounded:

(i) for all t ¡ 0, sup
NPN�

sup
0¤s¤t

E
��
XN,1
s

�2
�
  �8,

(ii) for all t ¡ 0, sup
NPN�

E
�

sup
0¤s¤t

��XN,1
s

���   �8,

Proof. Step 1: Let us prove piq.
�
XN,1
t

	2

�
�
XN,1

0

	2

� 2α

» t
0

�
XN,1
s

�2
ds�

»
r0,ts�R��R

�
XN,1
s

�2
1tz¤fpXN,1s� qudπjps, z, uq

�
Ņ

j�2

»
r0,ts�R��R

��
XN,1
s� � u?

N


2

�
�
XN,1
s�

	2
�
1tz¤fpXN,js� qudπ

jps, z, uq

¤
�
XN,1

0

	2

�
Ņ

j�2

»
r0,ts�R��R

��
XN,1
s� � u?

N


2

�
�
XN,1
s�

	2
�
1tz¤fpXN,js� qudπ

jps, z, uq.
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As f is bounded,

E
��
XN,1
t

	2
�
¤ E

��
XN,1

0

	2
�
� σ2

N

Ņ

j�2

» t
0

E
�
f
�
XN,j
s

��
ds ¤ E

��
XN,1

0

	2
�
� σ2||f ||8t.

Step 2: Now we prove piiq.���XN,1
t

��� ¤ ���XN,1
0

���� α

» t
0

��XN,1
s

�� ds� »
r0,ts�R��R

���XN,1
s�

���1tz¤fpXN,1s� qudπ1ps, z, uq � 1?
N
|MN

t |,

where MN
t is the martingale MN

t � °N
j�2

³
r0,ts�R��R u1tz¤fpXN,js� qudπ

jps, z, uq. Then

sup
0¤s¤t

��XN,1
s

�� ¤ ���XN,1
0

���� α

» t
0

|XN,1
s |ds�

»
r0,ts�R��R

���XN,1
s�

���1tz¤fpXN,1s� qudπ1ps, z, uq

� 1?
N

sup
0¤s¤t

|MN
s |.

To conclude the proof, it is now su�cient to notice that

1?
N

E
�

sup
0¤s¤t

|MN
s |

�
¤ E

�
1

N
rMN st

�1{2

is uniformly bounded in N , since f is bounded, and to use the point piq of the lemma.
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