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Conditional propagation of chaos for mean �eld

systems of interacting neurons
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†Statistique, Analyse et Modélisation Multidisciplinaire, Université Paris 1 Panthéon-Sorbonne, EA 4543

Abstract: We study the stochastic system of interacting neurons introduced in De Masi et al.
(2015) and in Fournier and Löcherbach (2016) in a di�usive scaling. The system consists of N
neurons, each spiking randomly with rate depending on its membrane potential. At its spiking
time, the potential of the spiking neuron is reset to 0 and all other neurons receive an additional
amount of potential which is a centred random variable of order 1{?N. In between successive
spikes, each neuron's potential follows a deterministic �ow. We prove the convergence of the
system, as N Ñ 8, to a limit nonlinear jumping stochastic di�erential equation driven by
Poisson random measure and an additional Brownian motion W which is created by the
central limit theorem. This Brownian motion is underlying each particle's motion and induces
a common noise factor for all neurons in the limit system. Conditionally on W, the di�erent
neurons are independent in the limit system. We call this property conditional propagation
of chaos. We show the convergence in distribution, prove strong convergence with respect
to an appropriate distance, and we get an explicit rate of convergence. The main technical
ingredient of our proof is the famous coupling introduced in Komlós, Major and Tusnády
(1976) of the point process representing the small jumps of the particle system with the limit
Brownian motion.

MSC 2010 subject classi�cations: 60J75, 60K35, 60G55, 60G09.
Keywords and phrases:Multivariate nonlinear Hawkes processes with variable length mem-
ory, Mean �eld interaction, Piecewise deterministic Markov processes, Interacting particle sys-
tems, Propagation of chaos, Exchangeability, Hewitt Savage theorem, KMT approximation.

Introduction

This paper is devoted to the study of the Markov process XN
t � pXN,1

t , . . . , XN,N
t q taking values

in RN and solving, for i � 1, . . . , N , for t ¥ 0,

XN,i
t � XN,i

0 �
» t

0

bpXN,i
s qds�

» t
0

XN,i
s� dZN,is � 1?

N

¸
j�i

» t
0

UjpsqdZN,js , (1)

where Ujpsq are i.i.d. centred random variables and where for each 1 ¤ j ¤ N, ZN,j is a simple

point process on R� having stochastic intensity s ÞÑ f
�
XN,j
s�

	
.

The particle system (1) is a version of the model of interacting neurons considered in De Masi
et al. (2015), inspired by Galves and Löcherbach (2013), and then further studied in Fournier and
Löcherbach (2016) and Cormier, Tanré and Veltz (2018). The system consists of N interacting

neurons. In (1), ZN,jt represents the number of spikes emitted by the neuron j in the interval r0, ts
and XN,j

t the membrane potential of the neuron j at time t. Spiking occurs randomly following a
point process of rate fpxq for any neuron of which the membrane potential equals x. Each time a
neuron emits a spike, the potentials of all other neurons receive an additional amount of potential.
In De Masi et al. (2015), Fournier and Löcherbach (2016) and Cormier, Tanré and Veltz (2018) this
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amount is of order N�1, leading to classical mean �eld limits as N Ñ8. On the contrary to this, in
the present article we study a di�usive scaling where each neuron j receives the amount Uiptq{

?
N

at spike times t of neuron i, i � j. The variable Uiptq is centred modeling the fact that the synaptic
weights are balanced. Moreover, right after its spike, the potential of the spiking neuron i is reset
to 0, interpreted as resting potential. Finally, in between successive spikes, each neuron's potential
follows a deterministic �ow with drift b.

Equations similar to (1) appear also in the frame of multivariate Hawkes processes with mean
�eld interactions. Indeed, if

�
ZN,i

�
1¤i¤N

is a multivariate Hawkes process where the stochastic

intensity of each ZN,i is given by f
�
XN
t�

�
t
with

XN
t � e�αtXN

0 � 1?
N

Ņ

j�1

» t
0

e�αpt�sqUjpsqdZN,js , (2)

then XN satis�es

XN
t � XN

0 � α

» t
0

XN
s ds�

1?
N

Ņ

j�1

» t
0

UjpsqdZN,js ,

which corresponds to equation (1) with bpxq � �αx, but without the big jumps, i.e. without the
reset to 0 after each spike.

The above model of Hawkes processes has been studied in our previous paper Erny, Löcherbach
and Loukianova (2019). There we have shown �rstly that XN converges in distribution in DpR�,Rq
to a limit process X̄ solving

dX̄t � �αX̄tdt� σ
b
f
�
X̄t

�
dWt, (3)

and secondly that the sequence of multivariate counting processes
�
ZN,i

�
i
converges in distribution

in DpR�,RqN� to a limit sequence of counting processes
�
Z̄i
�
i
. Here, every Z̄i is driven by its

own Poisson random measure and has the same intensity
�
fpX̄t�q

�
t
, X̄ the strong solution of (3)

with respect to some Brownian motion W . Consequently, the processes Z̄i pi ¥ 1q are conditionally
independent given the Brownian motion W.

In the present paper we add the reset term in (1) that forces the potential XN,i of neuron i to go
back to 0 at each jump time of ZN,i. This models the well-known biological fact that right after its
spike, the membrane potential of the spiking neuron is reset to a resting potential which we choose
to be equal to 0. From a mathematical point of view, this reset to 0 induces a de-synchronization
of the processes XN,i (1 ¤ i ¤ N). In terms of Hawkes processes, it means that in (2), the process
XN
t has been replaced by

XN,i
t � 1?

N

Ņ

j�1

» t
Li

t

e�αpt�sqUjpsqdZN,js , where Lit � supts ¤ t : ∆ZN,is � 1u

is the last spiking time of neuron i before time t.1 Thus the integral over the past, starting from 0
in (2), is replaced by an integral starting at the last jump time before the present time. In Galves
and Löcherbach (2013), such processes are termed being of variable length memory, in reminiscence
of Rissanen (1983), and we are thus considering multivariate Hawkes processes with mean �eld
interactions and variable length memory. As a consequence, on the contrary to the situation in

1In the present paper, the drift bpxq � �αx of (3) has been replaced by a general drift coe�cient.
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Erny, Löcherbach and Loukianova (2019), the point processes ZN,i (1 ¤ i ¤ N) do not share the
same stochastic intensity. It turns out that the reset term in (1) is a jump term that survives in the
limit N Ñ8.

Before introducing the exact limit equation for the system (1), let us explain informally how the
limit particle system associated to

�
XN,i

�
1¤i¤N

should a priori look like. So suppose that there

exists a process pX̄1, X̄2, X̄3, . . .q P DpR�,RqN� such that for all K ¡ 0, we have weak convergence
LpXN,1,, . . . , XN,Kq Ñ LpX̄1, . . . , X̄Kq in DpR�,RqK , as N Ñ 8. In equation (1) the only term
that depends on N is the martingale term which is approximately given by

MN
t � 1?

N

Ņ

j�1

» t
0

UjpsqdZN,js .

Each X̄i should then solve the equation (1), where the term MN
t is replaced by Mt :� lim

NÑ8
MN
t .

Because of the scaling in N�1{2, the limit martingaleMt should be a stochastic integral with respect
to some Brownian motion, and its variance should be the limit of

E
�pMN

t q2
� � σ2

» t
0

E

�
1

N

Ņ

j�1

fpXN,j
s q

�
ds,

where σ2 is the variance of Ujpsq. Therefore, the limit martingale should be of the form

Mt � σ

» t
0

gffe lim
NÑ8

1

N

Ņ

j�1

f
�
XN,j
s

	
dWs � σ

» t
0

b
lim
NÑ8

µNs pfqdWs,

where µNs is the empirical measure of the system
�
XN,j
s

�
1¤j¤N

.

Since the law of the N�particle system pXN,1, . . . , XN,N q is symmetric, the law of the limit
system X̄ � pX̄1, X̄2, X̄3, . . .q must be exchangeable, that is, for all �nite permutations σ, we have
that LpX̄σp1q, X̄σp2q, . . .q � LpX̄q. In particular, the theorem of Hewitt-Savage, see Hewitt and
Savage (1955), implies that the random limit

µs :� lim
NÑ8

1

N

Ņ

i�1

δX̄i
s

(4)

exists. Supposing that µNs converges, it necessarily converges towards µs. Therefore, X̄ should solve
the limit system

X̄i
t � X̄i

0 �
» t

0

bpX̄i
sqds�

» t
0

X̄i
s�dZ̄

i
s � σ

» t
0

a
µspfqdWs, i P N, (5)

where pWtqt¥0 is a standard one-dimensional Brownian motion, where each Z̄i has intensity t ÞÑ
fpX̄i

t�q, and where µs is given by (4).

Analogously to Erny, Löcherbach and Loukianova (2019), the scaling in N�1{2 in (1) creates a
Brownian motion W in the limit system (5). We will show that the presence of this Brownian mo-
tion entails a conditional propagation of chaos, that is the conditional independence of the particles
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given W . In particular, the limit measure µs will be random. This di�ers from the classical frame-
work, where the scaling is in N�1 (see e.g. Delattre, Fournier and Ho�mann (2016), Ditlevsen and
Löcherbach (2017) in the framework of Hawkes processes, and De Masi et al. (2015), Fournier and
Löcherbach (2016) and Cormier, Tanré and Veltz (2018) in the framework of systems of interacting
neurons), leading to a deterministic limit measure µs and the true propagation of chaos property
implying that the particles of the limit system are independent.

This is not the �rst time that conditional propagation of chaos is studied in the literature; it has
already been considered e.g. in Carmona, Delarue and Lacker (2016), Coghi and Flandoli (2016)
and Dermoune (2003). But in these papers the common noise, represented by a common (maybe
in�nite dimensional) Brownian motion, is already present at the level of the �nite particle system,
the mean �eld interactions act on the drift of each particle, and the scaling is the classical one in
N�1. On the contrary to this, in our model, this common Brownian motion, leading to conditional
propagation of chaos, is only present in the limit, and it is created by the central limit theorem as
a consequence of the joint action of the small jumps of the �nite size particle system. Moreover, in
our model, the interactions survive as a variance term in the limit system as a consequence of the
di�usive scaling in N�1{2.

Now let us discuss the form of µs, which is the limit of the empirical measures of the limit
system

�
X̄i
s

�
i¥1

. The theorem of Hewitt-Savage, Hewitt and Savage (1955), implies that the law of�
X̄i
s

�
i¥1

is a mixture directed by the law of µs. As it has been remarked by Carmona, Delarue and

Lacker (2016) and Coghi and Flandoli (2016), this conditioning re�ects the dependencies between
the particles.

Since the variables X̄i are conditionally independent given the Brownian motion W , µs will be
shown to be the conditional law of the solution given the Brownian motion, that is, P�almost
surely,

µsp�q � P pX̄i
s P �|pWtq0¤t¤sq � P pX̄i

s P �|W q, (6)

for any i P N. Equation (5) together with (6) gives a precise de�nition of the limit system.
The nonlinear SDE (5) is not clearly well-posed, and our �rst main result, Theorem 1.1, gives

appropriate conditions on the coe�cients b and f of the system that guarantee pathwise uniqueness
and the existence of a strong solution to (5). We then establish the convergence of the system�
XN,i

�
1¤i¤N

to
�
X̄i
�
i¥1

. We prove strong convergence with respect to an appropriate distance in

an L1�sense together with a rate of convergence in Theorem 1.6, and convergence in distribution
in Theorem 1.3.

To prove the strong convergence, we couple the point processes of (1) with the Brownian motion
appearing in the limit equation (5) using ideas that go back to Kurtz (1978). This coupling is based
on a corollary of the KMT inequality (see Theorem 1 of Komlós, Major and Tusnády (1976)). To
the best of our knowledge, this strategy of proof is completely new and has neither been used in
Erny, Löcherbach and Loukianova (2019) nor in the frame of classical mean �eld limits where the
scaling is in N�1.

Finally, Proposition 1.8 states the convergence in law of the sequence of empirical measures
µN � N�1

°N
i�1 δpXN,i

t qt¥0
, in PpDpR�,Rqq, to the random limit µ � P ppX̄tqt¥0 P �|W q. This

random limit measure µ satis�es the following nonlinear stochastic PDE in weak form: for any test
function ϕ P C2

b pRq, the set of C2-functions on R such that ϕ, ϕ1 and ϕ2 are bounded, for any t ¥ 0,

»
R
ϕpxqµtpdxq �

»
R
ϕpxqµ0pdxq �

» t
0

�»
R
ϕ1pxqµspdxq


 a
µspfqdWs
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�
» t

0

»
R

�
rϕp0q � ϕpxqsfpxq � ϕ1pxqbpxq � 1

2
ϕ2pxqµspfq

	
µspdxqds.

Organisation of the paper. In Section 1, we introduce formally the systems that we will study,
we �x some notations, and we state the main results, Theorems 1.1, 1.3 and 1.6 and Proposition 1.8.
Section 2 is devoted to the proofs of the main results. Finally, in Appendix Section 3, we prove
some important technical results that we use in the paper, in particular we complete the proof of
the well-posedness of the limit system together with some useful a priori estimates.

1. Notation, Model and main results

1.1. Notation

Let us introduce some notation we use throughout the paper.
If E is a metric space, we note:

• PpEq the space of probability measures on E endowed with the topology of the weak conver-
gence,
• Cnb pEq the set of the functions g which are n times continuously di�erentiable such that gpkq

is bounded for each 0 ¤ k ¤ n,
• Cnc pEq the set of functions g P Cnb pEq that have a compact support.

In addition, in what follows DpR�,Rq denotes the space of càdlàg functions from R� to R,
endowed with the topology of the uniform convergence on every compact set, and C and K denote
arbitrary positive constants whose values can change from line to line in an equation. We write Cθ
and Kθ if the constants depend on some parameter θ.

In the sequel, ν will denote a probability measure on pR,BpRqq with ³R uνpduq � 0 and with³
R u

2νpduq � σ2.

1.2. The �nite system

We consider, for each N ¥ 1, a family of i.i.d. Poisson measures pπipds, dz, duqqi�1,...,N on R� �
R� � R having intensity measure dsdzνpduq, as well as an i.i.d. family pXN,i

0 qi�1,...,N of R-valued
random variables independent of the Poisson measures. The object of this paper is to study the
convergence of the Markov process XN

t � pXN,1
t , . . . , XN,N

t q taking values in RN and solving, for
i � 1, . . . , N , for t ¥ 0,$'''''&'''''%

XN,i
t � XN,i

0 �
» t

0

bpXN,i
s qds�

»
r0,ts�R��R

XN,i
s� 1tz¤fpXN,i

s� quπ
ipds, dz, duq

� 1?
N

¸
j�i

»
r0,ts�R��R

u1tz¤fpXN,j
s� quπ

jpds, dz, duq,

XN,i
0 � ν0.

(7)

The coe�cients of this system are the drift function b : RÑ R, the jump rate function f : R ÞÑ R�

and the probability measures ν and ν0. The generator of the process X
N is given for any smooth

test function ϕ : RN Ñ R by

Lϕpxq �
Ņ

i�1

Bxi
ϕpxqbpxiq �

Ņ

i�1

fpxiq
»
R
νpduq

�
ϕpx� xiei �

¸
j�i

u?
N
ejq � ϕpxq

�
,
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where x � px1, . . . , xN q and where ej denotes the j�th unit vector in RN .
In order to guarantee existence and uniqueness of a strong solution of (7), we introduce the

following hypothesis.

Assumption 1. The functions f and b are Lipschitz continuous.

In addition, we also need the following condition to obtain a priori bounds on some moments of
the process

�
XN,i

�
1¤i¤N

.

Assumption 2. We assume that
³
R xdνpxq � 0,

³
R x

2dνpxq   �8, and ³R x2dν0pxq   �8.
Under Assumptions 1 and 2, existence and uniqueness of strong solutions of (7) follow from

Theorem IV.9.1 of Ikeda and Watanabe (1989), exactly in the same way as in Proposition 6.6 of
Erny, Löcherbach and Loukianova (2019).

1.3. The limit system

The limit system
�
X̄i
�
i¥1

satis�es the following dynamic$''''&''''%
X̄i
t � X̄i

0 �
» t

0

bpX̄i
sqds�

»
r0,ts�R��R

X̄i
s�1tz¤fpX̄i

s�qu
πipds, dz, duq

�σ
» t

0

b
E
�
f
�
X̄i
s

���Ws

�
dWs,

X̄i
0 � ν0.

(8)

In the above equation, pWtqt¥0 is a standard one-dimensional Brownian motion which is independent
of the Poisson random measures, and Ws � σtWt, t ¤ su. Moreover, the initial positions X̄i

0, i ¥ 1,
are i.i.d., independent of W and of the Poisson random measures, distributed according to ν0 which
is the same probability measure as in (7). The common jumps of the particles in the �nite system,
due to their scaling in 1{?N and the fact that they are centred, by the Central Limit Theorem,
create this single Brownian motionWt which is underlying each particle's motion and which induces
the common noise factor for all particles in the limit.

The limit equation (8) is not clearly well-posed and requires more conditions on the rate func-
tion f . Let us brie�y comment on the type of di�culties that one encounters when proving trajec-
torial uniqueness of (8). Roughly speaking, the jump terms demand to work in an L1�framework,
whereas the di�usive terms demand to work in an L2�framework. Graham (1992) proposes a uni�ed
approach to deal both with jump and with di�usion terms in a non-linear framework, and we shall
rely on his ideas in the sequel. The presence of the random volatility term which involves conditional
expectation causes however additional technical di�culties. Finally, another di�culty comes from
the fact that the jumps induce non-Lipschitz terms of the form X̄i

sfpX̄i
sq. For this reason a classical

Wasserstein-1�coupling is not appropriate for the jump terms. Therefore we propose a di�erent
distance which is inspired by the one already used in Fournier and Löcherbach (2016). To do so, we
need to work under the following additional assumption.

Assumption 3. 1. We suppose that inf f ¡ 0.
2. There exists a function a P C2pR,R�q, strictly increasing and bounded, such that, for a suitable
constant C, for all x, y P R,

|a2pxq � a2pyq| � |a1pxq � a1pyq| � |bpxq � bpyq| � |fpxq � fpyq| ¤ C|apxq � apyq|.
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Note that Assumption 3 implies Assumption 1 as well as the boundedness of the rate function f.
An example where Assumption 3 is satis�ed is fpxq � c� d arctanpxq, where c ¡ dπ2 , d ¡ 0, with a
similar choice for b. In this case, we choose a � Cf.

Under these additional assumptions we obtain the well-posedness of each coordinate of the limit
system (8), that is, of the pFtqt� adapted process pX̄tqt which is solution of the SDE$&% dX̄t � b

�
X̄t

�
dt� X̄t�

»
R��R

1tz¤fpX̄t�quπpdt, dz, duq � σ
a
µtpfqdWt,

X̄0 � ν0,
(9)

where µtpfq � E
�
f
�
X̄t

���Wt

�
and where Ft � σtπpr0, ss �Aq, s ¤ t, A P BpR� � Rqu _Wt.

Theorem 1.1. Grant Assumption 3.
1. Pathwise uniqueness holds for the nonlinear SDE (9).
2. If additionally,

³
R x

2dν0pxq   �8, then there exists a strong solution pX̄tqt¥0 of the nonlinear
SDE (9) that satis�es, for every t ¡ 0,

sup
0¤s¤t

E
�
X̄2
s

�   �8.

In what follows we just give the proof of Item 1. of the above theorem since its arguments are
important for the sequel. We postpone the rather classical proof of Item 2. to Appendix.

Proof of Item 1. of Theorem 1.1. Consider two solutions p pXtqt¥0 and p qXtqt¥0, de�ned on the same
probability space and driven by the same Poisson random measure π and the same Brownian
motion W, and with pX0 � qX0. We consider Zt :� ap pXtq � ap qXtq, for all t ¤ T. Recall pµspfq �
Erfp pXsq|Wss and denote qµspfq � Erfp qXsq|Wss.
Using Ito's formula, we can write

Zt �
» t

0

�
bp pXsqa1p pXsq � bp qXsqa1p qXsq

	
ds� 1

2

» t
0

pa2p pXsqpµspfq � a2p qXsqqµspfqqσ2ds

�
» t

0

pa1p pXsq
apµspfq � a1p qXsq

aqµspfqqσdWs

�
»
r0,ts�R��R

rap pXs�q � ap qXs�qs1tz¤fpxXs�q^fp|Xs�qu
πpds, dz, duq

�
»
r0,ts�R��R

rap0q � ap pXs�qs1tfp|Xs�q z¤fpxXs�qu
πpds, dz, duq

�
»
r0,ts�R��R

rap qXs�q � ap0qs1
tfpxXs�q z¤fp|Xs�qu

πpds, dz, duq �: At �Mt �∆t,

where At denotes the bounded variation part of the evolution, Mt the martingale part and ∆t the
sum of the three jump terms. Notice that

Mt �
» t

0

pa1p pXsq
apµspfq � a1p qXsq

aqµspfqqσdWs

is a square integrable martingale since f and a1 are bounded.



X. Erny et al./Conditional propagation of chaos 8

We wish to obtain a control on |Z�t | :� sups¤t |Zs|.We �rst take care of the jumps of |Zt|. Notice
�rst that, since f and a are bounded,

∆px, yq :� pfpxq ^ fpyqq|apxq � apyq| � |fpxq � fpyq|
���|ap0q � apyq| � |ap0q � apxq|

���
¤ C|apxq � apyq|,

implying that

E sup
s¤t

|∆s| ¤ CE
» t

0

|ap pXsq � ap qXsq|ds ¤ CtE|Z�t |.

Moreover, for a constant C depending on σ2, }f}8, }a}8, }a1}8, }a2}8 and }b}8,

E sup
s¤t

|As| ¤ C

» t
0

E|bp pXsq � bp qXsq|ds� C

» t
0

E|a1p pXsq � a1p qXsq|ds

� C

�» t
0

|a2p pXsq � a2p qXsq|ds�
» t

0

|pµspfq � qµspfq|ds� .
We know that |bp pXsq� bp qXsq|� |a1p pXsq�a1p qXsq|� |a2p pXsq�a2p qXsq| ¤ C|ap pXsq�ap qXsq| � C|Zs|.
Therefore,

E sup
s¤t

|As| ¤ CE
�» t

0

|Zs|ds�
» t

0

|pµspfq � qµspfq|ds� .
Moreover,

|pµspfq � qµspfq| � ���E�fp pXsq � fp qXsq|Ws

	 ��� ¤ E
�
|fp pXsq � fp qXsq||Ws

	
¤ Ep|Zs||Wsq,

and thus,

E
» t

0

|pµspfq � qµspfq|ds ¤ E
» t

0

|Zs|ds ¤ tE|Z�t |.

Putting all these upper bounds together we conclude that for a constant C not depending on t,

E sup
s¤t

|As| ¤ CtE|Z�t |.

Finally, we treat the martingale part using the Burkholder-Davis-Gundy inequality, and we obtain

E sup
s¤t

|Ms| ¤ CE

��» t
0

pa1p pXsq
apµspfq � a1p qXsq

aqµspfqq2ds
1{2
�
.

But

pa1p pXsq
apµspfq � a1p qXsq

aqµspfqq2 ¤ C
�
ppa1p pXsq � a1p qXsqq2 � p

apµspfq �aqµspfqq2�
¤ C|Z�t |2 � Cp

apµspfq �aqµspfqq2, (10)

where we have used once more that |a1pxq� a1pyq| ¤ C|apxq� apyq| and that f and a1 are bounded.
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Finally, since inf f ¡ 0,

|
apµspfq �aqµspfq|2 ¤ C|pµspfq � qµspfq|2 ¤ C pEp|Z�s ||Wsqq2 .

We use that pZtqt is pFtqt�adapted to obtain that Ep|Z�s ||Wsq � Ep|Z�s ||Wtq for all t ¥ s.Moreover,
|Z�s | ¤ |Z�t |, implying that Ep|Z�s ||Wsq � Ep|Z�s ||Wtq ¤ Ep|Z�t ||Wtq. Therefore we obtain the upper
bound

|
apµspfq �aqµspfq|2 ¤ C pEp|Z�t ||W qq2

for all s ¤ t, which implies the control of

E sup
s¤t

|Ms| ¤ C
?
tE|Z�t |.

The above upper bounds imply that, for a constant C not depending on t nor on the initial condition,

E|Z�t | ¤ Cpt�
?
tqE|Z�t |,

and therefore, for t1 su�ciently small, E|Z�t1 | � 0.We can repeat this argument on intervals rt1, 2t1s,
with initial condition X̂t1 , and iterate it up to any �nite T because t1 does only depend on the
coe�cients of the system but not on the initial condition. This implies the assertion.

Corollary 1.2. Grant Assumption 3 and suppose that
³
R x

2dν0pxq   �8. Then the measure µ �
P ppX̄tqt¥0 P �|W q satis�es the following nonlinear stochastic PDE in weak form: for any ϕ P C2

b pRq,
for any t ¥ 0,»

R
ϕpxqµtpdxq �

»
R
ϕpxqν0pdxq �

» t
0

�»
R
ϕ1pxqµspdxq


 a
µspfqdWs

�
» t

0

»
R

�
rϕp0q � ϕpxqsfpxq � ϕ1pxqbpxq � 1

2
ϕ2pxqµspfq

	
µspdxqds.

The proof of the above corollary is given in Appendix.

1.4. Convergence in distribution

The main results of this paper concern the convergence of the system
�
XN,i

�
1¤i¤N

to
�
X̄i
�
i¥1

. The
�rst one proves that convergence in distribution holds. In order to state it, we need some additional
integrability assumption on the measure ν.

Assumption 4. We assume that
³
R e

axνpdxq   8 for all |a| ¤ a0 for some a0 ¡ 0.

Theorem 1.3. Grant Assumptions 2, 3 and 4. Then the sequence of processes
�
XN,i

�
iPN� converges

to
�
X̄i
�
iPN� in distribution in the space DpR�,RqN� endowed with the product topology, where

DpR�,Rq is endowed with the topology of uniform convergence on every compact set.

Theorem 1.3 is proved in Section 2.3. The second main result is a strong convergence result
stated with respect to an appropriate L1�norm, relying on an explicit coupling. To construct this
coupling, we �rst introduce an auxiliary particle system.

Remark 1.4. In Theorem 1.3, we implictly de�ne XN,i � 0 for every i ¥ N � 1.
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1.5. An auxiliary particle system and a strong approximation result

In what follows we exploit the old idea of time change that goes back at least to Kurtz (1978) and
rewrite the evolution of the �nite particle system in a di�erent way. For that sake, we consider a
standard Poisson processNt of rate 1 and a family of i.i.d. variables pUnqn¥1 distributed according to
ν, independent of everything else, as well as a family of i.i.d. variables pVnqn¥1 uniformly distributed
on r0, 1s, independent of the previous variables. We also de�ne

Zt :�
Nţ

n�1

pUn, Vnq � pZ1
t ,Z

2
t q (11)

which is a compound Poisson process. Notice that its �rst coordinate process Z1
t is centred since

E rUns � 0.
Then, according to Theorem 7.4.I of Daley and Vere-Jones (2003), instead of writing the dynamics

of XN,i, i � 1, . . . , N, as solution of a SDE driven by N independent Poisson random measures as
in (7) above, we rather describe their dynamic by solving a SDE driven by a time change of the
compound Poisson process Z. This leads to the following representation

XN,i
t � XN,i

0 �
» t

0

bpXN,i
s qds�

» t
0

XN,i
s� dZN,is � 1?

N
Z1
AN,X

t

� 1?
N
RN,it . (12)

In the above equation, the random time change AN,Xt is given by

AN,Xt �
Ņ

j�1

» t
0

fpXN,j
s qds.

The counting processes ZN,it , 1 ¤ i ¤ N, are de�ned by the classical thinning of NAN,X
t

which

represents the total number of jumps (spikes) during r0, ts. To de�ne ZN,i, each jump time t of
NAN,X

t
is accepted as jump of neuron i, that is, of ZN,i, with probability

fpXN,i
t� q°N

j�1 fpXN,j
t� q

.

To realise these probabilities we use the uniform random variables Vn which are given by the second
coordinate process Z2

t . More precisely, introducing for any 1 ¤ i ¤ N and x P RN ,

Fipxq :�
°i
j�1 fpxjq°N
j�1 fpxjq

, F0pxq :� 0,

the process ZN,it is given by

ZN,it �
» t

0

1"
Z2

A
N,X
s

PrFi�1pXN
s�q,FipXN

s�qr

*dNAN,X
s

and the remainder terms by

RN,it �
» t

0

Z1
AN,X

s
dZN,is .
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It is straightforward to show that (12) de�nes the same dynamic as (7).
The important point is that we can couple the centred coordinate Z1 of the compound Poisson

process Z with a Brownian motion. Indeed Corollary 7.5.5 of Ethier and Kurtz (2005), based on
Komlós, Major and Tusnády (1976), gives the following

Lemma 1.5. Grant Assumption 4. Then Zt can be constructed on the same probability space as a
standard one-dimensional Brownian motion Bt, such that

sup
t¥0

|Z1
t � σBt|

log t_ 2
¤ K   8

almost surely, where K is a random variable having exponential moments, and σ2 � V rU1s.
Applying the above result, we know that Z1

AN,X
t

behaves, for large N, as σBAN,X
t

. The process

BAN,X
t

can be written as

BAN,X
t

�
» t

0

gffe Ņ

j�1

f
�
XN,j
s

	
dWN

s , (13)

where WN is another one-dimensional standard Brownian motion.
Therefore, we will be able to show that, for N large enough, pXN,1, . . . XN,N q behaves as the

auxiliary process p rXN,1, . . . rXN,N q where$''&''%
rXN,i
t � XN,i

0 �
» t

0

bp rXN,i
s qds�

» t
0

rXN,i
s� d rZN,is � σ

» t
0

gffe 1

N

Ņ

j�1

fp rXN,j
s qdWN

s ,

rXN,i
0 � ν0,

(14)

and where d rZN,is has compensator fp rXN,i
s qds.

The well-posedness of (14) holds true under Assumptions 1 and 2 if we suppose moreover that
inf f ¡ 0. This can be proved with the same reasoning as for (7), using Theorem IV.9.1 of Ikeda
and Watanabe (1989).

Obviously, (14) is a mean �eld particle version of the limit system (8), constructed with a
particular choice of underlying Brownian motion. In the following, we denote by X̄N the strong
solution of the system (8) de�ned with respect to the Brownian WN . Moreover we will denote by
X̄ any solution of the system (8) de�ned for some Brownian W that does not depend on N . We
can now state the second main result of this paper.

Theorem 1.6. If Assumptions 2, 3 and 4 hold, then, for each N P N�, there exists a one-
dimensional standard Brownian motion WN such that, for every t ¡ 0, i ¤ N,

E
�

sup
0¤s¤t

��a �XN,i
s

�� a
�
X̄N,i
s

���� ¤ Ct

�
wa

� plnNq1{2
N1{4



� 1?

N



, (15)

where a is the function given in Assumption 3, wa its modulus of continuity, and
�
X̄N,i

�
1¤i¤N

is

the solution of (8) with respect to the Brownian motion WN and the initial condition X̄N,i
0 � XN,i

0 .

Remark 1.7. Let us emphasise the fact that the expression in (15) vanishes as N goes to in�nity.
Indeed, under Assumption 3, the function a is Lipschitz continuous, so its modulus of continuity
vanishes.
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Theorem 1.6 is proved in Section 2.2. A consequence of the above result is the following

Proposition 1.8. Grant the assumptions of Theorem 1.6. If a1pxq � 0 for all x P R, then for each

t ¥ 0, the sequence of empirical measures µN � N�1
°N
i�1 δpXN,i

t qt¥0
converges in distribution in

PpDpR�,Rqq to µ � P ppX̄tqt¥0 P �|W q.
The proof of Proposition 1.8 is postponed to Appendix.

2. Proofs of the main results

2.1. Useful properties of the limit system

In the proof of Theorem 1.6, we use an important property of the limit system (8), which is the
conditional independence of the processes X̄i (i ¥ 1) given the Brownian motion W .

Proposition 2.1. If Assumption 3 holds and
³
R x

2dν0pxq   �8, then
(i) for all N P N� there exists a strong solution

�
X̄i
�

1¤i¤N
of (8), and pathwise uniqueness

holds,
(ii) X̄1, . . . , X̄N are independent conditionally to W,

(iii) for all t ¥ 0, almost surely, the weak limit of 1
N

°N
i�1 δX̄i

|r0,ts
is given by limNÑ8

1
N

°N
i�1 δX̄i

|r0,ts
�

P pX̄i
|r0,ts P �|Wtq � P pX̄i

|r0,ts P �|W q.
The proof of Proposition 2.1 is postponed to Appendix, in Section 3.1.

2.2. Strong convergence

We prove the convergence of the �nite system (7) to the limit system (8), by controlling the distance
between these systems and the auxiliary system (14). This is done by introducing a suitable coupling
between (7) and (14). .

Proposition 2.2. Suppose that XN,i
0 � rXN,i

0 , for all 1 ¤ i ¤ N. Grant Assumptions 2, 3 and 4.

Then there exists a coupling of XN,i and rXN,i such that for all t ¡ 0, for all i � 1, . . . , N,

E
�

sup
0¤s¤t

��� rXN,i
s �XN,i

s

���� ¤ Ct
plnNq1{2
N1{4

.

Proof. By exchangeability, it su�ces to prove the result for i � 1. We couple the two processes by
using the KMT approximation of Lemma 1.5 and then using a total variation coupling of the two
jump processes ZN,1 and rZN,1.
Step 1. Construction of the coupling. We construct the initial process XN � pXN,1, . . . , XN,N q
driven by the underlying compound Poisson process Zt as in (12). Then we couple Z with the
Brownian motion B according to Lemma 1.5 and thus, by time change, with the Brownian motion
WN of (13). Therefore, in what follows, we shall work with the �ltration

FNt � FZ
AN,X

t

_ σtWN
s , s ¤ tu, (16)

where FZ
t is the natural �ltration of the compound Poisson process Z.
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To construct the total variation coupling of ZN,1 and rZN,1, we complete the jumps of ZN,1t ,
using the construction of Lemma 4 of Brémaud and Massoulié (1996), to a Poisson random measure

π1pdt, dzq on R� � R� having intensity dtdz. This PRM π1 depends on ZN,1t , by copying all of its

points Tn, adding to them a random mark z which is placed uniformly on the strip z P r0, fpXN,1
Tn�

qr,
independently of anything else. Finally, we add independent PRM marks on the missing domain
tpt, zq P R2

� : z ¥ fpXN,1
t� qu. Notice that the PRM π1 depends on ZN,1, and thus on the compound

Poisson process Z of (11). We use the same construction for all other coordinates i ¡ 1, using the
same underlying Z and independent PRM's on the missing domains.

We are now able to de�ne the dynamics of rXN,1, coupled to XN,1, by$''''&''''%
rXN,1
t � XN,1

0 �
» t

0

bp rXN,1
s qds�

»
r0,ts�R�

rXN,1
s� 1tz¤fp�XN,1

s� qudπ1ps, zq

�σ
» t

0

gffe 1

N

Ņ

j�1

fp rXN,j
s qdWN

s .

(17)

Using this construction of π1 guarantees that XN,1 and rXN,1 have a maximal number of common
jumps.
Step 2.

Let pMN qN be an increasing sequence of positive numbers that goes to in�nity. Then��� rXN,1
t �XN,1

t

��� ¤ » t
0

���b� rXN,1
s

	
� b

�
XN,1
s

���� ds
�
»
s0,ts�R�

��� rXN,1
s 1tz¤fp�XN,1

s qu �XN,1
s 1tz¤fpXN,1

s qu
��� dπ1ps, zq

� σ?
N

������
» t

0

gffe Ņ

j�1

fp rXN,j
s qdWN

s �BAN,X
t

������
� 1?

N

���σBAN,X
t

� Z1
AN,X

t

���� 1?
N
|RN,1t |.

Let

uNt :� E
�

sup
0¤s¤t

��� rXN,1
s �XN,1

s

���� ;

note that, for all t ¥ 0, uNt   �8 thanks to the points piiq and pivq of Lemma 3.1.
Then, using that the expectation of the jump term»

s0,ts�R�

��� rXN,1
s 1tz¤fp�XN,1

s qu �XN,1
s 1tz¤fpXN,1

s qu
��� dπ1ps, zq

above is bounded by

E
�
||f ||8

» t
0

| rXN,1
s �XN,1

s |ds
�
�
» t

0

E
�
|fp rXN,1

s q � fpXN,1
s q|p| rXN,1

s | � |XN,1
s |q

�
ds, (18)

and inserting
1 � 1t|�XN,1

s |�|XN,1
s |¤MNu � 1t|�XN,1

s |�|XN,1
s |¡MNu
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in the second term of (18), we obtain (with Markov inequality and points piq and piiiq of Lemma 3.1)

uNt ¤ CtuNt � Cp1�MN qtuNt � CT
M2
N

� σE

����
���» t

0

��gffe 1

N

Ņ

j�1

fp rXN,j
s q �

gffe 1

N

Ņ

j�1

fpXN,j
s q

�2

ds

��
1{2
�����K

lnN?
N
,

for some constants C,K ¡ 0. Here, we have used Lemma 1.5. Hence, using that inf f ¡ 0, for all
t P r0, T s,

uNt ¤ Cpt�MN tquNt � CT
M2
N

�K
lnN?
N

� CσE

���
��» t

0

�
1

N

Ņ

j�1

��� rXN,j
s �XN,j

s

����2

ds

�1{2
��� .

Now, introducing vN,jt � sup
0¤s¤t

| rXN,j
s �XN,j

s | and using that E
�
vN,jt

�
� uNt for all j, we have

uNt ¤Cpt�MN tquNt � CT
M2
N

�K
lnN?
N

� C
?
t

1

N

Ņ

j�1

E
�
vN,jt

�
¤Cpt�MN t�

?
tquNt � CT

M2
N

�K
lnN?
N
.

Choose now tN � 1
16MNC2 , such that (assuming C ¥ 1 and MN ¥ 1)

CptN �MN tN �?
tN q ¤ C

�
1

16C
� 1

16C
� 1

4C



¤ 1{2.

Then for all t ¤ tN ¤ T,

uNt ¤ 2
CT
M2
N

� 2K
lnN?
N
.

The above argument can be iterated such that for each n P N�, for all t ¤ ntN ¤ T,

uNt ¤ 2n

�
CT
M2
N

�K
lnN?
N



,

which implies in turn that for all T ¡ 0, for all t P r0, T s,

uNt ¤ 2rT {tN s

�
CT
M2
N

�K
lnN?
N



¤ KT

�
1

MN
� plnNqMN?

N



.

Finally, choosing MN � N1{4{plnNq1{2 proves the proposition.

Now we control the distance between the auxiliary system and the limit system. For that sake
we construct the auxiliary system and the limit system using the same Poisson random measures
πipds, dzq as those used in (17). Our argument relies on the conditional independence of the coor-
dinates of the limit system.
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Proposition 2.3. Grant Assumptions 2 and 3, and suppose that rXN,i
0 � X̄N,i

0 for all i. Then for
all s ¤ t,

E sup
s¤t

|ap rXN,1
s q � apX̄N,1

s q| ¤ CtN
�1{2.

Proof. The proof is done by decomposing the evolution of apX̄N,1
t q in the following way.

apX̄N,1
t q � apX̄N,1

0 q �
» t

0

a1pX̄N,1
s qbpX̄N,1

s qds�
»
r0,ts�R�

�
ap0q � apX̄N,1

s� q
	
1tz¤fpX̄N,1

s� quπ
1pds, dzq

� σ2

2

» t
0

a2pX̄N,1
s q 1

N

Ņ

j�1

fpX̄N,j
s qds�BNt � σ

» t
0

a1pX̄N,1
s q

gffe 1

N

Ņ

j�1

fpX̄N,j
s qdWN

s �MN
t ,

where

BNt � σ2

2

» t
0

a2pX̄N,1
s q

�
1

N

Ņ

j�1

fpX̄N,j
s q � E

�
fpX̄N,1

s q��WN
��

ds,

and

MN
t � σ

» t
0

a1pX̄N,1
s q

��gffe 1

N

Ņ

j�1

fpX̄N,j
s q �

c
E
�
fpX̄N,1

s q|WN
��dWN

s .

Since

 MN ¡t¤ σ2

�
sup
xPR

|a1pxq2|

» t

0

��gffe 1

N

Ņ

j�1

fpX̄N,j
s q �

c
E
�
fpX̄N,1

s q|WN
��2

ds,

recalling that the variables X̄N,j
s (1 ¤ j ¤ N) are i.i.d. conditionally to WN (see Proposition 2.1),

taking conditional expectation Ep�|WN q implies that

E
� MN ¡t

� ¤ CtN
�1 and E

�
BNt

� ¤ CtN
�1,

and this implies the result, with the same reasoning as in the proof of Theorem 1.1.

We conclude with the

Proof of Theorem 1.6. The result is now a straightforward consequence of Propositions 2.2 and 2.3.

2.3. Weak convergence

Now we prove the convergence in distribution of the �nite system (7) to the limit system (8) in the
topology of the uniform convergence on every compact set.

Lemma 2.4. Let paiqiPN be a sequence of continuous functions from R� to R. Then the function
Φ de�ned as

Φ : pxiqi P DpR�,RqN ÞÑ pai � xiqi P DpR�,RqN
is continuous, where DpR�,RqN is endowed with the product topology with respect to the uniform
convergence on every compact set.
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Proof. Let
�pxni qiPN�n be a sequence that converges to some pxiqi. This means that, for every i, xni

converges to xi in DpR�,Rq uniformly on every interval r0, T s (T ¡ 0).
Consequently, for every i, ai�xni converges to ai�xi uniformly on every compact set. This implies

the convergence of Φ
�pxni qi� to Φ ppxiqiq .

Proof of Theorem 1.3. Let XN and X̄N be de�ned as in Theorem 1.6. We de�ne a metric dU on
DpR�,Rq that de�nes the topology of the uniform convergence on every compact set by

dU px, yq :�
�8̧

n�1

1

2n

�
1^ sup

0¤s¤n
|xpsq � ypsq|



.

Then we de�ne the following metric d on DpR�,RqN� , that de�nes the product topology with
respect to dU

dppxiqi, pyiqiq :�
�8̧

i�1

1

2i
dU pxi, yiq.

Now we prove that
�
a �XN,i

�
i
converges to

�
a � X̄i

�
i
in distribution in the topology of d (that

is the product topology with respect to the topology of the uniform convergence on the compact
sets), where

�
X̄i
�
iPN� is a solution of (8) for any Brownian motion W that does not depend on N .

Let g : DpR�,RqN� Ñ R be any bounded and uniformly continuous function. We want to
prove that E

�
g
�
ΦpXN q�� converges to E �g �ΦpX̄�q� �� E

�
g
�
ΦpX̄N q��� as N goes to in�nity, where

Φppxiqiq :� pa � xiqi.
Then we have, ��E �g �ΦpXN q��� E

�
g
�
ΦpX̄q���� ¤E ���gpΦpXN qq � gpΦpX̄N qq���

¤E �wg �d �ΦpXN q,ΦpX̄N q��� , (19)

where wg is the modulus of continuity of g (with respect to the metric d).
Thanks to Theorem 1.6, for any increasing function ϕ : N� Ñ N�, there exists another one ψ such

that d
�
ΦpXϕpψpNqqq,ΦpX̄ϕpψpNqqq� vanishes almost surely as N goes to in�nity. Then, using (19),

E
�
g
�
ΦpXϕpψpNqqq�� converges to E

�
g
�
ΦpX̄q�� . This proves that,

E
�
g
�
ΦpXN q�� ÝÑ

NÑ8
E
�
g
�
ΦpX̄q�� .

As the previous convergence holds for any bounded and uniformly continuous function g, we
know, by Portmanteau theorem (see Theorem 2.1 of Billingsley (1999)), that

�
a �XN,i

�
i
converges

to
�
a � X̄i

�
i
in distribution in the product topology with respect to the uniform convergence on

every compact set, as N goes to in�nity.
Then, applying Lemma 2.4 with ai :� a�1 that is continuous, we obtain the result.

3. Appendix

3.1. Properties of the limit system

We start with the
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Proof of Item 2. of Theorem 1.1. The proof is done using a classical Picard-iteration. For that sake

we introduce the sequence of processes X̄
r0s
t � X̄0, and

X̄
rn�1s
t :� X̄0 �

» t
0

bpX̄rns
s qds�

»
r0,ts�R��R

X̄
rn�1s
s� 1

tz¤fpX̄
rns
s� qu

πpds, dz, duq � σ

» t
0

a
µns pfqdWs,

where
µns � P pX̄rns

s P �|Wsq.
Let us �rst prove a control on the moments of X̄rns uniformly in n. We de�ne, for each k P N�,

τk :� inf
nPN

inftt ¡ 0 : |X̄rns
t | ¡ kpn� 1qu.

Applying Ito's formula we have

E
��
X̄
rn�1s
t^τk

	2
�
¤ E

�
X̄2

0

�� 2

» t
0

E
�
X̄rn�1s
s^τk b

�
X̄rns
s^τk

	�
ds� σ2

» t
0

E
�
µns^τkpfq

�
ds.

Using that f and b are bounded, we have

u
rn�1s
t :� E

��
X̄
rn�1s
t^τk

	2
�
¤ Cp1� tq � C

» t
0

urn�1s
s ds.

Then, by Grönwall's lemma, we know that, for all t ¡ 0

sup
kPN

sup
nPN

sup
0¤s¤t

E
��
X̄rns
s^τk

	2
�
  �8.

Besides, pτkqk is nondecreasing, so it converges almost surely to some τ , which is almost surely
in�nite since

P pτ ¤ tq � lim
kÑ8

P pτk ¤ tq ¤ lim
kÑ8

P
�
Dn P N,

���X̄rns
t^τk

��� ¥ kpn� 1q
	

¤ lim
kÑ8

¸
nPN

P
����X̄rns

t^τk

��� ¥ kpn� 1q
	

¤Ct lim
kÑ8

¸
nPN

1

k2pn� 1q2 ¤ lim
kÑ8

Ct
k2

� 0.

Then, by Fatou's lemma, we know that

sup
nPN

sup
0¤s¤t

E
��
X̄rns
s

	2
�
  �8. (20)

Now, we prove the convergence of X̄
rns
t . The same strategy as the one of the proof of Item 1. of

Theorem 1.1 allows to show that

δnt :� E sup
s¤t

|apX̄rns
s q � apX̄rn�1s

s q|

satis�es
δnt ¤ Cpt�

?
tqδn�1

t ,
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for all n ¥ 1, for a constant C only depending on the parameters of the model, but not on n, neither
on t. Choose t1 such that

Cpt1 �
?
t1q ¤ 1

2
.

Since sups¤t1 |apX̄
r0s
s q| � apX̄0q ¤ }a}8, we deduce from this that

δnt1 ¤ 2�n}a}8.

This implies the almost sure convergence of a
�
X̄
rns
t

	
n
to some random variable Zt for all t P r0, t1s.

As a is an increasing function, this implies the almost sure convergence of X̄
rns
t to some (possibly

in�nite) random variable X̄t. The almost sure �niteness of X̄t is then guaranteed by Fatou's lemma
and (20).

It remains to prove that X̄ is solution of the limit equation (9) which follows by standard
arguments (note that the jump term does not cause troubles because it is of �nite activity). The
most important point is to notice that

µnt pfq � EpfpX̄rns
t q|Wtq Ñ EpfpX̄tq|Wtq

almost surely, which follows from the almost sure convergence of fpX̄rns
t q Ñ fpX̄tq, using dominated

convergence.
Finally, once the convergence is proven on the time interval r0, t1s, we can proceed iteratively

over successive intervals rkt1, pk � 1qt1s to conclude the proof.

We just proved existence and uniqueness of strong solution of the SDE (9). In the paper, we also
need to know some properties about the joint distribution of the limit system given by (8), not only
each of its coordinate individually.

Proof of Proposition 2.1. piq Given a Brownian motion W and i.i.d. Poisson measures πi, the same
proof as the one of Theorem 1.1 implies the existence and the uniqueness of the system given in (8)
for 1 ¤ i ¤ N.
piiq The construction of the proof of Item 2. of Theorem 1.1, together with the proof of Theorem

1.1 of Chapter IV.1 and of Theorem 9.1 in Chapter IV.9 of Ikeda and Watanabe (1989), imply the
existence of a measurable function Φ that does not depend on k � 1, . . . , N , and that satis�es, for
each 1 ¤ k ¤ N,

X̄k � ΦpX̄k
0 , π

k,W q
and for all t ¥ 0,

X̄k
|r0,ts � ΦtpX̄k

0 , π
k
|r0,ts�R��R, pWsqs¤tq; (21)

in other words, our process is non-anticipative and does only depend on the underlying noise up to
time t.

Then we can write, for all continuous bounded functions g, h,

E
�
gpX̄iqhpX̄jq��W � � E

�
gpΦpX̄i

0, π
i,W qqhpΦpX̄j

0 , π
j ,W qq

���W� � ψpW q,

where ψpwq :� E
�
gpΦpX̄i

0, π
i, wqqhpΦpX̄j

0 , π
j , wqq

�
� E

�
gpΦpX̄i

0, π
i, wqq�E �hpΦpX̄j

0 , π
j , wqq

�
�:

ψipwqψjpwq. With the same reasoning, we show that E
�
gpX̄iq��W � � ψipW q and E

�
hpX̄jq��W � �

ψjpW q. The same arguments prove the mutual independence of X̄1, . . . X̄N conditionally to W.
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piiiq Using the representation X̄k
|r0,ts � ΦtpX̄k

0 , π
k,W q, we can write for any continuous and

bounded function g : Dpr0, ts,Rq Ñ R,»
R
gdpN�1

Ņ

i�1

δX̄i
||0,ts

q � 1

N

Ņ

i�1

gpX̄i
|r0,tsq �

1

N

Ņ

i�1

g � ΦtpX̄i
0, π

i,W q.

Using the law of large numbers on the account of the sequence of i.i.d. PRM's and working condi-
tionally on W, we obtain that

lim
NÑ8

»
R
gdpN�1

Ņ

i�1

δX̄i
|r0,ts

q � E
�
g � ΦtpX̄1

0 , π
1,W q|W � � E

�
gpX̄1

|r0,tsq|W
�
� E

�
gpX̄1

|r0,tsq|pWsqs¤t
�
,

where we have used (21).

3.2. Proof of Proposition 1.8

For m � LpXq P PpDpR�,Rqq, for every t1, . . . , tk P R�, let mpt1,...,tkq � LpXt1 , . . . , Xtkq, and
πpt1,...,tkqpmq � mpt1,...,tkq. One can note that πpt1,...,tkq is continuous on PpDpR�,Rqq.

Step 1. In a �rst time, we prove the convergence in distribution of µNpt1,...,tkq to µpt1,...,tkq for any
0 ¤ t1 ¤ . . . ¤ tk. For this purpose, let us consider the algebraM composed of the functions Φ of
the form

Φ : m P PpRkq ÞÝÑ h

�»
λ1dm, . . . ,

»
λrdm



, (22)

where h : Rr Ñ R is Lipschitz continuous and bounded, and λi P CbpRkq satis�es, for every
x1, . . . , xk, y1, . . . , yk P R,

|λipx1, . . . , xkq � λipy1, . . . , ykq| ¤ C
ķ

j�1

|apxjq � apyjq|.

Let us prove that, for all Φ PM,

E
�
ΦpµNpt1,...,tkqq

�
ÝÑ
NÑ8

E
�
Φpµpt1,...,tkqq

�
. (23)

For Φ in the form (22), we have���E �ΦpµNpt1,...,tkqq�� E
�
Φpµpt1,...,tkqq

���� � ���E �ΦpµNpt1,...,tkqq�� E
�
ΦpLpX̄N,1

t1 , . . . , X̄N,1
tk

|WN qq
����

¤ E

������h
�

1

N

Ņ

j�1

λ1pXN,j
t1 , . . . , XN,j

tk
q, . . . , 1

N

Ņ

j�1

λrpXN,j
t1 , . . . , XN,j

tk
q
�

�h
�

1

N

Ņ

j�1

λ1pX̄N,j
t1 , . . . , X̄N,j

tk
q, . . . , 1

N

Ņ

j�1

λrpX̄N,j
t1 , . . . , X̄N,j

tk
q
������
�

� E

������h
�

1

N

Ņ

j�1

λ1pX̄N,j
t1 , . . . , X̄N,j

tk
q, . . . , 1

N

Ņ

j�1

λrpX̄N,j
t1 , . . . , X̄N,j

tk
q
�
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�h
�
E
�
λ1pX̄N,1

t1 , . . . , X̄N,1
tk

q
���WN

�
, . . . ,E

�
λrpX̄N,1

t1 , . . . , X̄N,1
tk

q
���WN

�	����
¤ C

ķ

i�1

E
����a�XN,1

ti

	
� a

�
X̄N,1
ti

	����
� C

ŗ

i�1

E

������ 1

N

Ņ

j�1

λipX̄N,j
t1 , . . . , X̄N,j

tk
q � E

�
λipX̄N,j

t1 , . . . , X̄N,j
tk

q
���WN

������
�
.

Then, Theorem 1.6 and Proposition 2.1.(iii) imply (23).

Besides, the sequence
�
µNpt1,...,tkq

	
N

is tight. Indeed, it is well-known that this is equivalent to

the tightness of the sequence
�
XN,1
t1 , . . . , XN,1

tk

	
N

(see Proposition 2.2 of Sznitman (1991)), and

this is a mere consequence of Theorem 1.3.
Now, to obtain the convergence in distribution of µNpt1,...,tkq to µpt1,...,tkq, it is su�cient to

show that the algebra M separates the points. Indeed, if this is the case, Theorem 3.4.5.(a) and
Lemma 3.4.3 of Ethier and Kurtz (2005) imply the result.

Let m,m1 be two distinct probabilities on Rk. There exist αi   βi (1 ¤ i ¤ k) such that

mpCq � m1pCq with C � ±k
i�1rαi, βis. Let us assume that mpCq ¡ m1pCq. This implies the

existence of some δ ¡ 0 that satis�es mp±k
i�1rαi, βisq ¡ m1p±k

i�1rαi � δ, βi � δsq.
Let us consider λi P C8

c pRq such that 1rαi,βispxq ¤ λipxq ¤ 1rαi�δ,βi�δspxq. De�ning λpxq :�±k
i�1 λipxq, we obtain,»

λdm ¥ m

�
k¹
i�1

rαi, βis
�
¡ m1

�
k¹
i�1

rαi � δ, βi � δs
�
¥
»
λdm1.

Considering Φpm2q :� hp³ λdm2q, with hpxq :� x if |x| ¤ 1 and hpxq � x{|x| if |x| ¡ 1, we have
Φpmq � Φpm1q. It only remains to prove that, Φ P M, that is, |λipxq � λipyq| ¤ C|apxq � apyq|.
This is a straightforward consequence of the fact that sup

xPR

|λ1ipxq|
|a1pxq|   8, since λi belongs to C

1
c pRq,

and a1pxq � 0, for any x P R.
Step 2. Now we can deduce, from Step 1, the convergence in distribution of µN to µ. As a

consequence of Proposition 2.2 of Sznitman (1991) and Theorem 1.3, the sequence µN is tight. Let
µ̂ be any limit of a converging subsequence of µN . The continuity of πpt1,...,tnq and Step 1 imply
that, for all t1, . . . , tn P R�,

Lpµpt1,...,tnqq � Lpµ̂pt1,...,tnqq. (24)

To conclude the proof, we just have to show that Lpµq � Lpµ̂q. Let us consider N the algebra
composed of the functions of the form

Φ : m P PpDpR�,Rqq ÞÝÑ h

�»
λ1dmpt11,...,t

1
k1
q, . . . ,

»
λndmptn1 ,...,t

n
kn
q



,

where λi P CbpRkiq, h P CbpRnq, tji P R�.
By (24), for all Φ P N , E rΦpµ̂qs � E rΦpµqs. Now, using Theorem 3.4.5.(a) of Ethier and Kurtz

(2005), we just have to show that N separates the points of PpDpR�,Rqq.
This last point is straightforward: let m,m1 P PpDpR�,Rqq such that m � m1. This implies the

existence of t1, . . . , tk such that LpXpt1,...,tkqq � LpYpt1,...,tkqq, that is,
³
λdmpt1,...,tkq �

³
λdm1

pt1,...,tkq
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for some λ P CbpRkq. Now let h : R ÞÑ R be de�ned as hpxq � x if |x| ¤ ||λ||8 � 1, and hpxq �
x
|x| p||λ||8�1q otherwise. Then Φ : m2 ÞÑ hp³ λdm2

pt1,...tkq
q belongs to N and satis�es Φpmq � Φpm1q.

3.3. Proof of Corollary 1.2

Applying Ito's formula, we have

ϕpX̄tq � ϕpX̄0q �
» t

0

�
ϕ1pX̄sqbpX̄sq � 1

2
ϕ2pX̄sqµspfq



ds�

» t
0

ϕ1pX̄sq
a
µspfqdWs

�
»
r0,ts�R��R

1tz¤fpX̄s�u

�
ϕp0q � ϕpX̄s�

�
πpds, dz, duq. (25)

Since ϕ1, ϕ2, b and f are bounded, it follows from Fubini's theorem that

E
�» t

0

�
ϕ1pX̄sqbpX̄sq � 1

2
ϕ2pX̄sqµspfq

�
ds|W



�
» t

0

E

�
ϕ1pX̄sqbpX̄sq � 1

2
ϕ2pX̄sqµspfq|W



ds

�
» t

0

»
R

�
ϕ1pxqbpxq � 1

2
ϕ2pxqµspfq



µspdxqds.

Moreover, by independence of X̄0 and W, EpϕpX̄0q|W q � ³R ϕpxqν0pdxq.
To deal with the martingale part in (25), we use an Euler scheme to approximate the stochastic

integral It :� ³t
0
ϕ1pX̄sq

a
µspfqdWs. For that sake, let t

n
k :� k2�nt, 0 ¤ k ¤ 2n, n ¥ 1, and de�ne

Int :�
2n�1¸
k�0

ϕ1pX̄tnk
q∆n

k , ∆n
k �

» tnk�1

tnk

a
µspfqdWs,

then Ep|It � Int |2q Ñ 0 as nÑ8, and therefore EpInt |W q Ñ EpIt|W q in L2pP q, as nÑ8. But

EpInt |W q �
2n�1¸
k�0

Epϕ1pX̄tnk
q|W q∆n

k Ñ
» t

0

Epϕ1pX̄sq|W q
a
µspfqdWs

in L2pP q, since the sequence of processes Y ns :� °2n�1
k�0 1stnk ,t

n
k�1s

psqEpϕ1pX̄tnk
q|W q, 0 ¤ s ¤ t,

converges in L2pΩ� r0, tsq to Epϕ1pX̄sq|W q.
We �nally deal with the jump part in (25). Since f is bounded, and by independence ofW and π,

we can rewrite this part in terms of an underlying Poisson process Nt, independent ofW and having
rate }f}8, and in terms of i.i.d. variables pVnqn¥1 uniformly distributed on r0, 1s, independent of
W and of N as follows.»

r0,ts�R��R
1tz¤fpX̄s�u

�
ϕp0q � ϕpX̄s�

�
πpds, dz, duq �

Nţ

n�1

1t}f}8Vn¤fpX̄Tn�qu
pϕp0q � ϕpX̄Tn�qq.

Taking conditional expectation Ep�|W q, we obtain

E

�
Nţ

n�1

1t}f}8Vn¤fpX̄Tn�qu
pϕp0q � ϕpX̄Tn�qq|W

�
�
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E

�
Nţ

n�1

fpX̄Tn�q
}f}8 pϕp0q � ϕpX̄Tn�qq|W

�

�
» t

0

E
�
fpX̄sqpϕp0q � ϕpX̄sqq|W

�
ds,

where we have used the independence properties of pVnqn, Nt andW and the fact that conditionally
on tNt � nu, the jump times pT1, . . . , Tnq are distributed as the order statistics of n i.i.d. times
which are uniformly distributed on r0, ts. This concludes our proof.

3.4. A priori estimates

In this subsection, we prove useful a priori upper bounds on some moments of the solutions of
the SDEs (7) and (14). Most of our previous results were stated under our Assumptions 1 and 2.
However our computations hold true under weaker assumptions as shows the following

Lemma 3.1. If f is subquadratic and b sublinear, if the measures ν and ν0 admit a second moment
and

³
R udνpuq � 0, then

(i) for all t ¡ 0, sup
NPN�

sup
0¤s¤t

E
��
XN,1
t

	2
�
  �8,

(ii) for all t ¡ 0, sup
NPN�

E
�

sup
0¤s¤t

���XN,1
t

����   �8,

(iii) for all t ¡ 0, sup
NPN�

sup
0¤s¤t

E
�� rXN,1

t

	2
�
  �8.

(iv) for all t ¡ 0, sup
NPN�

E
�

sup
0¤s¤t

��� rXN,1
t

����   �8.

Proof. We just prove piq and piiq; piiiq and pivq follow from similar arguments. By Ito's formula,
we have that�

XN,1
t

	2

¤
�
XN,1

0

	2

� 2

» t
0

�
XN,1
s

�
b
�
XN,1
s

�
ds

�
Ņ

j�2

»
r0,ts�R��R

��
XN,1
s� � u?

N


2

�
�
XN,1
s�

	2
�
1tz¤fpXN,j

s� qudπjps, z, uq.

As f is subquadratic, b is sublinear, and the XN,j
s are identically distributed,

E
��
XN,1
t

	2
�
¤E

��
XN,1

0

	2
�
� Ct� C

» t
0

E
��
XN,1
s

�2�
ds� C

N

Ņ

j�2

» t
0

E
��
XN,j
s

�2�
ds

¤E
��
XN,1

0

	2
�
� Ct� C

» t
0

E
��
XN,1
s

�2�
ds,

where the constant C is not the same in the two lines above.
Then, we prove the lemma using Grönwall's lemma, and stopping times τNK :��1¤i¤N τ

N,i
K with

τN,iK :� inftt ¥ 0 : |XN,i
t | ¡ Ku.
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piiq We use that ���XN,1
t

��� ¤ ���XN,1
0

���� Ct� C

» t
0

��XN,1
s

�� ds� 1?
N
|MN

t |,

where MN
t is the martingale MN

t � °N
j�2

³
r0,ts�R��R u1tz¤fpXN,j

s� qudπjps, z, uq. Then

sup
0¤s¤t

��XN,1
s

�� ¤ ���XN,1
0

���� Ct� C

» t
0

|XN,1
s |ds� 1?

N
sup

0¤s¤t
|MN

s |.

Now, to conclude the proof, it is su�cient to notice that

1?
N

E
�

sup
0¤s¤t

|MN
s |
�
¤ E

�
1

N
rMN st

�1{2

is uniformly bounded in N .
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